Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Planta ; 252(6): 96, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33141346

ABSTRACT

MAIN CONCLUSION: During fruit development, cell wall deposition rate decreases and cell wall swelling increases. The cell wall swelling pressure is very low relative to the fruit's highly negative osmotic potential. Rain cracking of sweet cherry fruit is preceded by the swelling of the cell walls. Cell wall swelling decreases both the cell: cell adhesion and the cell wall fracture force. Rain cracking susceptibility increases during fruit development. The objectives were to relate developmental changes in cell wall swelling to compositional changes taking place in the cell wall. During fruit development, total mass of cell wall, of pectins and of hemicelluloses increases, but total mass of cellulose remains constant. The mass of these cell wall fractions increases at a lower rate than the fruit fresh mass-particularly during stage II and early stage III. During stage III, on a whole-fruit basis, the HCl-soluble pectin fraction, followed by the water-soluble pectin fraction, the NaOH-soluble pectin fraction and the oxalate-soluble pectin fraction all increase. At maturity, just the HCl-soluble pectin decreases. Cell wall swelling increases during stages I and II of fruit development, with little change thereafter. This was indexed by light microscopy of skin sections following turgor release, and by determinations of the swelling capacity, water holding capacity and water retention capacity. The increase in cell wall swelling during development was due primarily to increases in NaOH-soluble pectins. The in vitro swelling of cell wall extracts depends on the applied pressure. The swelling pressure of the alcohol-insoluble residue is low throughout development and surprisingly similar across different cell wall fractions. Thus, swelling pressure does not contribute significantly to fruit water potential.


Subject(s)
Cell Wall , Fruit , Prunus avium , Cell Wall/chemistry , Cell Wall/metabolism , Cellulose/metabolism , Fruit/chemistry , Fruit/metabolism , Osmotic Pressure , Pectins/metabolism , Prunus avium/growth & development
2.
Planta ; 251(3): 65, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32060652

ABSTRACT

MAIN CONCLUSION: Swelling of sweet cherry cell walls is a physical process counterbalanced by turgor. Cell turgor prevents swelling in intact cells, whereas loss of turgor allows cell walls to swell. Swelling of epidermal cell walls precedes skin failure in sweet cherry (Prunus avium) cracking. Swollen cell walls lead to diminished cell:cell adhesions. We identify the mechanism of cell wall swelling. Swelling was quantified microscopically on epidermal sections following freeze/thaw treatment or by determining swelling pressure or swelling capacity of cell wall extracts. Releasing turgor by a freeze/thaw treatment increased cell wall thickness 1.6-fold within 2 h. Pressurizing cell wall extracts at > 12 kPa prevented swelling in water, while releasing the pressure increased swelling. The effect was fully reversible. Across cultivars, cell wall thickness before and after turgor release in two subsequent seasons was significantly correlated (before release of turgor: r = 0.71**, n = 14; after release of turgor: r = 0.73**, n = 14) as was the swelling of cell walls upon turgor release (r = 0.71**, n = 14). Close relationships were also identified for cell wall thickness of fruit of the same cultivars grown in the greenhouse and the field (before release of turgor: r = 0.60, n = 10; after release of turgor: r = 0.78**, n = 10). Release of turgor by heating, plasmolysis, incubation in solvents or surfactants resulted in similar swelling (range 2.0-3.1 µm). Cell wall swelling increased from 1.4 to 3.0 µm as pH increased from pH 2.0 to 5.0 but remained nearly constant between pH 5.0 and 8.0. Increasing ethanol concentration decreased swelling. Swelling of sweet cherry cell walls is a physical process counterbalanced by turgor.


Subject(s)
Cell Wall/metabolism , Fruit/cytology , Prunus avium/cytology , Cell Wall/drug effects , Fruit/drug effects , Fruit and Vegetable Juices , Hydrogen-Ion Concentration , Osmosis , Plant Epidermis/cytology , Plant Epidermis/drug effects , Polyethylene Glycols/pharmacology , Pressure , Prunus avium/drug effects , Sucrose/pharmacology , Time Factors
3.
Plant J ; 102(4): 797-808, 2020 05.
Article in English | MEDLINE | ID: mdl-31883138

ABSTRACT

Thick glistening cell walls occur in sieve tubes of all major land plant taxa. Historically, these 'nacreous walls' have been considered a diagnostic feature of sieve elements; they represent a conundrum, though, in the context of the widely accepted pressure-flow theory as they severely constrict sieve tubes. We employed the cucurbit Gerrardanthus macrorhizus as a model to study nacreous walls in sieve elements by standard and in situ confocal microscopy and electron microscopy, focusing on changes in functional sieve tubes that occur when prepared for microscopic observation. Over 90% of sieve elements in tissue sections processed for microscopy by standard methods exhibit nacreous walls. Sieve elements in whole, live plants that were actively transporting as shown by phloem-mobile tracers, lacked nacreous walls and exhibited open lumina of circular cross-sections instead, an appropriate structure for Münch-type mass flow of the cell contents. Puncturing of transporting sieve elements with micropipettes triggered the rapid (<1 min) development of nacreous walls that occluded the cell lumen almost completely. We conclude that nacreous walls are preparation artefacts rather than structural features of transporting sieve elements. Nacreous walls in land plants resemble the reversibly swellable walls found in various algae, suggesting that they may function in turgor buffering, the amelioration of osmotic stress, wounding-induced sieve tube occlusion, and possibly local defence responses of the phloem.


Subject(s)
Cucurbitaceae/growth & development , Biological Transport , Cell Wall/physiology , Cell Wall/ultrastructure , Cucurbitaceae/physiology , Cucurbitaceae/ultrastructure , Microscopy, Confocal , Microscopy, Electron , Osmotic Pressure , Phloem/growth & development , Phloem/physiology , Phloem/ultrastructure
4.
J Plant Physiol ; 188: 37-43, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26454639

ABSTRACT

Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD.


Subject(s)
Apoptosis , Dendrobium/physiology , Flowers/physiology , Iris Plant/physiology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cell Wall/metabolism , Cell Wall/ultrastructure , Cytoplasmic Vesicles/ultrastructure , Dendrobium/ultrastructure , Flowers/ultrastructure , Iris Plant/ultrastructure , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL