Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.293
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124965, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39153345

ABSTRACT

AFB1 is a harmful substance that can be found in agricultural products and can seriously affect human health, even in trace amounts. Therefore, monitoring AFB1 levels to ensure food safety and protect public health is crucial. New, highly reliable, selective, and rapid detection methods are needed to achieve this goal. Our work involves the development of a polymeric membrane sensor using radical polymerization that can accurately detect AFB1. Various spectroscopic techniques (Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM)) were used to obtain information about the structural and morphological properties of the prepared sensor. The sensor displayed fluorescence selectively responsive to AFB1 at the excitation wavelength of 376 nm and emission wavelength of 423 nm. The polymeric fluorescence sensor showed good sensitivity and a wide linear range from 9.61 × 10-10 and 9.61 × 10-9 mol/L for AFB1quantification. The limit of detection (LOD) is as low as 3.84 × 10-10 mol/L for AFB1. Other mycotoxins, such as aflatoxin B2 and aflatoxin G1, did not interfere with the sensor's high selectivity towards AFB1. To test the sensor's effectiveness in detecting AFB1 in real samples, three different grain samples - peanuts, hazelnut butter, and peanuts with a sauce known to contain AFB1 - were utilized. The results were satisfactory and demonstrated that the sensor can be successfully employed in real samples, with an error range of 0.43 % to 12.10 %.


Subject(s)
Aflatoxin B1 , Limit of Detection , Spectrometry, Fluorescence , beta-Cyclodextrins , Aflatoxin B1/analysis , Spectrometry, Fluorescence/methods , beta-Cyclodextrins/chemistry , Spectroscopy, Fourier Transform Infrared , Food Contamination/analysis , Edible Grain/chemistry , Polymers/chemistry
2.
Anal Bioanal Chem ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230749

ABSTRACT

CD-MONs (ß-cyclodextrin-based microporous organic networks), derived from ß-cyclodextrin, possess notable hydrophobic characteristics, a considerable specific surface area, and remarkable stability, rendering them highly advantageous in separation science. This research aimed to investigate the utility of CD-MONs in chromatography separation. Through a monomer-mediated technique, we fabricated an innovative CD-MON modified capillary column for application in open-tubular capillary electrochromatography (OT-CEC). The CD-MON-based stationary phase on the capillary's inner surface was analyzed using Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). We assessed the performance of the CD-MON modified capillary column for separation purposes. The microstructure and pronounced hydrophobicity of CD-MON contributed to enhanced selectivity and resolution in separating diverse hydrophobic analytes, such as alkylbenzenes, halogenated benzenes, parabens, and polycyclic aromatic hydrocarbons (PAHs). The maximum column efficiency achieved was 1.5 × 105 N/m. Additionally, the CD-MON modified capillary column demonstrated notably high column capacity, with a methylbenzene mass loading capacity of up to 197.9 pmol, surpassing that of previously reported porous-material-based capillaries. Furthermore, this self-constructed column was effectively utilized for PAHs determination in actual environmental water samples, exhibiting spiked recoveries ranging from 93.2 to 107.9% in lake water samples. These findings underscore the potential of CD-MON as an effective stationary phase in separation science.

3.
Angew Chem Int Ed Engl ; : e202413901, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221519

ABSTRACT

The development of a mechanochemical Fe-catalyzed Wacker oxidation of olefins with a sustainable and benign procedure holds significant promise for industrial applications. However, navigating the intricate interactions inherent in ball-milling conditions to fine-tune reaction selectivity remains a formidable challenge. Herein, leveraging the dispersive and/or trapping properties of cyclodextrins, an innovative mechanochemical approach is developed through the integration of cyclodextrins into a Fe-catalyzed system, enabling a streamlined Wacker oxidation process from simple and/or commercially available alkenes. Our efforts have yielded optimized mechanochemical conditions demonstrating exceptional reactivity and selectivity in generating a diverse array of ketone products, markedly enhancing catalytic efficiency compared to conventional batch methods. Mechanistic investigations have revealed a predominantly Markovnikov-selective catalytic cycle, effectively minimizing undesired alcohol formation, hydrogenation, and the other competing pathways, boosting both reaction yield and selectivity.

