Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202412020, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38993096

ABSTRACT

Mutualisms are interactions that benefit all species involved. It has been widely investigated in neighbouring subjects, such as biology, ecology, sociology, and economics. However, such a reciprocal relationship in synthetic chemical systems has rarely been studied. Here, we demonstrate a mutualistic synthesis where byproducts from two orthogonal chemical reactions aid each other's production. Disulfide exchange and hydrazone exchange were chosen to generate two dynamic combinatorial libraries. A minor tetrameric macrocycle from the active disulfide library was quantitatively amplified in the presence of the hydrazone library. This incorporation also turned on the previously inert hydrazone reaction, producing a linear species that formed a "handcuffs" catenane with the disulfide tetramer. These findings not only lend robust support to the hypothesis of "RNA-peptide coevolution" for the origin of life but also broaden the scope of synthetic chemistry, highlighting the untapped potential of minor products from different reactions. Additionally, the co-self-assembly of these mutualistic entities to form supramolecular structures opens new avenues for future development of composite nanosystems with synergistic properties.

2.
Chempluschem ; : e202400332, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855862

ABSTRACT

The solid-state synthesis and fast crystallization under kinetic control of poly-[n]-catenanes self-assembled of mechanically interlocked metal organic cages (MOCs) is virtually unexplored. This is in part, due to the lack of suitable crystals for single crystal X-ray diffraction (SC-XRD) analysis which limits their progress as advanced functional materials. Here we report the inclusion of paracetamol in the cavities of amorphous materials constituted of M12L8, interlocked MOCs synthesized by mechanochemistry (solid-state) under kinetic control. Full structure determination of a low-crystallinity and low-resolution powders of the M12L8 poly-[n]-catenane including paracetamol is carried out combining XRD data and Density Functional Theory (DFT) calculations using a multi-step approach. Each M12L8 cage contains six paracetamol guests which is confirmed by thermal analysis and NMR spectroscopy. The paracetamol loading has been also carried out by the instant synthesis method using a saturated paracetamol solution in which TPB and ZnI2 self-assemble immediately (i.e., 1-5 seconds) encapsulating ⁓7 paracetamol molecules in the M12L8 nanocages under kinetic control also giving a good selectivity. Benzaldehyde has been included in the M12L8 cages using amorphous M12L8 polycatenanes showing that the icosahedral cages can serve as potential nanoreactors for instance to study Henry reactions in the solid-state.

3.
Angew Chem Int Ed Engl ; : e202407929, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837292

ABSTRACT

Mechanically interlocked molecules (MIMs) are promising platforms for developing functionalized artificial molecular machines. The construction of chiral MIMs with appealing circularly polarized luminescence (CPL) properties has boosted their potential application in biomedicine and the optical industry. However, there is currently little knowledge about the CPL emission mechanism or the emission dynamics of these related MIMs. Herein, we demonstrate that time-resolved circularly polarized luminescence (TRCPL) spectroscopy combined with transient absorption (TA) spectroscopy offers a feasible approach to elucidate the origins of CPL emission in pyrene-functionalized topologically chiral [2]catenane as well as in a series of pyrene-functionalized chiral molecules. For the first time, direct evidence differentiating the chiroptical signals originating from either topological (local state emission) or Euclidean chirality (excimer state emission) in these pyrene-functionalized chiral molecules has been discovered. Our work not only establishes a novel and ideal approach to study CPL mechanism, but also provides a theoretical foundation for the rational design of novel chiral materials in the future.

