Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Oncol Lett ; 23(2): 71, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35069880

ABSTRACT

The EGFR is a protein that belongs to the ErbB family of tyrosine kinase receptors. The EGFR is often overexpressed in human carcinomas. Amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain occur in patients with cancer. In cervical cancer, the expression level of the EGFR protein appears to directly associate with human papillomavirus infection. Our previous research demonstrated that in the cervical cancer cell lines, CALO and INBL, the EGFR is non-phosphorylated. The aim of the current study was to analyze the catalytic activity of the isolated EGFR and the presence of mutations in the control region αC. Catalytic activity was assessed by a universal in vitro kinase assay using polyGluTyr as a substrate, and the proteins were visualized by western blotting. For mutation analysis, DNA from CALO and INBL cell lines was isolated, and PCR was used to amplify the exons corresponding to the helix αC in the EGFR. The PCR products were visualized by agarose gel electrophoresis. The bands were isolated using a Zymoclean Gel DNA Recovery kit and directly sequenced. The EGFR, which was isolated and analyzed using the in vitro kinase assay, had catalytic activity. The receptor contained some mutations in the helix αC of the catalytic domain in both cell lines. The observed changes in the amino acid sequence may induce a different spatial arrangement and, therefore, a different conformation, which may confer different activities to this receptor. Thus, it was concluded that non-phosphorylated EGFR has catalytic activity, and it bears some amino acid changes in the helix αC of the catalytic domain in the CALO and INBL cells. These results suggest that the EGFR may function as an activator of other ErbB family receptors in these cervical cancer cells.

2.
Rev. colomb. biotecnol ; 20(1): 16-30, ene.-jun. 2018. tab, graf
Article in Spanish | LILACS | ID: biblio-959854

ABSTRACT

RESUMEN La lipasa B de Candida antárctica (CalB) se ha utilizado en la acilación quimio- y enantioselectiva del racemato (R,S)-propranolol. CalB tiene enant¡oselect¡v¡dad moderada (£=63) por el R-propranolol. La enantioselectividad, se origina en la reacción de transferencia del grupo acilo desde la serina catalítica, acilada, al propranolol. La fase inicial de esta reacción involucra la formación de complejos de Michaelis y posteriormente conformaciones de ataque cercano. El análisis de las conformaciones de ataque cercano ha permitido en varios casos explicar el origen de la catálisis o reproducir el efecto catalítico. En este trabajo se profundiza en la comprensión la función de las conformaciones de ataque cercano en la enantioselectividad de la acilación del (R,S)-propranolol catalizada por CalB. Para lo anterior se realizó un estudio detallado de los complejos de Michaelis y de las conformaciones de ataque cercano del paso enantioselectivo de la reacción de acilación del (R,S)-propranolol utilizando un protocolo de dinámica molecular QM/MM (SCCDFTB/CHARMM) utilizando 6 distribuciones de velocidades iniciales y simulaciones de 2,5 ns. Se estudiaron 7 complejos CalB-propranolol. Los enlaces de hidrógeno del sitio activo de CalB acilada relevantes para la actividad catalítica fueron estables en todas las simulaciones. Las poblaciones de los complejos de Michaelis y de las conformaciones de ataque cercano son dependientes de la distribución de las velocidades iniciales de la dinámica molecular. La enantioselectividad moderada de CalB acilada, encontrada experimentalmente, puede ser parcialmente atribuida a la alta población de conformaciones de ataque cercano observada para el S-propranolol.