4.
Article in English | MEDLINE | ID: mdl-39259880

ABSTRACT

Conductive hydrogels exhibit tremendous potential for wearable bioelectronics, biosensing, and health monitoring applications, yet concurrently enhancing their biocompatibility and antimicrobial properties remains a long-standing challenge. Herein, we report an all-natural conductive supramolecular hydrogel (GT5-DACD2-B) prepared via the Schiff base reaction between the biofriendly dialdehyde cyclodextrin and gelatin. The potent antibacterial agent fusidic acid (FA) is incorporated through host-guest inclusion, enabling 100% inhibition of Staphylococcus aureus proliferation. The biocompatibility of our hydrogel is bolstered with tannic acid (TA) facilitating antibacterial effects through interactions with gelatin, while borax augments conductivity. This supramolecular hydrogel not only exhibits stable conductivity and rapid response characteristics but also functions as a flexible sensor for monitoring human movement, facial expressions, and speech recognition. Innovatively integrating biocompatibility, antimicrobial activity, and conductivity into a single system, our work pioneers a paradigm for developing multifunctional biosensors with integrated antibacterial functionalities, paving the way for advanced wearable bioelectronics with enhanced safety and multifunctionality.

5.
Article in English | MEDLINE | ID: mdl-39259941

ABSTRACT

Modern drug delivery research focuses on developing biodegradable nanopolymer systems. The present study proposed a polymer-based composite nanogel as a transdermal drug delivery system for the pH-responsive targeted and controlled delivery of anticancer drug doxorubicin (DOX). Nanogels have properties of both hydrogels and nanomaterials. The ß-cyclodextrin-based nanogels can enhance the loading capacity of poorly soluble drugs and promote a sustained drug release. The ß-cyclodextrin-grafted methacrylic acid conjugated hyaluronic acid composite nanogel was successfully synthesized. ß-Cyclodextrin was first grafted onto methacrylic acid. The composite nanogel-based drug carrier was prepared by controlled radical polymerization (CRP) of ß-cyclodextrin-grafted methacrylic acid with hyaluronic acid. The doxorubicin-loaded carrier was characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, zeta potential analysis, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The drug loading and release efficiencies were carried out at different pH levels. The maximum drug loading and encapsulation efficiencies of the synthesized final nanogel composite material at pH 8.0 were 86.44 ± 2.12 and 96.07 ± 2.01%, respectively. The DOX-loaded final material showed a 90.0 ± 2.6% release percentage of DOX at pH 5.5, whereas at pH 7.4, the release percentage of DOX was observed to be only 35.0 ± 0.3%. In vitro swelling, degradation, hemocompatibility, drug release kinetics, cytotoxicity, apoptosis, cell colocalization, skin irritation, and skin permeation studies, along with in vivo pharmacokinetic studies, were performed to prove the efficacy of the synthesized nanogel composite as a transdermal carrier for doxorubicin.

6.
Ther Deliv ; : 1-14, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225262

ABSTRACT

Aim: In this study, we aimed to prepare enteric encapsulated spheroids containing inclusion complex using quality by design approach. Methods: A Box-Behnken design was employed to determine effects of variables on selected responses. Risk assessment was conducted using Ishikawa fishbone diagram. A model with a p-value was less than 0.5 for being a significant error of model was determined based on significance 'lack of fit' value. Spheroids were formulated using the extrusion spheronization technique and were characterized using analytical techniques. Results: In vitro release was performed in both acidic (pH 1.2) and simulated intestinal (pH 6.8) conditions. Permeability studies demonstrated tenfold enhancement compared with arteether. In vivo studies further validated increase of 51.8% oral bioavailability. Ex vivo studies revealed 3.4-fold enhancement in antimalarial activity compared with arteether. Conclusion: These findings highlight effectiveness of inclusion complexation technique as a viable approach to enhance solubility and bioavailability for drugs with low aqueous solubility.


[Box: see text].

7.
Colloids Surf B Biointerfaces ; 245: 114200, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39236360

ABSTRACT

A water stable cyclodextrin MOF (Cu-SD) was synthesized with γ-cyclodextrin derivative as organic ligand and Cu2+ as metal center to co-crystallizely load glycyrrhizic acid (GL) and glycyrrhetinic acid (GA). Cu-SD has a high drug loading capacity for GL (499.91 µg/mg) and GA (112.37 µg/mg), and the drug-loaded materials had a controlled release in different meadiums. In addition, Cu-SD and its drug loaded materials demonstrated better inhibiting α-glucosidase activity than the control drug acarbose. Furthermore, Cu-SD presented excellent antibacterial activity, and the antibacterial activity was significantly enhanced after GA and GL being encapsulated by Cu-SD. Moreover, both free and drug-loaded materials had good anti-inflammatory activities, and the anti-inflammatory effects of GL@Cu-SD and GA@Cu-SD were superior to those of their corresponding free drugs. Cu-SD, GL@Cu-SD and GA@Cu-SD demonstrated good biocompatibility and were applied to treat the wounds of diabetic rats. The experimental results showed that GL@Cu-SD and GA@Cu-SD had good promoting effects on the recovery of chronic diabetic wounds by suppressing wound inflammation.

8.
Sci Rep ; 14(1): 20676, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237578

ABSTRACT

In these decades, considerable attention has focused on supramolecular polymers due to their unique structures and properties. More recently, macroscopic supramolecular polymers have attracted increasing interest from not only biologists but also materials scientists inspired by the sophisticated structures and functions of living organisms. Since the functions of supramolecular polymers are strongly dependent on their shape, control of the shape is an important issue in controlling the functions of supramolecular polymers. However, the control of shape in macroscopic supramolecular assemblies has not yet been sufficiently investigated. Previously, we studied the macroscopic self-assembly behavior of super absorbent polymer (SAP) microparticles modified with ß-cyclodextrin (ßCD) and adamantane (Ad) residues (ßCD(x)-SAP and Ad(y)-SAP microparticles, where x and y are the mol% contents of ßCD and Ad residues, respectively). More elongated assemblies were formed at higher y, indicating that the shape of assemblies can be controlled by varying the interaction strength. The noteworthy is that 1-adamantanamine hydrochloride (AdNH3Cl) assisted the formation of assemblies from ßCD(x)-SAP and Ad(y)-SAP microparticles, indicating that AdNH3Cl acts as a chemical stimulus for macroscopic assemblies of ßCD(x)-SAP and Ad(y)-SAP microparticles. In this study, we have thus studied the assembling behavior of ßCD(x)-SAP microparticles with Ad(y)-SAP microparticles and unmodified SAP microparticles assisted by AdNH3Cl, as well as the shape of the resulting macroscopic assemblies. AdNH3Cl assisted the formation of assemblies from ßCD(16.2)-SAP and Ad(15.1)-SAP microparticles, in which AdNH3Cl crosslinked the SAP microparticles through the formation of inclusion complexes of ßCD residues with the Ad residue and the electrostatic interaction of ammonium and carboxylate residues. Assemblies of ßCD(26.7)-SAP and unmodified SAP microparticles were formed at the concentrations of AdNH3Cl ([AdNH3Cl]0) higher than a certain level (ca. 0.05 mM). The aspect ratio (a/b) of assemblies showed a maximum at [AdNH3Cl]0 ~ 0.10 mM, indicating that the chemical stimulus, i.e., addition of AdNH3Cl, controls the shape of assemblies formed from ßCD(26.7)-SAP and unmodified SAP microparticles. This study suggests that other stimuli, e.g., heat, pH, light, redox, and force, can be utilized to control the shape of macroscopic assemblies based on supramolecular interactions.