4.
Angew Chem Int Ed Engl ; : e202407626, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837637

ABSTRACT

Poly-[n]-catenanes (PCs) self-assembled of three-dimensional (3D) metal organic cages (MOCs) (hereafter referred to as PCs-MOCs) are a relatively new class of mechanically interlocked molecules (MIMs) that combine the properties of MOCs and polymers. The synthesis of PCs-MOCs is challenging because of the difficulties associated with interlocking MOCs, the occurrence of multiple weak supramolecular electrostatic interactions between cages, and the importance of solvent templating effects. The high density of mechanical bonds interlocking the MOCs endows the MOCs with mechanical and physical properties such as enhanced stability, responsive dynamic behavior and low solubility, which can unlock new functional properties. In this Minireview, we highlight the benefit of interlocking MOCs in the formation of PCs-MOCs structures as well as the synthetic approaches exploited in their preparation, from thermodynamic to kinetic methods, both in the solution and solid-states. Examples of PCs-MOCs self-assembled from various types of nanosized cages (i.e., tetrahedral, trigonal prismatic, octahedral and icosahedral) are described in this article, providing an overview of the research carried out in this area. The focus is on the structure-property relationship with examples of functional applications such as electron conductivity, X-ray attenuation, gas adsorption and molecular sensing. We believe that the structural and functional aspects of the reviewed PCs-MOCs will attract chemists in this research field with great potential as new functional materials in nanotechnological disciplines such as gas adsorption, sensing and photophysical properties such as X-ray attenuation or electron conductivity.

5.
Angew Chem Int Ed Engl ; : e202408016, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828671

ABSTRACT

Expanding the diversity of multi-macrocyclic nanocarbons, particularly those with all-benzene scaffolds, represents intriguing yet challenging synthetic tasks. Complementary to the existing synthetic approaches, here we report an efficient and modular post-functionalization strategy that employs iridium-catalyzed C-H borylation of the highly strained meta-cycloparaphenylenes (mCPPs) and an mCPP-derived catenane. Based on the functionalized macrocyclic synthons, a number of novel all-benzene topological structures including linear and cyclic chains, polycatenane, and pretzelane have been successfully prepared and characterized, thereby showcasing the synthetic utility and potential of the post-functionalization strategy.

6.
Angew Chem Int Ed Engl ; : e202407923, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738617

ABSTRACT

Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.

7.
Angew Chem Int Ed Engl ; 63(23): e202400495, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38568047

ABSTRACT

Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.

8.
Angew Chem Int Ed Engl ; 63(20): e202401823, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38386798

ABSTRACT

Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments-[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles-may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal-ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu-catalyzed azide-alkyne cycloaddition (AT-CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2'-bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT-CuAAC reaction to provide [2]rotaxanes in near-quantitative yield, which can then be converted into the fully π-conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where Tz denotes a 1,2,3-triazole moiety replacing one phenylene ring in the [n]CPP backbone).

9.
Angew Chem Int Ed Engl ; 63(18): e202402198, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38319045

ABSTRACT

Although the synthesis of mechanically interlocked molecules has been extensively researched, selectively constructing homogeneous linear [4]catenanes remains a formidable challenge. Here, we selectively constructed a homogeneous linear metalla[4]catenane in a one-step process through the coordination-driven self-assembly of a bidentate benzothiadiazole derivative ligand and a binuclear half-sandwich rhodium precursor. The formation of metalla[4]catenanes was facilitated by cooperative interactions between strong sandwich-type π-π stacking and non-classical hydrogen bonds between the components. Moreover, by modulating the aromatic substituents on the binuclear precursor, two homogeneous metalla[2]catenanes were obtained. The molecular structures of these metallacatenanes were unambiguously characterized by single-crystal X-ray diffraction analysis. Additionally, reversible structural transformation between metal-catenanes and the corresponding metallarectangles could be achieved by altering their concentration, as confirmed by mass spectrometry and NMR spectroscopy studies.

10.
Angew Chem Int Ed Engl ; 63(4): e202316489, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38032333

ABSTRACT

The use of 2,5-diformylpyrrole in self-assembly reactions with diamines and Zn(II)/Cd(II) salts allowed the preparation of [2]catenane, trefoil knot, and Borromean rings. The intrinsically dynamic nature of the diiminopyrrole motif rendered all of the formed assemblies intramolecularly flexible. The presence of diiminopyrrole revealed new coordination motifs and influenced the host-guest chemistry of the systems, as illustrated by hexafluorophosphate encapsulation by Borromean rings.

