Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Sensors (Basel) ; 24(16)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39205021

ABSTRACT

The structural health monitoring (SHM) of buildings provides relevant data for the evaluation of the structural behavior over time, the efficiency of maintenance, strengthening, and post-earthquake conditions. This paper presents the design and implementation of a continuous SHM system based on dynamic properties, base accelerations, crack widths, out-of-plane rotations, and environmental data for the retrofitted church of Kuñotambo, a 17th century adobe structure, located in the Peruvian Andes. The system produces continuous hourly records. The organization, data collection, and processing of the SHM system follows different approaches and stages, concluding with the assessment of the structural and environmental conditions over time compared to predefined thresholds. The SHM system was implemented in May 2022 and is part of the Seismic Retrofitting Project of the Getty Conservation Institute. The initial results from the first twelve months of monitoring revealed seasonal fluctuations in crack widths, out-of-plane rotations, and natural frequencies, influenced by hygrothermal cycles, and an apparent positive trend, but more data are needed to justify the nature of these actions. This study emphasizes the necessity for extended data collection to establish robust correlations and refine monitoring strategies, aiming to enhance the longevity and safety of historic adobe structures under seismic risk.

2.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894080

ABSTRACT

Bridges are critical components of transportation networks, and their conditions have effects on societal well-being, the economy, and the environment. Automation needs in inspections and maintenance have made structural health monitoring (SHM) systems a key research pillar to assess bridge safety/health. The last decade brought a boom in innovative bridge SHM applications with the rise in next-generation smart and mobile technologies. A key advancement within this direction is smartphones with their sensory usage as SHM devices. This focused review reports recent advances in bridge SHM backed by smartphone sensor technologies and provides case studies on bridge SHM applications. The review includes model-based and data-driven SHM prospects utilizing smartphones as the sensing and acquisition portal and conveys three distinct messages in terms of the technological domain and level of mobility: (i) vibration-based dynamic identification and damage-detection approaches; (ii) deformation and condition monitoring empowered by computer vision-based measurement capabilities; (iii) drive-by or pedestrianized bridge monitoring approaches, and miscellaneous SHM applications with unconventional/emerging technological features and new research domains. The review is intended to bring together bridge engineering, SHM, and sensor technology audiences with decade-long multidisciplinary experience observed within the smartphone-based SHM theme and presents exemplary cases referring to a variety of levels of mobility.


Subject(s)
Smartphone , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods
3.
Sensors (Basel) ; 23(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067677

ABSTRACT

As ageing structures and infrastructures become a global concern, structural health monitoring (SHM) is seen as a crucial tool for their cost-effective maintenance. Promising results obtained for modern and conventional constructions suggested the application of SHM to historical masonry buildings as well. However, this presents peculiar shortcomings and open challenges. One of the most relevant aspects that deserve more research is the optimisation of the sensor placement to tackle well-known issues in ambient vibration testing for such buildings. The present paper focuses on the application of optimal sensor placement (OSP) strategies for dynamic identification in historical masonry buildings. While OSP techniques have been extensively studied in various structural contexts, their application in historical masonry buildings remains relatively limited. This paper discusses the challenges and opportunities of OSP in this specific context, analysing and discussing real-world examples, as well as a numerical benchmark application to illustrate its complexities. This article aims to shed light on the progress and issues associated with OSP in masonry historical buildings, providing a detailed problem formulation, identifying ongoing challenges and presenting promising solutions for future improvements.

4.
Sensors (Basel) ; 23(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36772230

ABSTRACT

This article presents a novel methodology to extract the bridge frequencies from the vibrations recorded on train-mounted sensors. Continuous wavelet transform is used to distinguish the bridge frequencies from the other peaks that are visible in the Fourier amplitude spectrum of the accelerations recorded on train bogies. The efficacy of the proposed method is demonstrated through numerical case studies. For this, a detailed three-dimensional finite element model that can capture the vibration characteristics of the bridge, track, and train is created, and each component of the model is separately validated. The train model used is a three-dimensional multi-degree-of-freedom system that can simulate the pitching and rolling behavior. The train was then virtually driven over the bridge at different speeds and under varying track irregularities to evaluate the robustness of the proposed method in extracting bridge frequencies from train-mounted sensors under different conditions. The proposed methodology is shown to be capable of identifying bridge modal frequencies even for aggressive track irregularity profiles and relatively high speeds of trains.

