Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Mol Pharm ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284012

ABSTRACT

According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.

2.
Front Pharmacol ; 15: 1390551, 2024.
Article in English | MEDLINE | ID: mdl-39286626

ABSTRACT

Introduction: Sanguisorba officinalis L. is classified as a medicinal plant and used in traditional medicine. The root of this plant is mainly used as a medicinal raw material, but the above-ground parts are also a valuable source of health-promoting biologically active compounds. Method: The study aimed to evaluate the antioxidant activity and total polyphenol content (TPC) of extracts prepared in 70% and 40% aqueous ethanol solution (dry extract content 50-500 g/L) from the aerial parts of S. officinalis. The essential oil was isolated from the tested raw material, and its composition was determined using GC-MS. Ethanolic extracts and essential oil have been tested for antibacterial activity. The extract in 70% v/v ethanol (dry extract content: 500 g/L) was subjected to HPLC analysis for the content of selected phenolic acids and an ex vivo skin permeation study. The ability of these metabolites to permeate and accumulate in the skin was analysed. Results: Extracts prepared at both ethanol concentrations showed similar antioxidant activity and TPC. Depending on the method, concentration of solvent, and dry extract content (50-500 g/L), the activity ranged from 1.97 to 84.54 g Trolox/L. TPC range of 3.80-37.04 g GA/L. Gallic acid (424 mg/L) and vanillic acid (270 mg/L) had the highest concentrations among the phenolic acids analysed. Vanillic acid (10 µg) permeates the skin at the highest concentration. The highest accumulation in the skin was found for 2,5-dihydroxybenzoic acid (53 µg/g skin), 2,3-dihydroxybenzoic acid (45 µg/g skin), and gallic acid (45 µg/g skin). The tested ethanolic extracts exhibited antibacterial activity. Samples with a dry extract concentration of 500 g/L showed the largest growth inhibition zones. The most sensitive strains to these extracts were P. aeruginosa (24 mm), S. lutea (23 mm), and S. pneumoniae (22 mm). The smallest inhibition zones were observed for B. subtilis (17 mm). The essential oil showed weaker antimicrobial activity (growth inhibition zone 8-10 mm). The GC-MS method identified 22 major components of the essential oil, including aliphatic hydrocarbons, unsaturated terpene alcohols, aliphatic aldehydes, unsaturated and saturated fatty acids, sesquiterpene, phytyl ester of linoleic acid, nitrogen compound, phytosterol, terpene ketone, phenylpropanoids, aliphatic alcohol, diterpenoid, aromatic aldehyde, and aliphatic carboxylic acid. Discussion: The conducted research has shown that ethanolic extracts from Sanguisorbae herba are a valuable source of compounds with antibacterial and antioxidant potential, including phenolic acids. The fact that selected phenolic acids contained in the tested extract have the ability to permeate and accumulate in the skin provides the basis for conducting extended research on the use of extracts from this plant raw material in cosmetic and pharmaceutical preparations applied to the skin.

3.
Pharmaceutics ; 16(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39339164

ABSTRACT

Formulations designed to address ocular conditions and diseases are predominantly administered topically. While in vitro test systems have been developed to assess corneal permeation under extended contact conditions, methods focusing on determining the penetration depth and kinetics of a substance within the cornea itself rather than through it, are scarce. This study introduces a method for time-dependent penetration depth analysis (10 and 60 min) by means of a semiquantitative imaging method in comparison with a quantitative corneal depth-cut technique, employing fluorescein sodium at concentrations of 0.2 and 0.4 mg/mL as a small molecule model substance and sheep cornea as a human surrogate. Excised tissues exhibited sustained viability in modified artificial aqueous humor and maintained thickness (746 ± 43 µm) and integrity (electrical resistance 488 ± 218 Ω∙cm2) under the experimental conditions. Both methods effectively demonstrated the expected concentration- and time-dependent depth of penetration of fluorescein sodium, displaying a significantly strong correlation. The traceability of the kinetic processes was validated with polysorbate 80, which acted as a penetration enhancer. Furthermore, the imaging-based method enabled detecting the retention of larger structures, such as hyaluronic acid and nanoemulsions from the commercial eyedrop formulation NEOVIS® TOTAL multi, inside the lacrimal layer.

4.
J Cosmet Dermatol ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39099002

ABSTRACT

BACKGROUND: Sialoglycoproteins play important roles in various biological processes, including cell adhesion, immune response, and cell signaling. Our previous studies indicated that the bovine sialoglycoproteins could be developed as a reagent against skin aging and as a new candidate for accelerating skin wound healing as well as inhibiting scar formation. However, transdermal characteristic of the bovine sialoglycoproteins is still unknown. AIMS: This study investigated the transdermal permeation of the bovine sialoglycoproteins through porcine skin using the Franz diffusion cell method. RESULTS: Our study showed that the bovine sialoglycoproteins could penetrate through the porcine skin with a linear permeation pattern described by the regression equation N% = 11.49 t-3.858, with a high coefficient of determination (R2 = 0.9903). The histochemical results demonstrated the widespread distribution of the bovine sialoglycoproteins between the epidermal and dermal layers, which suggesting parts of the bovine sialoglycoproteins had ability to traverse the epidermal barrier. The results of the lectin microarrays indicated highly enriched glycopatterns on the bovine sialoglycoproteins, which also appeared in permeated porcine skin. The LC-MS/MS analysis further showed that the bovine sialoglycoproteins were composed of approximately 100 proteins with molecular weight ranging from 748.4 kDa to 10 kDa, and there were 23 specific bovine sialoglycoproteins with molecular weight ranging from 69.2 kDa to 10 kDa to be characterized in permeated porcine skin. CONCLUSIONS: Parts of the bovine sialoglycoproteins with molecular weight less than 69.2 kDa had ability to traverse the epidermal barrier. Understanding the permeation characteristics of the bovine sialoglycoproteins for developing innovative formulations with therapeutic benefits, contributing to advancements in cosmetic and dermatological fields.

5.
Toxicol Lett ; 400: 104-112, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134128

ABSTRACT

Alternative plasticizers such as diisononyl-1,2-cyclohexanedicarboxylate (DINCH), di(2-ethylhexyl) terephthalate (DEHTP), and di(2-ethylhexyl) adipate (DEHA) are progressively replacing phthalates in many consumer and professional products because of adverse effects on reproduction associated with some phthalates. Human exposures to these phthalate substitutes can occur through ingestion, skin absorption and inhalation. Skin uptake can lead to greater concentration at the target organs compared to ingestion because the skin exposure route bypasses the first-pass effect. Skin absorption studies are almost absent for these alternative plasticizers. We therefore wanted first, to characterize skin absorption of a mixture containing DINCH, DEHA and DEHTP in vitro using a flow-through diffusion cell system with ex vivo human skin, quantifying their respective monoester metabolites (mono-isononyl-cyclohexane-1,2-dicarboxylate (MINCH), mono-2-ethylhexyl adipate (MEHA), mono-2-ethylhexyl terephthalate (MEHTP), respectively); second, to validate these results by exposing five human volunteers to this mixture on their forearm and quantifying the corresponding urinary metabolites (including the monoesters and their oxidation products). Our study showed that two of these alternative plasticizers, DEHTP and DINCH, did not permeate skin showing as quantifiable metabolite levels in vitro and only traces of DEHA were quantified as its monoester metabolite, MEHA. Permeation coefficient (Kp) 0.06 and 55.8*10-7 cm/h for neat and emulsified DEHA, respectively, while the permeation rate (J) remained low for both (0.005 and 0.001 µg/cm2/h, respectively). Participants exposed to a mixture of these three plasticizers did not have noteworthy urinary concentrations of their respective metabolites after 24 hours post-application. However, the alternative plasticizer mixture was completely absorbed after six hours post-application on the forearms of the human volunteers, and the urinary elimination curves showed a slight increase after 24 hours post-application. Further studies on skin absorption of these substances should follow the urinary elimination kinetics of these metabolites more than 24 hours post-application. We also recommend quantifying the parent compounds in the in vitro diffusion experiments.


Subject(s)
Adipates , Dicarboxylic Acids , Phthalic Acids , Plasticizers , Skin Absorption , Humans , Plasticizers/pharmacokinetics , Plasticizers/toxicity , Plasticizers/metabolism , Dicarboxylic Acids/pharmacokinetics , Dicarboxylic Acids/metabolism , Dicarboxylic Acids/urine , Adipates/metabolism , Adipates/pharmacokinetics , Adipates/urine , Phthalic Acids/pharmacokinetics , Phthalic Acids/metabolism , Phthalic Acids/urine , Adult , Female , Skin/metabolism , Cyclohexanecarboxylic Acids/pharmacokinetics , Cyclohexanecarboxylic Acids/metabolism , Male , Young Adult , Glycols
6.
Toxicol Res ; 40(3): 449-456, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911539

ABSTRACT

Gallic acid (GA) is a phenolic compound known as 3,4,5-trihydroxybenzoic acid. GA is used as a hair dye ingredient. It is limited to be below 4.0% in Korea. Dermal absorption rate of GA has not been reported yet. In this study, an analytical method for GA was developed and validated using high-performance liquid chromatography (HPLC) in various matrices of swab, stratum corneum (SC), skin (dermis + epidermis), and receptor fluid (RF). HPLC analysis showed acceptable linearity (r2 = 0.999-0.9998), accuracy (90.3-112.8%), and precision (0.7-13.6%) in accordance with validation guidelines by Korea Ministry of Food and Drug Safety (MFDS). The dermal absorption rate of GA was determined using Franz diffuse cells. GA (4.0%) was applied to mini pig skin of 10 µl/cm2. After 30 min application, the GA was wiped out and receptor fluid sampling was continued until 24 h. After 24 h, skin was wiped off with swab and SC was collected using tape stripping. All samples were extracted with ethanol and analyzed using the validated method. The total dermal absorption rate of GA was determined to be 2.6 ± 1.3% (24 h).

7.
Pharmaceutics ; 16(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931938

ABSTRACT

Skin is the largest organ and a multifunctional interface between the body and its environment. It acts as a barrier against cold, heat, injuries, infections, chemicals, radiations or other exogeneous factors, and it is also known as the mirror of the soul. The skin is involved in body temperature regulation by the storage of fat and water. It is an interesting tissue in regard to the local and transdermal application of active ingredients for prevention or treatment of pathological conditions. Topical and transdermal delivery is an emerging route of drug and cosmetic administration. It is beneficial for avoiding side effects and rapid metabolism. Many pharmaceutical, technological and cosmetic innovations have been described and patented recently in the field. In this review, the main features of skin morphology and physiology are presented and are being followed by the description of classical and novel nanoparticulate dermal and transdermal drug formulations. The biophysical aspects of the penetration of drugs and cosmetics into or across the dermal barrier and their investigation in diffusion chambers, skin-on-a-chip devices, high-throughput measuring systems or with advanced analytical techniques are also shown. The current knowledge about mathematical modeling of skin penetration and the future perspectives are briefly discussed in the end, all also involving nanoparticulated systems.

8.
Dent Mater ; 40(9): 1372-1377, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38902145

ABSTRACT

OBJECTIVES: The permeability of triamcinolone acetonide (TA), from bilayer mucoadhesive buccal films, through a biomimetic membrane, Permeapad™, was investigated employing Franz diffusion cell. The delivery systems composition and ethyl cellulose (EC) backing layer, on drug permeability, were assessed. METHODS: Three TA-loaded films were tested; hydroxypropyl methylcellulose (HPMC K4M; bilayer [F1] and monolayer), HPMC K4M/Polyvinylpyrrolidone (PVP): 90/10 [F2], and HPMC K15M film [F3]. All films contained propylene glycol (PG-plasticiser). TA solution alone was used as a control. TA permeability via a Permeapad™ barrier, simulating buccal mucosa, was assessed over 8 h using a Franz diffusion cell. TA permeated into the receptor compartment, released in the donor compartment, and located on/within the Permeapad™ barrier were analysed using UV-spectrophotometer. RESULTS: 45.7 % drug retention within the Permeapad™ barrier was delivered from F1 (highest). F1, F2, and F3 significantly improved the TA's permeability through Permeapad™, compared to TA solution alone (e.g., 8.5 % TA-solution, 21.5 %-F1), attributed to the synergy effect of HPMC and propylene glycol acting as penetration enhancers. F1 displayed a significant increase in drug permeability (receptor compartment; 21.5 %) compared to F3 (17.0 %). PVP significantly enhanced drug permeability (27.5 %). Impermeable EC backing layer controlled unidirectional drug release and reduced drug loss into the donor compartment (e.g., ∼28 % for monolayer film to ∼10 % for bilayer film, F1). SIGNIFICANCE: The mucoadhesive films demonstrated improved TA permeability via Permeapad™. The findings suggest that these bilayer mucoadhesive films, particularly F1, hold promise for the effective topical treatment of oral mucosa disorders, such as recurrent aphthous stomatitis and oral lichen planus.


Subject(s)
Mouth Mucosa , Permeability , Povidone , Triamcinolone Acetonide , Triamcinolone Acetonide/chemistry , Triamcinolone Acetonide/pharmacokinetics , Mouth Mucosa/metabolism , Povidone/chemistry , Drug Delivery Systems , Hypromellose Derivatives/chemistry , Propylene Glycol/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Administration, Buccal
9.
BMC Vet Res ; 20(1): 202, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755639

ABSTRACT

BACKGROUND: Gray horses are predisposed to equine malignant melanoma (EMM) with advancing age. Depending on the tumor's location and size, they can cause severe problems (e.g., defaecation, urination, feeding). A feasible therapy for EMM has not yet been established and surgical excision can be difficult depending on the location of the melanoma. Thus, an effective and safe therapy is needed. Naturally occurring betulinic acid (BA), a pentacyclic triterpene and its synthetic derivate, NVX-207 (3-acetyl-betulinic acid-2-amino-3-hydroxy-2-hydroxymethyl-propanoate) are known for their cytotoxic properties against melanomas and other tumors and have already shown good safety and tolerability in vivo. In this study, BA and NVX-207 were tested for their permeation potential into equine skin in vitro in Franz-type diffusion cell (FDC) experiments after incubation of 5 min, 30 min and 24 h, aiming to use these formulations for prospective in vivo studies as a treatment for early melanoma stages. Potent permeation was defined as reaching or exceeding the half maximal inhibitory concentrations (IC50) of BA or NVX-207 for equine melanoma cells in equine skin samples. The active ingredients were either dissolved in a microemulsion (ME) or in a microemulsion gel (MEG). All of the formulations were transdermally applied but the oil-in-water microemulsion was administered with a novel oxygen flow-assisted (OFA) applicator (DERMADROP TDA). RESULTS: All tested formulations exceeded the IC50 values for equine melanoma cells for BA and NVX-207 in equine skin samples, independently of the incubation time NVX-207 applied with the OFA applicator showed a significant time-dependent accumulation and depot-effect in the skin after 30 min and 24 h (P < 0.05). CONCLUSIONS: All tested substances showed promising results. Additionally, OFA administration showed a significant accumulation of NVX-207 after 30 min and 24 h of incubation. Further in vivo trials with OFA application are recommended.


Subject(s)
Administration, Cutaneous , Betulinic Acid , Drug Delivery Systems , Emulsions , Pentacyclic Triterpenes , Skin , Triterpenes , Animals , Horses , Triterpenes/administration & dosage , Skin/metabolism , Skin/drug effects , Drug Delivery Systems/veterinary , Gels , Melanoma/drug therapy , Melanoma/veterinary , Oxygen/metabolism , Skin Absorption , Horse Diseases/drug therapy , Propanolamines
10.
Contact Dermatitis ; 91(1): 11-21, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676576

ABSTRACT

BACKGROUND: Contrary to Ni2+- and Co2+-induced allergic contact dermatitis (ACD), reactions against Pd2+ are rare. However, Pd2+ activates a larger T cell fraction in vitro, suggesting an inefficient skin penetration. OBJECTIVES: This study compares Ni2+, Co2+ and Pd2+ skin penetration from commonly used diagnostic patch test preparations (PTPs) and aqueous metal salt solutions. METHODS: Using Franz diffusion cell assays, we applied the metals in PTPs (5% NiSO4, 1% CoCl2, 2% PdCl2 and 3% Na2PdCl4) and in solution to pigskin for 48 h, thereby mirroring the time frame of a patch test. The different compartments were analysed individually by inductively coupled plasma mass spectrometry. RESULTS: Metal ions were mainly retained in the upper stratum corneum layers. After application of PTPs, concentrations in the viable skin were lower for Pd2+ (1 and 7 µM) compared to Ni2+ and Co2+ (54 and 17 µM). CONCLUSIONS: Ni2+ and Co2+ penetrated the skin more efficiently than Pd2+ and thus may sensitize and elicit ACD more easily. This was observed for ions applied in petrolatum and aqueous solutions. We hypothesize that the differently charged metal complexes are responsible for the varying skin penetration behaviours.


Subject(s)
Allergens , Cobalt , Dermatitis, Allergic Contact , Nickel , Palladium , Patch Tests , Skin Absorption , Cobalt/adverse effects , Nickel/adverse effects , Palladium/adverse effects , Animals , Swine , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/diagnosis , Allergens/adverse effects , Skin/metabolism
11.
J Pharm Sci ; 113(2): 407-418, 2024 02.
Article in English | MEDLINE | ID: mdl-37972891

ABSTRACT

In Vitro Permeation Test (IVPT) is commonly used to evaluate skin penetration of chemicals and performance of dermatological products. For a permeant with low aqueous solubility, an additive that is expected not to alter the skin barrier can be used in the receptor solution to improve permeant solubility. The objective of this study was to (a) evaluate the effects of these additives in IVPT receptor solution on skin permeability of model permeants and skin electrical resistance and (b) determine the solubility of the permeants in these receptor solutions. Bovine serum albumin (BSA), 2-hydroxypropyl-beta-cyclodextrin (HPCD), ethanol, nonionic surfactant Brij-98, and propylene glycol were the additives, and phosphate buffered saline (PBS) was the control. Steady-state skin permeability coefficients and resistances were determined. The receptor solutions examined in this study did not cause a significant increase in skin permeability or decrease in resistance (less than 40 % changes) except 25 % ethanol. The receptor solution containing 25 % ethanol induced an approximately twofold average increase in skin permeability and reduced skin electrical resistance by approximately threefold. The receptor solution of 2.5 % HPCD provided the highest levels of solubility for the model lipophilic permeants, while 0.2 % Brij-98 and 5 % ethanol showed the lowest solubility enhancement from those in PBS.


Subject(s)
Plant Oils , Polyethylene Glycols , Skin Absorption , Skin , Administration, Cutaneous , Skin/metabolism , 2-Hydroxypropyl-beta-cyclodextrin , Permeability , Ethanol
12.
Toxicol In Vitro ; 95: 105735, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37977296

ABSTRACT

In vitro absorption through human skin is a critical component in the safety assessment of chemicals, crop protection products, consumer healthcare products and cosmetics. A barrier integrity assay is used to identify skin samples which are potentially damaged. A retrospective analysis of 9978 electrical resistance (ER) measurements generated in a single laboratory (DTL) over a 15-year period was performed. Skin absorption experiments were performed using two model penetrants, testosterone and sucrose, utilising no ER acceptance criteria, and the results assessed. Using a barrier integrity test, to remove potentially damaged samples, was offset against one that can be used to remove intact skin samples with a poorer barrier function (i.e. false positives). The previously identified barrier integrity limit (10 kΩ for a 2.54 cm2 diffusion cell; Davies et al., 2004) was demonstrated to identify half of all samples tested, many of which would be false positive samples. This retrospective analysis identified 5.0 kΩ (17.5th percentile) as an acceptance criterion for a 2.54 cm2 diffusion cell, whilst not considerably changing results generated in skin absorption studies. This was confirmed from the cumulative absorption of the model penetrants tested. Using this limit would, therefore, provide suitable skin samples for regulatory skin absorption studies.


Subject(s)
Skin Absorption , Testosterone , Humans , Testosterone/metabolism , Sucrose/metabolism , Retrospective Studies , In Vitro Techniques , Skin/metabolism
13.
J Mol Graph Model ; 126: 108625, 2024 01.
Article in English | MEDLINE | ID: mdl-37722352

ABSTRACT

Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the theoretical calculation of drug geometry, charge distribution and dipole moment, electronic levels and molecular orbitals, electronic transitions, and vibrational transitions. Additionally, the development of novel nanotechnology-based delivery systems containing TAC can be an approach for reducing the dose applied topically, increasing dermal retention, and reducing the reported side effects due to the controlled release pattern. Firstly, this paper was devoted to obtaining the molecular, electronic, and vibrational data for TAC by using five semi-empirical (SE) methods and one Density Functional Theory (DFT) method in order to expand the knowledge about the drug properties by computational simulation. Then, this study was carried out to prepare TAC-loaded poly(ԑ-caprolactone) nanocapsules by interfacial polymer deposition following solvent displacement and investigate the in vitro drug permeation using the Franz diffusion cell and the photoacoustic spectroscopy. Computational simulations were compared in the three schemes SE/SE, SE/DFT, and DFT/DFT, where the first method represented the procedure used for geometry optimization and the second one was performed to extract electronic and vibrational properties. Computational data showed correspondence with TAC geometry description and electronic properties, with few differences in HOMO - LUMO gap (Δ) and dipole values. The SE/DFT and DFT/DFT methods presented a better drug description for the UV-Vis, Infrared, and Raman spectra with low deviation from experimental values. Franz cell model demonstrated that TAC was more delivered across the Strat-M® membrane from the solution than the drug-loaded poly(ԑ-caprolactone) nanocapsules. Photoacoustic spectroscopy assay revealed that these nanocapsules remained more retained into the Strat-M® membranes, which is desirable for the topical application.


Subject(s)
Nanocapsules , Tacrolimus , Models, Molecular , Molecular Conformation , Magnetic Resonance Spectroscopy , Spectrum Analysis, Raman , Spectroscopy, Fourier Transform Infrared , Spectrophotometry, Ultraviolet , Quantum Theory , Thermodynamics , Vibration
14.
Toxicol Lett ; 388: 56-63, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37806367

ABSTRACT

Skin decontamination of Chemical Biological Radioactive and Nuclear (CBRN) materials involves the timely and effective removal of the contaminants from the skin surface. The current work evaluated Fuller's Earth & The Reactive Skin Decontaminant Lotion Kit (RSDL®) to investigate whether they were as efficacious against free base Carfentanil skin contamination as they are against chemical warfare agents. The in vitro methodology used allowed for evaluation of decontamination regimens as specified by the decontaminant manufacturer rather than as an application of a bolus dose left in situ for the study duration. A selection of novel decontaminants, including Dermal Decontamination Gel (DDGel), Trivorex®, itaconic acid (IA), N,N'-methylenebisacrylamide (MBA), 2-trifluoromethylacrylic acid (TFMAA) and NanoSan Sorb were also tested for efficacy. All the evaluated decontaminants were successful at removing the majority of the Carfentanil skin surface contamination. The current work has shown that the Fuller's Earth decontamination kit, removes as much (or more) free base carfentanil from the skin surface in comparison to other products tested in this study series.


Subject(s)
Chemical Warfare Agents , Skin Absorption , Decontamination/methods , Skin , Chemical Warfare Agents/metabolism
15.
Foods ; 12(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37685153

ABSTRACT

In this study, a new approach to pesticide permeation through the apple peel into the pulp is discussed. The tested compounds can be classified, based on mode of action, as systemic (boscalid, cyprodinil, pirimicarb, propiconazole and tebuconazole) or contact (captan, cypermethrin and fludioxonil) pesticides. The barrier effect was assessed using a Franz flow-type vertical diffusion cell system. A residue analysis was performed using a modified quick, easy, cheap, efficient, rugged and safe (QuEChERS) extraction method coupled to gas chromatography with tandem mass spectrometry (GC-MS/MS). The limits of detection (LODs) ranged between 2.6 µg kg-1 (pirimicarb) and 17 µg kg-1 (captan), with the coefficient of variability (CV) lower than 6%, while recoveries ranged from 85% (boscalid) to 112% (captan) at 0.1 and 1 mg kg-1 spiked levels. The highest peel penetration was observed for pirimicarb, captan and cyprodinil, with cumulative permeations of 90, 19 and 17 µg cm-2, respectively. The total absorption was in the range from 0.32% (tebuconazole) to 32% (pirimicarb). Only cypermethrin was not quantitatively detected in the pulp, and its use can be recommended in crop protection techniques. The obtained results indicate that molecular weight, octanol-water partition coefficient and water solubility are important parameters determining the process of pesticide absorption.