11.
Angew Chem Int Ed Engl ; 62(50): e202312323, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37819869

ABSTRACT

A series of [2]catenanes has been prepared from di-NHC building blocks by utilizing solvophobic effects and/or π⋅⋅⋅π stacking interactions. The dinickel naphthobiscarbene complex syn-[1] and the kinked biphenyl-bridged bipyridyl ligand L2 yield the [2]catenane [2-IL](OTf)4 by self-assembly. Solvophobic effects are pivotal for the formation of the interlocked species. Substitution of the biphenyl-linker in L2 for a pyromellitic diimide group gave ligand L3 , which yielded in combination with syn-[1] the [2]catenane [3-IL](OTf)4 . This assembly exhibits enhanced stability in diluted solution, aided by additional π⋅⋅⋅π stacking interactions. The π⋅⋅⋅π stacking was augmented by the introduction of a pyrene bridge between two NHC donors in ligand L4 . Di-NHC precursor H2 -L4 (PF6 )2 reacts with Ag2 O to give the [Ag2 L4 2 ]2 [2]catenane [4-IL](PF6 )4 , which shows strong π⋅⋅⋅π stacking interactions between the pyrene groups. This assembly was readily converted into the [Au2 L4 2 ]2 gold species [5-IL](PF6 )4 , which exhibits exceptional stability based on the strong π⋅⋅⋅π stacking interactions and the enhanced stability of the Au-CNHC bonds.

12.
Angew Chem Int Ed Engl ; 62(42): e202309393, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37607866

ABSTRACT

The addition of two unsymmetric malonate esters to the Buckminster fullerene C60 can lead to 22 spectroscopically distinguishable isomeric products and therefore represents a formidable synthesis challenge. In this work, we achieve 87 % selectivity for the formation of a single (in,out-trans-3) isomer by combining three approaches: (i) we use a starting material, in which the two malonates are covalently connected (tether approach); (ii) we form the strong supramolecular complex of C60 with the shape-persistent [10]CPP macrocycle (template approach) and (iii) we embed this complex further within a self-assembled nanocapsule (shadow mask approach). Variation of the spacer chain shed light on the limitations of the approach and the ring dynamics in the unusual [2]catenanes were studied in silico with atomistic resolution. This work significantly widens the scope of mechanically interlocked architectures comprising cycloparaphenylenes (CPP).

13.
Acta Crystallogr A Found Adv ; 79(Pt 2): 217-219, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36862046

ABSTRACT

This paper describes a nine-component Borromean structure - a Borromean triplet of Borromean triplets - that was missing from an earlier enumeration.

14.
Chemistry ; 29(30): e202204038, 2023 May 26.
Article in English | MEDLINE | ID: mdl-36896562

ABSTRACT

A series of Cp* Rh-based discrete architectures was constructed by selecting four ether bipyridyl ligands and three half-sandwich rhodium(III) bimetallic construction units, respectively. This study demonstrates a strategy for making the transition from a binuclear D-shaped ring to a tetranuclear [2]catenane by adjusting the length of bipyridyl ligands. In addition, changing the position on the naphthyl group of the bipyridyl ligand from 2,6- to 1,5-position substitution can realize the selective synthesis of [2]catenane and Borromean rings under similar conditions. The above-mentioned constructions have been determined via X-ray crystallographic analysis, detailed NMR techniques, electrospray ionization-time-of-flight/mass spectrometry analysis, and elemental analysis.

15.
Angew Chem Int Ed Engl ; 62(11): e202217681, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36629746

ABSTRACT

We report herein a series of organometallic Borromean rings (BRs) and [2]catenanes prepared from benzobiscarbene ligands. The reaction of dinickel complexes of the benzobiscarbenes 1 a-1 c with a thiazolothiazole bridged bipyridyl ligand L2 led by self-assembly to a series of organometallic BRs. Solvophobic effects played a crucial role in the formation and stability of the interlocked species. The stability of BRs is related to the N-alkyl substituents at the precursors 1 a-1 c, where longer alkyl substitutes improve stability and inter-ring interactions. Solvophobic effects are also important for the stability of [2]catenanes prepared from 1 a-1 c and a flexible bipyridyl ligand L3 . In solution, an equilibrium between the [2]catenanes and their macrocyclic building blocks was observed. High proportions of [2]catenanes were obtained in concentrated solutions or polar solvents. The proportion of [2]catenanes in solution could be further enhanced by lengthening of the N-alkyl substitutes.