5.
Int J Comput Assist Radiol Surg ; 17(5): 903-910, 2022 May.
Article in English | MEDLINE | ID: mdl-35384551

ABSTRACT

PURPOSE: Using the da Vinci Research Kit (dVRK), we propose and experimentally demonstrate transfer learning (Xfer) of dynamics between different configurations and robots distributed around the world. This can extend recent research using neural networks to estimate the dynamics of the patient side manipulator (PSM) to provide accurate external end-effector force estimation, by adapting it to different robots and instruments, and in different configurations, with additional forces applied on the instruments as they pass through the trocar. METHODS: The goal of the learned models is to predict internal joint torques during robot motion. First, exhaustive training is performed during free-space (FS) motion, using several configurations to include gravity effects. Second, to adapt to different setups, a limited amount of training data is collected and then the neural network is updated through Xfer. RESULTS: Xfer can adapt a FS network trained on one robot, in one configuration, with a particular instrument, to provide comparable joint torque estimation for a different robot, in a different configuration, using a different instrument, and inserted through a trocar. The robustness of this approach is demonstrated with multiple PSMs (sampled from the dVRK community), instruments, configurations and trocar ports. CONCLUSION: Xfer provides significant improvements in prediction errors without the need for complete training from scratch and is robust over a wide range of robots, kinematic configurations, surgical instruments, and patient-specific setups.


Subject(s)
Robotics , Biomechanical Phenomena , Humans , Neural Networks, Computer , Surgical Instruments , Torque
6.
Materials (Basel) ; 14(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34501002

ABSTRACT

Bridges constitute important elements of the transportation network. A vast part of the Italian existing infrastructural system dates to around 60 years ago, which implies that the related bridge structures were constructed according to past design guidelines and underwent a probable state of material deterioration (e.g., steel corrosion, concrete degradation), especially in those cases in which proper maintenance plans have not been periodically performed over the structural lifetime. Consequently, elaborating rapid yet effective safety assessment strategies for existing bridge structures represents a topical research line. This contribution presents a systematic experimental-numerical approach for assessing the load-bearing capacity of existing prestressed concrete (PC) bridge decks. This methodology is applied to the Longano PC viaduct (southern Italy) as a case study. Initially, natural frequencies and mode shapes of the bridge deck are experimentally identified from vibration data collected in situ through Operational Modal Analysis (OMA), based on which a numerical finite element (FE) model is developed and calibrated. In situ static load tests are then carried out to investigate the static deflections under maximum allowed serviceability loads, which are compared to values provided by the FE model for further validation. Since prestressing strands appear corroded in some portions of the main girders, numerical static nonlinear analysis with a concentrated plasticity approach is finally conducted to quantify the effects of various corrosion scenarios on the resulting load-bearing capacity of the bridge at ultimate limit states. The proposed methodology, encompassing both serviceability and ultimate conditions, can be used to identify critical parts of a large infrastructure network prior to performing widespread and expensive material test campaigns, to gain preliminary insight on the structural health of existing bridges and to plan a priority list of possible repairing actions in a reasonable, safe, and costly effective manner.

7.
Sensors (Basel) ; 20(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751336

ABSTRACT

The paper covers the application of Radio Frequency IDentification (RFID) technology in road traffic management with regard to vehicle identification. Various infrastructure configurations for Automated Vehicle Identification (AVI) have been presented, including configurations that can be used in urban traffic as part of the Smart City concept. In order to describe the behavior of multiple identifications of moving vehicles, an operation model of the dynamic identification using RFID is described. While it extends the definition of the correct work zone, this paper introduces the concept of dividing the zone into sections corresponding to so-called inventory rounds. The system state is described using a set of matrices in which unread, read, and lost transponders are recorded in subsequent rounds and sections. A simplified algorithm of the dynamic object identification system was also proposed. The results of the simulations and lab experiments show that the efficiency of mobile object identification is conditioned by the parameters of the communication protocol, the speed of movement, and the number of objects.

8.
Sensors (Basel) ; 20(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532125

ABSTRACT

The dynamic identification of the modal parameters of a structure, in order to gain control of its functionality under operating conditions, is currently under discussion from a scientific and technical point of views. The experimental observations obtained through structural health monitoring (SHM) are a useful calibration reference of numerical models (NMs). In this paper, the procedures for the identification of modal parameters in historical bell towers using a stochastic subspace identification (SSI) algorithm are presented. Then, NMs are manually calibrated on the identification's results. Finally, the applicability of a genetic algorithm for the automatic calibration of the elastic parameters is considered with the aim of searching for the properties of the autochthonous material, in order to reduce modelling error following the model assurance criterion (MAC). In this regard, several material values on the same model are examined to see how to approach the evolution and the distribution of these features, comparing the characterization proposed by the genetic algorithm with the results considered by the manual iterative procedure.