ABSTRACT Candida antarctica lipase B (CalB) has been used for chemo- and enantioselective acylation of racemic (R,S)-propranolol, with moderate enantioselectivity (£=63) for R-propranolol. The enantioselective step in this reaction is the transfer of an acyl group from the catalytic acylated serine to propranolol. The initial phase of this reaction involves the formation of Michaelis complexes, followed by the formation of near-attack complexes. The analysis of the near-attack complexes has in several cases permitted to explain the origin of the catalysis or to reproduce the catalytic effect. The aim of this study was improve the understanding of the role of the near-attack complexes for the enantioselectivity of the acylation of (R,S)-propranolol, catalyzed by CalB. To this purpose a detailed investigation of the Michaelis and near-attack complexes of the enantioselective step of the acylation of (R,S)-propranolol using QM/MM molecular dynamics was performed. Several simulations (each 2,5 ns) with different initial velocity distributions were performed. In total seven CalB-propranolol complexes were studied. The hydrogen bonds in the active site of CalB, which are relevant for the catalytic activity, are stable in all simulations. The lifetime of the Michaelis complexes is considerably shorter than the simulation time. Conclusions: The populations of the Michaelis and near-attack complexes depend on the initial velocity distribution in the molecular dynamics simulations. The experimentally observed moderate enantioselectivity may be partially attributed to the high population of near-attack conformations of S-propranolol.

3.
Electron. j. biotechnol ; Electron. j. biotechnol;19(6): 56-62, Nov. 2016. ilus
Article in English | LILACS | ID: biblio-840314

ABSTRACT

Background: Endoglucanase, one of three type cellulases, can randomly cleave internal p-1,4-linkages in cellulose polymers. Thus, it could be applied in agricultural and industrial processes. Results: A novel endoglucanase gene (JqCel5A) was cloned from Jonesia quinghaiensis and functionally expressed in Escherichia coli Rosetta (DE3). It contained 1722 bp and encoded a 573-residue polypeptide consisting of a catalytic domain of glycoside hydrolase family 5 (GH5) and a type 2 carbohydrate-binding module (CBM2), together with a predicted molecular mass of 61.79 kD. The purified JqCel5A displayed maximum activity at 55°C and pH 7.0, with 21.7 U/mg, 26.19 U/mg and 4.81 U/mg towards the substrate carboxymethyl cellulose, barley glucan and filter paper, respectively. Interestingly, JqCel5A exhibited high pH stability over a broad pH range of pH (3-11), and had good tolerance to a wide variety of deleterious chemicals including heavy metals and detergent. The catalytic mechanism of JqCel5A was also investigated by site mutagenesis and homology-modeling in this study. Conclusions: It was believed that these properties might make JqCel5A to be potentially used in the suitable industrial catalytic condition, which has a broad pH fluctuation and/or chemical disturbance.


Subject(s)
Actinomycetales/enzymology , Cellulases/chemistry , Cellulases/isolation & purification , Cellulases/genetics , Hydrogen-Ion Concentration , Mutagenicity Tests , Temperature
4.
Genet Mol Biol ; 38(3): 366-72, 2015.
Article in English | MEDLINE | ID: mdl-26500441

ABSTRACT

Pseudomonas sp. strain TXG6-1, a chitinolytic gram-negative bacterium, was isolated from a vegetable field in Taixing city, Jiangsu Province, China. In this study, a Pseudomonas chitinase C gene (PsChiC) was isolated from the chromosomal DNA of this bacterium using a pair of specific primers. The PsChiC gene consisted of an open reading frame of 1443 nucleotides and encoded 480 amino acid residues with a calculated molecular mass of 51.66 kDa. The deduced PsChiC amino acid sequence lacked a signal sequence and consisted of a glycoside hydrolase family 18 catalytic domain responsible for chitinase activity, a fibronectin type III-like domain (FLD) and a C-terminal chitin-binding domain (ChBD). The amino acid sequence of PsChiCshowed high sequence homology (> 95%) with chitinase C from Serratia marcescens. SDS-PAGE showed that the molecular mass of chitinase PsChiC was 52 kDa. Chitinase assays revealed that the chitobiosidase and endochitinase activities of PsChiCwere 51.6- and 84.1-fold higher than those of pET30a, respectively. Although PsChiC showed little insecticidal activity towards Spodoptera litura larvae, an insecticidal assay indicated that PsChiC increased the insecticidal toxicity of SpltNPV by 1.78-fold at 192 h and hastened death. These results suggest that PsChiC from Pseudomonas sp. could be useful in improving the pathogenicity of baculoviruses.

SELECTION OF CITATIONS
SEARCH DETAIL