16.
Angew Chem Int Ed Engl ; 62(14): e202217002, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36625214

ABSTRACT

Catenanes with multistate switchable properties are promising components for next-generation molecular machines and supramolecular materials. Herein, we report a ligand-controlled switching method, a novel method for the multistate switching of catenanes controlled by complexation with added amine ligands. To verify this method, a [3]catenane comprising cyclic porphyrin dimers with a rigid π-system has been synthesized. Owing to the rigidity, the relative positions among the cyclic components of the [3]catenane can be precisely controlled by complexation with various amine ligands. Moreover, ligand-controlled multistate switching affects the optical properties of the [3]catenanes: the emission intensity can be tuned by modulating the sizes and coordination numbers of integrated amine ligands. This work shows the utility of using organic ligands for the structural switching of catenanes, and will contribute to the further development of multistate switchable mechanically interlocked molecules.

17.
Elife ; 112022 11 07.
Article in English | MEDLINE | ID: mdl-36342377

ABSTRACT

Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.


Subject(s)
DNA Topoisomerases, Type II , Eukaryota , Humans , DNA , Eukaryotic Cells
18.
Acta Crystallogr A Found Adv ; 78(Pt 6): 498-506, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36318071

ABSTRACT

An nθ graph is an n-valent graph with two vertices. From symmetry considerations, it has vertex-edge transitivity 1 1. Here, they are considered extended with divalent vertices added to the edges to explore the simplest piecewise-linear tangled embeddings with straight, non-intersecting edges (sticks). The simplest tangles found are those with 3n sticks, transitivity 2 2, and with 2⌊(n - 1)/2⌋ ambient-anisotopic tangles. The simplest finite and 1-, 2- and 3-periodic decussate structures (links and tangles) are described. These include finite cubic and icosahedral and 1- and 3-periodic links, all with minimal transitivity. The paper also presents the simplest tangles of extended tetrahedra and their linkages to form periodic polycatenanes. A vertex- and edge-transitive embedding of a tangled srs net with tangled and polycatenated θ graphs and vertex-transitive tangled diamond (dia) nets are described.

19.
Beilstein J Org Chem ; 18: 508-523, 2022.
Article in English | MEDLINE | ID: mdl-35601990

ABSTRACT

In this minireview we present the use of the axially chiral 1,1'-binaphthyl-2,2'-diol (BINOL) unit as a stereogenic element in mechanically interlocked molecules (MIMs). We describe the synthesis and properties of such BINOL-based chiral MIMs, together with their use in further diastereoselective modifications, their application in asymmetric catalysis, and their use in stereoselective chemosensing. Given the growing importance of mechanically interlocked molecules and the key advantages of the privileged chiral BINOL backbone, we believe that this research area will continue to grow and deliver many useful applications in the future.

20.
Chemistry ; 28(26): e202200420, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35274771

ABSTRACT

One-dimensional (1D) coordination polymers (CPs) featuring three different topologies, comprising zig-zag, ribbon-like and poly-[n]-catenane structures, were obtained by reaction of Hg(II) ions with a novel bispidine ligand L3, and structurally characterized by SC- and P-XRD methods. The CPs obtained in the form of microcrystalline powders were tested for their ability to undergo solvent adsorption and exchange by P-XRD and 1 H NMR spectroscopy. The extent of their dynamic behavior was then correlated to their structural features, highlighting the role of interchain interactions established among their constituting linear arrays. Zig-zag CPs proved to be resilient to external chemical stimuli, while they differently respond to thermal treatments, depending on the solvent originally included within the CP. In the case of polycatenated structures, we observed transformations where the original topology was maintained upon guest exchange, but also cases where it changed to zig-zag, even under solid/vapor conditions (i. e., no complete dissolution of the CP). Given the presence of linear interconnected 1D channels, 3 ⋅ ClBz-polycatenanePwd is also able to trap volatile guests such as n-hexane when exposed to its vapors.

SELECTION OF CITATIONS
SEARCH DETAIL