9.
Front Robot AI ; 7: 571574, 2020.
Article in English | MEDLINE | ID: mdl-33501330

ABSTRACT

Recently, with the increased number of robots entering numerous manufacturing fields, a considerable wealth of literature has appeared on the theme of physical human-robot interaction using data from proprioceptive sensors (motor or/and load side encoders). Most of the studies have then the accurate dynamic model of a robot for granted. In practice, however, model identification and observer design proceeds collision detection. To the best of our knowledge, no previous study has systematically investigated each aspect underlying physical human-robot interaction and the relationship between those aspects. In this paper, we bridge this gap by first reviewing the literature on model identification, disturbance estimation and collision detection, and discussing the relationship between the three, then by examining the practical sides of model-based collision detection on a case study conducted on UR10e. We show that the model identification step is critical for accurate collision detection, while the choice of the observer should be mostly based on computation time and the simplicity and flexibility of tuning. It is hoped that this study can serve as a roadmap to equip industrial robots with basic physical human-robot interaction capabilities.

10.
Sensors (Basel) ; 19(17)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438529

ABSTRACT

In robot control with physical interaction, like robot-assisted surgery and bilateral teleoperation, the availability of reliable interaction force information has proved to be capable of increasing the control precision and of dealing with the surrounding complex environments. Usually, force sensors are mounted between the end effector of the robot manipulator and the tool for measuring the interaction forces on the tooltip. In this case, the force acquired from the force sensor includes not only the interaction force but also the gravity force of the tool. Hence the tool dynamic identification is required for accurate dynamic simulation and model-based control. Although model-based techniques have already been widely used in traditional robotic arms control, their accuracy is limited due to the lack of specific dynamic models. This work proposes a model-free technique for dynamic identification using multi-layer neural networks (MNN). It utilizes two types of MNN architectures based on both feed-forward networks (FF-MNN) and cascade-forward networks (CF-MNN) to model the tool dynamics. Compared with the model-based technique, i.e., curve fitting (CF), the accuracy of the tool identification is improved. After the identification and calibration, a further demonstration of bilateral teleoperation is presented using a serial robot (LWR4+, KUKA, Germany) and a haptic manipulator (SIGMA 7, Force Dimension, Switzerland). Results demonstrate the promising performance of the model-free tool identification technique using MNN, improving the results provided by model-based methods.

11.
Sensors (Basel) ; 17(10)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29053572

ABSTRACT

In bridge health monitoring, tiltmeters have been used for measuring rotation and curvature; however, their application in dynamic parameter identification has been lacking. This study installed fiber Bragg grating (FBG) tiltmeters on the bearings of a bridge and monitored the dynamic rotational angle. The dynamic features, including natural frequencies and mode shapes, have been identified successfully. The innovation presented in this paper is the first-time use of FBG tiltmeter readings to identify the natural frequencies of a long-span steel girder bridge. The identified results have been verified using a bridge finite element model. This paper introduces a new method for the dynamic monitoring of a bridge using FBG tiltmeters. Limitations and future research directions are also discussed in the conclusion.

12.
Artif Organs ; 41(8): 710-716, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28097669

ABSTRACT

Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context.


Subject(s)
Computer Simulation , Heart-Assist Devices , Models, Cardiovascular , Pulsatile Flow , Algorithms , Humans , Hydrodynamics , Prosthesis Design
13.
Journal of Forensic Medicine ; (6): 595-598, 2017.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-692367

ABSTRACT

Objective To explore the range of reasonable weight coefficient of hip joint in lower limb function. Methods When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. Results There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension posi-tion had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. Conclusion Expect confirming the rea-sonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss.

14.
Fa Yi Xue Za Zhi ; 33(6): 595-598, 2017 Dec.
Article in Chinese | MEDLINE | ID: mdl-29441765

ABSTRACT

OBJECTIVES: To explore the range of reasonable weight coefficient of hip joint in lower limb function. METHODS: When the hip joints of healthy volunteers under normal conditions or fixed at three different positions including functional, flexed and extension positions, the movements of lower limbs were recorded by LUKOtronic motion capture and analysis system. The degree of lower limb function loss was calculated using Fugl-Meyer lower limb function assessment form when the hip joints were fixed at the aforementioned positions. One-way analysis of variance and Tamhane's T2 method were used to proceed statistics analysis and calculate the range of reasonable weight coefficient of hip joint. RESULTS: There were significant differences between the degree of lower limb function loss when the hip joints fixed at flexed and extension positions and at functional position. While the differences between the degree of lower limb function loss when the hip joints fixed at flexed position and extension position had no statistical significance. In 95% confidence interval, the reasonable weight coefficient of hip joint in lower limb function was between 61.05% and 73.34%. CONCLUSIONS: Expect confirming the reasonable weight coefficient, the effects of functional and non-functional positions on the degree of lower limb function loss should also be considered for the assessment of hip joint function loss.


Subject(s)
Hip Joint/physiology , Knee Joint/physiology , Lifting , Lower Extremity , Range of Motion, Articular/physiology , Biomechanical Phenomena , Body Weight , Humans , Muscle, Skeletal
SELECTION OF CITATIONS
SEARCH DETAIL