9.
Int J Biol Macromol ; : 135379, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39244122

ABSTRACT

The synergistic effects between xanthan gum (XG) and ß-cyclodextrin (ß-CD) on the properties and stability of vegetable oil-based whipped cream stabilized by kidney bean protein aggregates was investigated. The visual appearance, SEM, TEM, CLSM, FT-IR and LF-NMR results showed that when the ratio of XG to ß-CD in the XG-ß-CD complex was appropriate, the hydrogen bonding effect between ß-CD and XG was significant enhanced, the three-dimensional network structure has the highest density, the emulsion droplets were the smallest and evenly distributed. The unique tapered microstructure of ß-CD acted as a bridge between the hydrophilic and hydrophobic components, effectively preventing the aggregation of oil droplets and establishing a flexible support system between oil droplets; while the flexible molecular structure of XG could support Pickering emulsion system. The XG-ß-CD complex had a synergistic effect with protein aggregates, making it ideal for use in whipped cream products. This study explored the stability mechanism of ß-CD in the Pickering emulsion-based whipped cream system, providing valuable insights into producing whole plant-based whipped cream by texturizing highly unsaturated oils. This effectively solves the problem of inadequate intake of unsaturated oil for individuals who consume excessive amounts of animal-derived fats.

10.
Chempluschem ; : e202400475, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248048

ABSTRACT

Desolvation processes, though common in self-assembled biological structures, are rarely evidenced and utilized in the design of crystalline architectures. In this study, we introduce a novel approach using the [Mo8S8O8(OH)8(guest)]2- complex, formed by the self-condensation of four [MoV2O2S2]2- fragments around a guest unit (MoVIO6H4 or oxalate), as a chaotropic scaffold for crystallizing hybrid organic-inorganic systems with natural cyclodextrins. Our findings reveal that ß-cyclodextrin (ß-CD) facilitates the formation of host-guest complexes, while α-cyclodextrin (α-CD) induces the formation of a Kagome-type structure with significant voids. These new compounds were thoroughly characterized using X-ray diffraction (both powder and single-crystal), N2 adsorption, elemental and thermogravimetric analysis. Additionally, solution studies using 1H NMR titration and small-angle X-ray scattering (SAXS) demonstrated pre-association of the building units in solution. These results enhance our understanding of the design principles for supramolecular structures composed of inorganic polyanions and cyclodextrins.

11.
Carbohydr Polym ; 346: 122483, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245475

ABSTRACT

A computational study was performed to unravel mechanisms underlying capillary electrophoresis enantioseparations of daclatasvir and its (R,R,R,R)-enantiomer with native and methylated ß-cyclodextrins (ß-CDs) as chiral selectors. Considering the enantioseparation results as benchmark, the structures of ß-CD and seven methylated ß-CDs were optimized by quantum mechanics, and their topography and computed molecular properties were compared. Furthermore, the electron charge density distribution of the macrocycles was also evaluated by calculating the molecular electrostatic potential of pivotal regions of native and methylated ß-CDs. The function of hydrogen bonds in the complexation process of daclatasvir and the CDs was derived from quantum mechanics analysis and confirmed by molecular dynamics, as orthogonal computational techniques. The presence of a round-shaped cavity in the CDs used as chiral selector appeared as a necessary requirement for the enantioseparation of daclatasvir and its (R,R,R,R)-enantiomer. In this regard, it was confirmed that the round shape of the CDs is sustained by hydrogen bonds formed between adjacent glucopyranose units and blocking rotation of the linking glycosidic bonds. The presence of hydroxy groups at the 6-position of the glucopyranose units and the concurrent absence of hydroxy groups at the 2-position were evidenced as important factors for enantioseparation of daclatasvir and its enantiomer by methylated ß-CDs.

12.
Carbohydr Polym ; 345: 122563, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227102

ABSTRACT

γ-Cyclodextrin (γ-CD) is an attractive material among the natural cyclodextrins owing to its excellent properties. γ-CD is primarily produced from starch by γ-cyclodextrin glycosyltransferase (γ-CGTase) in a controlled system. However, difficulty in separation and low conversion rate leads to high production costs for γ-CD. In this study, γ-CGTase from Bacillus sp. G-825-6 STB17 was used in γ-CD production from cassava starch. With the introduction of sodium tetraphenylborate (NaBPh4), the total conversion rate was promoted from an initial 18.07 % to 50.49 % and the γ-CD ratio reached 78.81 % with a yield of 39.79 g/L. Furthermore, the mechanism was conducted via the determination of binding constant, which indicated that γ-CD exhibited much stronger binding strength with NaBPh4 than ß-CD. The reformation of water molecules and the chaotropic effect might be the main driving forces for the interaction. Additionally, the conformations of CD complexes were depicted by NMR and molecular docking. The results further verified different binding patterns between CDs and tetraphenylborate ions, which might be the primary reason for the specific binding. This system not only guides γ-CD production with an efficient and easy-to-remove production aid but also offers a new perspective on the selection of complexing agents in CD production.


Subject(s)
Bacillus , Borates , Glucosyltransferases , Molecular Docking Simulation , gamma-Cyclodextrins , gamma-Cyclodextrins/chemistry , gamma-Cyclodextrins/metabolism , Bacillus/enzymology , Borates/chemistry , Glucosyltransferases/metabolism , Glucosyltransferases/chemistry , Starch/chemistry , Starch/metabolism , Manihot/chemistry
13.
ChemMedChem ; : e202400368, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246269

ABSTRACT

Cyclodextrin dimers have been investigated as potential nanocapsules of biomolecules. The presence of two cavities can improve the stability of inclusion complexes, working as a hydrophilic sandwich of poorly water-soluble species. Here, we designed new ß- and γ-cyclodextrin dimers functionalized with biotin as a targeting unit and tested the new bioconjugates as doxorubicin delivery systems in cancer cells. Biotin can recognize the Sodium-dependent Multivitamin Transporter (SMVT) receptor, encoded by the Solute Carrier Family 5 Member 6 (SLC5A6) gene and improve the uptake of drugs. We evaluated the expression of the SLC5A6 transcript in human cell lines to select the best cell model (MCF-7) for the in vitro studies. Furthermore, in the cell lines, we investigated the transcript levels of genes correlated to biotin cell availability, Holocarboxylase Synthetase (or HCS encoded by HLCS gene) and Biotinidase (encoded by BTD gene) enzymes. Moreover, the expression of ATP Binding Cassette Subfamily G Member 2 transporter (encoded by ABCG2 gene), which may play a role in doxorubicin resistance, has been investigated. The antiproliferative activity of the doxorubicin complexes with the dimers has been determined to study the effect of the biotin moiety on the cytotoxicity in MCF-7 cancer cells.

14.
Int J Biol Macromol ; : 135194, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39256120

ABSTRACT

The antimicrobial and pro-healing properties remain critical clinical objectives for skin wound management. However, the escalating problem of antibiotic overuse and the corresponding rise in bacterial resistance necessitates an urgent shift towards an antibiotic-free approach to antibacterial treatment. The quest for antimicrobial efficacy while accelerating wound healing without antibiotic treatment have emerged as innovative strategies in skin wound treatment. Here, a dual-function hydrogel with antimicrobial and enhanced tissue-healing properties was developed by utilizing cyclodextrin, ferrocene, polyethyleneimine (PEI), and Bletilla striata polysaccharide (BSP), through multiple non-covalent interactions, which can intelligently release BSP by recognizing the wound inflammatory microenvironment through the cyclodextrin-ferrocene unit. Moreover, the porosity (65 % - 85 %), Young's modulus (400 KPa - 140 KPa), and DPPH scavenge rate (18 % - 40 %) of the hydrogel are modulated by varying the BSP content. The hydrogel exhibits outstanding antibacterial properties (98.3 % reduction of Escherichia coli observed after exposure to HTFC@BSP-20 for 24 h) and favorable biocompatibility. Furthermore, in a rat full-thickness skin wound model, the dual-function hydrogel significantly accelerates wound healing, increased CD31 expression promotes vascular regeneration, reduced TNF-α express and inhibited the inflammation. This multifunctional ROS responsive hydrogel provides a new perspective for antibiotics-free treatment of skin injuries.

