Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 727520, 2021.
Article in English | MEDLINE | ID: mdl-34646266

ABSTRACT

IgM deficiency has been reported in patients with many autoimmune diseases treated with Rituximab (RTX). It has not been studied, in detail, in autoimmune mucocutaneous blistering diseases (AIMBD). Our objectives were: (i) Examine the dynamics of IgM levels in patients with and without RTX. (ii) Influence of reduced serum IgM levels on clinical and laboratory parameters. (iii) Explore the possible molecular and cellular basis for reduced serum IgM levels. This retrospective study that was conducted in a single-center from 2000 to 2020. Serial IgM levels were studied in 348 patients with five AIMBD (pemphigus vulgaris, pemphigus foliaceus, bullous pemphigoid, mucous membrane pemphigoid, and ocular cicatricial pemphigoid) and found decreased in 55 patients treated with RTX, IVIG, and conventional immunosuppressive therapy (CIST). Hence the incidence of decreased serum IgM is low. The incidence of decreased IgM in patients treated with RTX was 19.6%, in patients treated with IVIG and CIST, it was 52.8% amongst the 55 patients. IgM levels in the post-RTX group were statistically significantly different from the IVIG group (p<0.018) and CIST group (p<0.001). There were no statistically significant differences between the groups in other clinical and laboratory measures. Decreased serum IgM did not affect depletion or repopulation of CD19+ B cells. Patients in the three groups achieved clinical and serological remission, in spite of decreased IgM levels. Decrease in IgM was isolated, since IgG and IgA were normal throughout the study period. Decreased IgM persisted at the same level, while the patients were in clinical remission, for several years. In spite of persistent decreased IgM levels, the patients did not develop infections, tumors, other autoimmune diseases, or warrant hospitalization. Studies on IgM deficiency in knockout mice provided valuable insights. There is no universally accepted mechanism that defines decreased IgM levels in AIMBD. The data is complex, multifactorial, sometimes contradictory, and not well understood. Nonetheless, data in this study provides novel information that enhances our understanding of the biology of IgM in health and disease.


Subject(s)
Autoimmune Diseases/immunology , Immunoglobulin M/immunology , Immunologic Deficiency Syndromes/immunology , Skin Diseases, Vesiculobullous/immunology , Adult , Aged , Aged, 80 and over , Antigens, CD19/immunology , Autoimmune Diseases/blood , Autoimmune Diseases/drug therapy , B-Lymphocytes/immunology , Female , Humans , Immunoglobulin M/blood , Immunoglobulin M/deficiency , Immunoglobulins, Intravenous/therapeutic use , Immunologic Deficiency Syndromes/blood , Immunologic Deficiency Syndromes/drug therapy , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Recurrence , Retrospective Studies , Rituximab/therapeutic use , Skin Diseases, Vesiculobullous/blood , Skin Diseases, Vesiculobullous/drug therapy , Treatment Outcome
2.
Autoimmun Rev ; 19(3): 102466, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31917267

ABSTRACT

Rituximab is a B cell depleting monoclonal antibody that targets the B cell-specific cell surface antigen CD20 and is currently used to treat several autoimmune diseases. The elimination of mature CD20-positive B lymphocytes committed to differentiate into autoantibody-producing plasma cells is considered to be the major effect of rituximab, that makes it a beneficial biological agent in treating autoimmune diseases. Hypogammaglobulinemia has been reported after rituximab therapy in patients with lymphoma and rheumatoid arthritis. Similar data are scarce for other autoimmune diseases. Low immunoglobulin G (IgG) or hypogammaglobulinemia has attracted the most attention because of its significant role in protective immunity. However, the incidence and clinical implications of low immunoglobulin M (IgM) or hypogammaglobulinemia have not been studied in detail. This review will focus on the frequency and the clinical concerns of low IgM levels that result as a consequence of the administration of rituximab. The etiopathogenic mechanisms underlying post-rituximab IgM hypogammaglobulinemia and its implications are presented. The long-term consequences, if any, are not known or documented. Multiple factors may be involved in whether IgG or IgM decreases secondary to rituximab therapy. It is possible that the autoimmune disease itself may be one of the important factors. The dose, frequency and number of infusions appear to be important variables. Post-rituximab therapy immunoglobulin levels return to normal. During this process. IgM levels take a longer time to return to normal levels when compared to IgG or other immunoglobulins. IgM deficiency persists after B cell repopulation to normal levels has occurred. Laboratory animals and humans deficient in IgM can have multiple infections. Specific pharmacologic agents or biologic therapy that address and resolve IgM deficiency are currently unavailable. If the clinical situation so warrants, then prophylactic antibiotics may be indicated and perhaps helpful. Research in this iatrogenic phenomenon will provide a better understanding of not only the biology of IgM, but also the factor(s) that control its production and regulation, besides its influence if any, on rituximab therapy.


Subject(s)
Agammaglobulinemia/chemically induced , Immunoglobulin M/deficiency , Rituximab/adverse effects , Animals , Humans , Immunoglobulin M/blood
SELECTION OF CITATIONS
SEARCH DETAIL