16.
Methods Protoc ; 6(4)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37623921

ABSTRACT

The aim of this study was to assess the release profile of components in five different honeys (a New Zealand Manuka and two Western Australian honeys, a Jarrah honey and a Coastal Peppermint honey) and their corresponding honey-loaded gel formulations using a custom-designed Franz-type diffusion cell in combination with High-Performance Thin-Layer Chromatography (HPTLC). To validate the suitability of the customised setup, release data using this new approach were compared with data obtained using a commercial Franz cell apparatus, which is an established analytical tool to monitor the release of active ingredients from topical semisolid products. The release profiles of active compounds from pure honey and honey-loaded formulations were found to be comparable in both types of Franz cells. For example, when released either from pure honey or its corresponding pre-gel formulation, the percentage release of two Jarrah honey constituents, represented by distinct bands at RF 0.21 and 0.53 and as analysed by HPTLC, was not significantly different (p = 0.9986) at 12 h with over 99% of these honey constituents being released in both apparatus. Compared to the commercial Franz diffusion cell, the customised Franz cell offers several advantages, including easy and convenient sample application, the requirement of only small sample quantities, a large diffusion surface area, an ability to analyse 20 samples in a single experiment, and lower cost compared to purchasing a commercial Franz cell. Thus, the newly developed approach coupled with HPTLC is conducive to monitor the release profile of minor honey constituents from pure honeys and honey-loaded semisolid formulations and might also be applicable to other complex natural-product-based products.

17.
Environ Sci Pollut Res Int ; 30(37): 86762-86772, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37414993

ABSTRACT

Even if dermal exposure to metal(loid)s from contaminated soils has received less attention than oral and inhalation exposure, the human health risk can be significant for some contaminants and exposure scenarios. The purpose of this study was to assess the influence of sebum proportion (1% v/v and 3% v/v) in two synthetic sweat formulations (EN 1811, pH 6.5 (sweat A) and NIHS 96-10, pH 4.7 (sweat B)) on As, Cr, Cu, Ni, Pb, and Zn dermal bioaccessibility and on subsequent diffusion through synthetic skin. A Franz cell with a Strat-M® membrane was used to quantify permeation parameters of bioaccessible metal(loid)s. Sebum's presence in synthetic sweat formulations significantly modified bioaccessibility percentages for As, Cr, and Cu. However, sebum proportion in both sweats did not influence the bioaccessibility of Pb and Zn. Some metal(loid)s, namely As and Cu, permeated the synthetic skin membrane during permeation tests when sebum was added to sweat while no permeation was observed without sebum in sweat formulations. Depending on sweat formulation, the addition of sebum (1% v/v) increased or decreased the Cr permeation coefficients (Kp). In all cases, bioaccessible Cr was no longer permeable when extracted with 3% sebum. Ni transdermal permeation was not influenced by the presence of sebum, and no permeation was observed for Pb and Zn. Further studies on the speciation of metal(loid)s in bioaccessible extracts in the presence of sebum are recommended.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Sweat/chemistry , Environmental Monitoring , Lead , Sebum/chemistry , Soil Pollutants/analysis , Soil , Metals, Heavy/analysis , Risk Assessment
18.
Front Pharmacol ; 14: 1157977, 2023.
Article in English | MEDLINE | ID: mdl-37324484

ABSTRACT

In the treatment of pain, especially chronic pain, the rule of multimodal therapy applies, based on various painkillers mechanisms of action. The aim of the conducted study was to evaluate the in vitro penetration of ketoprofen (KET) and lidocaine hydrochloride (LH) through the human skin from a vehicle with transdermal properties. The results obtained with the use of the Franz chamber showed statistically significantly higher penetration of KET from the transdermal vehicle as compared to commercial preparations. It was also shown that the addition of LH to the transdermal vehicle did not change the amount of KET permeated. The study also compared the penetration of KET and LH by adding various excipients to the transdermal vehicle. Comparing the cumulative mass of KET that penetrated after the 24-h study, it was observed that the significantly highest permeation was found for the vehicle containing additionally Tinctura capsici, then for that containing camphor and ethanol, and the vehicle containing menthol and ethanol as compared to that containing Pentravan® alone. A similar tendency was observed in the case of LH, where the addition of Tinctura capsici, menthol and camphor led to a statistically significant higher penetration. Adding certain drugs such as KET and LH to Pentravan®, and substances such as menthol, camphor or capsaicin, can be an interesting alternative to administered enteral drugs especially in the group of patients with multiple diseases and polypragmasy.