15.
Heliyon ; 10(14): e34561, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39113987

ABSTRACT

ISoXD2 are well explored among versatile and outstanding class of pharmacophores for the preparation and discovery of drugs. Herein, the electronic absorption and emission spectra of ISoXD2 were investigated in three different solvents. The observed transition was attributed to π-π* with charge transfer character. Changes in the excited state and shift of the absorption and emission peaks to longer wavelengths are observed as a result of increasing solvent polarity, due to the interactions between the ISoXD2 molecule and the solvent molecules surrounding it. Changing the solvent confirms its solvatochromic effect. UV-vis and fluorescence analysis revealed that ISoXD2 binds to deoxyribonucleic acid (DNA) by intercalation mode, with a stoichiometric ratio of 1:1.5. Moreover, the fluorescence intensity of DNA bound to ethidium bromide (EB) in the presence of ISoXD2 was investigated. From this analysis, the Stern-Volmer quenching constant (Ksv), quenching rate constant (kq), binding constant (Kb) and binding sites number (n) were found to be 5.654 × 103 M-1, 2.827 × 1011 M-1 s-1, 3.81 × 104 M-1 and 1.225, respectively. The interaction between ISoXD2 and ß-CD was investigated through absorption spectra analysis. Kb for this interaction was determined to be 4.9 × 104 M-1. The free radical-scavenging ability of the prepared ISoXD2, examined by DPPH and ABTS assays have shown a good antioxidant activity. Furthermore, modeling study was conducted to explore their plausible binding mechanism with ISoXD2 and to support the experimental results.

16.
Biochem Pharmacol ; 229: 116474, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122218

ABSTRACT

This study investigated the efficacy of a new chrysin-loaded calixarene-cyclodextrin ternary drug delivery system (DDS) in reversing liver fibrosis in a mouse model of chronic diabetes. The system was designed to enhance the solubility and bioavailability of chrysin (CHR) and calixarene 0118 (OTX008). Adult male CD1 mice received streptozotocin (STZ) injections to induce diabetes. After 20 weeks, they underwent intraperitoneal treatments twice weekly for a two-week period. Histological analyses revealed that long-term hyperglycaemia increased liver fibrosis and altered hepatic ultrastructure, characterized by lipid accumulation, hepatic stellate cell activation, and collagen deposition. The treatment with the chrysin-loaded DDS restored liver structure closely to normal levels, as opposed to the minimal impact observed with sulfobutylated ß-cyclodextrin (SBECD) alone. The treatment significantly decreased serum activities of alanine /aspartate transaminases and reduced the gene expression of collagen type I (Col-I). It also modulated the transforming growth factor beta 1 (TGF-ß1)/Smad signalling pathway, inhibiting the activation and proliferation of hepatic stellate cells. The treatment led to a downregulation of the TGF-ß1 gene and its receptors TGFßR1 and TGFßR2, together with a decrease in Smad 2 and 3 mRNA levels. Conversely, Smad 7 mRNA expression was increased by the DDS. Furthermore, it downregulated galectin-1 (Gal-1) gene and protein levels, which correlated with fibrotic markers. In conclusion, the chrysin-loaded calixarene-cyclodextrin ternary DDS presents a promising therapeutic approach for diabetic liver fibrosis, effectively targeting fibrotic pathways and restoring hepatic function and structure.

17.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125857

ABSTRACT

Neoponcirin causes anxiolytic-like effects in mice when administered intraperitoneally but not orally. Neoponcirin is non-water-soluble and insoluble in solvents, and in medium acid, it isomerizes, reducing its bioavailability. To improve the pharmacological properties of neoponcirin, we formed a neoponcirin complex with beta-cyclodextrin (NEO/ßCD), which was characterized by FT-IR, UV-Vis, and NMR, and their solubility profile. We evaluated the antidepressant-like effects of NEO/ßCD acutely administered to mice orally in the behavioral paradigms, the tail suspension (TST) and the forced swimming (FST) tests. We also analyzed the benefits of repeated oral doses of NEO/ßCD on depression- and anxiety-like behaviors induced in mice by chronic unpredictable mild stress (CUMS), using the FST, hole board, and open field tests. We determined the stressed mice's expression of stress-related inflammatory cytokines (IL-1ß, IL-6, and TNFα) and corticosterone. Results showed that a single or chronic oral administration of NEO/ßCD caused a robust antidepressant-like effect without affecting the ambulatory activity. In mice under CUMS, NEO/ßCD also produced anxiolytic-like effects and avoided increased corticosterone and IL-1ß levels. The effects of the NEO/ßCD complex were robust in both the acute and the stress chronic models, improving brain neurochemistry and recovering immune responses previously affected by prolonged stress.


Subject(s)
Antidepressive Agents , Depression , Stress, Psychological , beta-Cyclodextrins , Animals , beta-Cyclodextrins/pharmacology , beta-Cyclodextrins/chemistry , Mice , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Male , Stress, Psychological/drug therapy , Depression/drug therapy , Behavior, Animal/drug effects , Cytokines/metabolism , Disease Models, Animal , Anxiety/drug therapy , Anti-Anxiety Agents/pharmacology , Swimming , Administration, Oral
18.
Int J Mol Sci ; 25(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39126045

ABSTRACT

Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host-guest supramolecule approach to enhance the functionality of IMC, resulting in a more environmentally friendly and high-performance materials. Sulfobutyl-ß-cyclodextrin sodium salt (SBE-ß-CD) was used as the host molecule. IMC-SBE-ß-CD supramolecular substances were prepared through the "saturated solution method", and their properties and biosecurity were evaluated. Meanwhile, we conducted the AOS tree evaluation system that surpasses existing evaluation approaches based on apoptosis, oxidative stress system, and signaling pathways to investigate the toxicological mechanisms of IMC-SBE-ß-CD within human hepatoma SMMC-7721 cells as model organisms. The AOS tree evaluation system aims to offer the comprehensive analysis of the cytotoxic effects of IMC-SBE-ß-CD. Our findings showed that IMC-SBE-ß-CD had an encapsulation rate of 84.45% and optimal stability at 30 °C. Further, IMC-SBE-ß-CD promoted cell growth and reproduction without compromising the integrity of mitochondria and nucleus or disrupting oxidative stress and apoptosis-related pathways. Compared to IMC, IMC-SBE-ß-CD is biologically safe and has improved water solubility with the UV absorption property maintained. Our study provides the foundation for the encapsulation of hydrophobic, low-toxicity organic compounds using cyclodextrins and offers valuable insights for future research in this field.


Subject(s)
Ultraviolet Rays , beta-Cyclodextrins , Humans , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Cinnamates/chemistry , Cinnamates/pharmacology , Oxidative Stress/drug effects , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology
19.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126111

ABSTRACT

Curcumin (Cur) is a heavily used complementary derived drug from cancer patients. Spheroid samples derived from 82 patients were prepared and treated after 48 h with two Cur formulations (CurA, CurB) in mono- and combination therapy. After 72 h, cell viability and morphology were assessed. The Cur formulations had significant inhibitory effects of -8.47% (p < 0.001), CurA of -10.01% (-50.14-23.11%, p = 0.001) and CurB of -6.30% (-33.50-19.30%, p = 0.006), compared to their solvent controls Polyethylene-glycol, ß-Cyclodextrin (CurA) and Kolliphor-ELP, Citrate (CurB). Cur formulations were more effective in prostate cancer (-19.54%) and less effective in gynecological non-breast cancers (0.30%). CurA showed better responses in samples of patients <40 (-13.81%) and >70 years of age (-17.74%). CurB had stronger effects in metastasized and heavily pretreated tumors. Combinations of Cur formulations and standard therapies were superior in 20/47 samples (42.55%) and inferior in 7/47 (14.89%). CurB stimulated chemo-doublets more strongly than monotherapies (-0.53% vs. -6.51%, p = 0.022) and more effectively than CurA (-6.51% vs. 3.33%, p = 0.005). Combinations of Cur formulations with Artesunate, Resveratrol and vitamin C were superior in 35/70 (50.00%) and inferior in 16/70 (22.86%) of samples. Cur formulations were significantly enhanced by combination with Artesunate (p = 0.020). Cur formulations showed a high variance in their anti-cancer effects, suggesting a need for individual testing before administration.


Subject(s)
Antineoplastic Agents , Curcumin , Spheroids, Cellular , Humans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Female , Aged , Male , Middle Aged , Spheroids, Cellular/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Adult , Cell Survival/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Drug Compounding , Tumor Cells, Cultured
20.
ACS Appl Bio Mater ; 7(8): 5662-5678, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39097904

ABSTRACT

Quercetin, recognized for its antioxidant, anti-inflammatory, and antibacterial properties, faces limited biomedical application due to its low solubility. Cotton, a preferred wound dressing material over synthetic ones, lacks inherent antibacterial and wound-healing attributes and can benefit from quercetin features. This study explores the potential of overcoming these challenges through the inclusion complexation of quercetin with cyclodextrins (CDs) and the development of a nanofibrous coating on a cotton nonwoven textile. Hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) formed inclusion complexes of quercetin, with chitosan added to enhance antibacterial properties. Phase solubility results showed that inclusion complexation can enhance quercetin solubility up to 20 times, with HP-γ-CD forming a more stable inclusion complexation compared with HP-ß-CD. Electrospinning of the nanofibers from HP-ß-CD/Quercetin and HP-γ-CD/Quercetin aqueous solutions without the use of a polymeric matrix yielded a uniform, smooth fiber morphology. The structural and thermal analyses of the HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers confirmed the presence of inclusion complexes between quercetin and each of the CDs (HP-ß-CD and HP-γ-CD). Moreover, HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed a near-complete loading efficiency of quercetin and followed a fast-releasing profile of quercetin. Both HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed significantly higher antioxidant activity compared to pristine quercetin. The HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers also showed antibacterial activity, and with the addition of chitosan in the HP-γ-CD/Quercetin system, the Chitosan/HP-γ-CD/Quercetin nanofibers completely eliminated the investigated bacteria species. The nanofibers were nontoxic and well-tolerated by cells, and exploiting the quercetin and chitosan anti-inflammatory activities resulted in the downregulation of IL-6 and NO secretion in both immune as well as regenerative cells. Overall, CD inclusion complexation markedly enhances quercetin solubility, resulting in a biofunctional antioxidant, antibacterial, and anti-inflammatory wound dressing through a nanofibrous coating on cotton textiles.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Bandages , Chitosan , Cyclodextrins , Materials Testing , Nanofibers , Quercetin , Quercetin/pharmacology , Quercetin/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nanofibers/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Cotton Fiber , Wound Healing/drug effects , Humans , Picrates/antagonists & inhibitors , Cell Survival/drug effects , Biphenyl Compounds
SELECTION OF CITATIONS
SEARCH DETAIL