19.
Dermatol Ther (Heidelb) ; 13(8): 1763-1771, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37351830

ABSTRACT

INTRODUCTION: Effective topical drug delivery is the essence of dermatologic treatment. The drug must be applied to the skin surface, be released from the vehicle, enter the stratum corneum, traverse the epidermis, and enter the dermis pharmacologically intact. New advances have improved emulsion-type formulation and drug delivery technology by encapsulating dispersed oil droplets in a robust multimolecular aqueous film of surfactants, oil, and water, enabling a multifold decrease in surfactant concentration compared to conventional creams. In the research reported here, we studied this new concept, termed polyaphron dispersion (PAD) technology, by comparing skin delivery of betamethasone dipropionate from a novel oil-in-water emulsion system of calcipotriene and betamethasone dipropionate (CAL/BDP) cream to that from a traditional topical suspension (CAL/BDP TS) utilizing in vitro and in vivo detection methods. METHODS: The amount of BDP released from the CAL/BDP cream and CAL/BDP TS was evaluated using both in vitro Franz cell analysis and in vivo human tape stripping from ten female human volunteers after a single application of CAL/BDP cream or CAL/BDP TS. For the tape stripping analysis, 20 circular tape strips were taken from forearm application sites at 1, 2, 4, and 8 h after application and analyzed for the amount of BDP in the tape strip using liquid chromatography-mass spectrometry (LC-MS). RESULTS: The in vitro Franz cell analysis demonstrated that the cumulative amount of BDP that diffused through the epidermis was statistically significantly greater for the CAL/BDP cream compared to the CAL/BDP TS at all time points. In addition, consistently higher amounts of BDP were recovered following CAL/BDP cream application than following CAL/BDP TS application at 1, 2, 4, and 8 h following application utilizing the in vivo tape stripping technique. CONCLUSION: The novel PAD technology-based cream formulation delivered more BDP into the upper stratum corneum and lower epidermis than a traditional topical suspension.

20.
Int J Biol Macromol ; 242(Pt 2): 124777, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37169055

ABSTRACT

Surface attributes of nanocarriers are crucial to determine their fate in the gastrointestinal (GI) tract. Herein, we have functionalized chitosan with biochemical moieties including rhamnolipid (RL), curcumin (Cur) and mannose (M). FTIR spectra of functionalized chitosan nanocarriers (FCNCs) demonstrated successful conjugation of M, Cur and RL. The functional moieties influenced the entrapment of model drug i.e., coumarin-6 (C6) in FCNCs with payload-hosting and non-leaching behavior i.e., >91 ± 2.5 % with negligible cumulative release of <2 % for 5 h in KREB, which was further verified in the simulated gastric and intestinal fluids. Consequently, substantial difference in the size and zeta potential was observed for FCNCs with different biochemical moieties. Scanning electron microscopy and atomic force microscopy of FCNCs displayed well-dispersed and spherical morphology. In addition, in vitro cytotoxicity results of FCNCs confirmed their hemocompatibility. In the ex-vivo rat intestinal models, FCNCs displayed a time-dependent-phenomenon in cellular-uptake and adherence. However, apparent-permeability-coefficient and flux values were in the order of C6-RL-FCNCs > C6-M-FCNCs > C6-Cur-FCNCs = C6-CNCs > Free-C6. Furthermore, the transepithelial electrical resistance revealed the FCNCs mediated recovery of membrane-integrity with reversible tight junctions opening. Thus, FCNCs have the potential to overcome the poor solubility and/or permeability issues of active pharmaceutical ingredients and transform the impact of functionalized-nanomedicines in the biomedical industry.


Subject(s)
Chitosan , Curcumin , Nanoparticles , Rats , Animals , Drug Carriers , Curcumin/pharmacology , Solubility , Permeability , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL