Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Hepatol ; 28(5): 101124, 2023.
Article in English | MEDLINE | ID: mdl-37286166

ABSTRACT

INTRODUCTION AND OBJECTIVES: The development of hepatocellular carcinoma (HCC) is a multi-step process that accumulates genetic and epigenetic alterations, including changes in circular RNA (circRNA). This study aimed to understand the alterations in circRNA expression in HCC development and metastasis and to explore the biological functions of circRNA. MATERIALS AND METHODS: Ten pairs of adjacent chronic hepatitis tissues and HCC tissues from patients without venous metastases, and ten HCC tissues from patients with venous metastases were analyzed using human circRNA microarrays. Differentially expressed circRNAs were then validated by quantitative real-time PCR. In vitro and in vivo assays were performed to assess the roles of the circRNA in HCC progression. RNA pull-down assay, mass spectrometry analysis, and RNA-binding protein immunoprecipitation were conducted to explore the protein partners of the circRNA. RESULTS: CircRNA microarrays revealed that the expression patterns of circRNAs across the three groups were significantly different. Among these, hsa_circ_0098181 was validated to be lowly expressed and associated with poor prognosis in HCC patients. Ectopic expression of hsa_circ_0098181 delayed HCC metastasis in vitro and in vivo. Mechanistically, hsa_circ_0098181 sequestered eukaryotic translation elongation factor 2 (eEF2) and dissociated eEF2 from filamentous actin (F-actin) to prevent F-actin formation, which blocked activation of the Hippo signaling pathway. In addition, the RNA binding protein Quaking-5 bound directly to hsa_circ_0098181 and induced its biogenesis. CONCLUSIONS: Our study reveals changes in circRNA expression from chronic hepatitis, primary HCC, to metastatic HCC. Further, the QKI5-hsa_circ_0098181-eEF2-Hippo signaling pathway exerts a regulatory role in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , RNA, Circular/genetics , Liver Neoplasms/pathology , Peptide Elongation Factor 2/genetics , Peptide Elongation Factor 2/metabolism , Hippo Signaling Pathway , Actins/metabolism , Hepatitis, Chronic , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic
2.
J Neurochem ; 157(4): 1086-1101, 2021 05.
Article in English | MEDLINE | ID: mdl-32892352

ABSTRACT

The regulation of protein synthesis is a vital and finely tuned process in cellular physiology. In neurons, this process is very precisely regulated, as which mRNAs undergo translation is highly dependent on context. One of the most prominent regulators of protein synthesis is the enzyme eukaryotic elongation factor kinase 2 (eEF2K) that regulates the elongation stage of protein synthesis. This kinase and its substrate, eukaryotic elongation factor 2 (eEF2) are important in processes such as neuronal development and synaptic plasticity. eEF2K is regulated by multiple mechanisms including Ca2+ -ions and the mTORC1 signaling pathway, both of which play key roles in neurological processes such as learning and memory. In such settings, the localized control of protein synthesis is of crucial importance. In this work, we sought to investigate how the localization of eEF2K is controlled and the impact of this on protein synthesis in neuronal cells. In this study, we used both SH-SY5Y neuroblastoma cells and mouse cortical neurons, and pharmacologically and/or genetic approaches to modify eEF2K function. We show that eEF2K activity and localization can be regulated by its binding partner Homer1b/c, a scaffolding protein known for its participation in calcium-regulated signaling pathways. Furthermore, our results indicate that this interaction is regulated by the mTORC1 pathway, through a known phosphorylation site in eEF2K (S396), and that it affects rates of localized protein synthesis at synapses depending on the presence or absence of this scaffolding protein.


Subject(s)
Elongation Factor 2 Kinase/metabolism , Homer Scaffolding Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/metabolism , Protein Biosynthesis/physiology , Animals , Bicuculline/pharmacology , Cells, Cultured , GABA-A Receptor Antagonists/pharmacology , Humans , Mice , Phosphorylation , Protein Biosynthesis/drug effects , Signal Transduction/drug effects
3.
J Oral Pathol Med ; 48(1): 17-23, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30290014

ABSTRACT

PURPOSE: Leptin, an important hormone controlling energy homeostasis, has been linked to the pathogenesis of oral squamous cell carcinoma (OSCC). Evidence indicates that head and neck cancer patients undergoing radiotherapy show decreased leptin levels after radiotherapy treatment. Thus, we investigated, through phenotypic and molecular analyses, whether leptin can compromise the therapeutic effect of ionizing radiation and neoplastic behavior of OSCC cells. METHODS: The human OSCC-derived cell lines SCC9 and SCC4 were treated with human recombinant leptin and exposed to 6 Gy of irradiation. We performed the in vitro assays of cell migration, death, proliferation, and colony-forming ability. The reactive oxygen species (ROS) levels and proteome analysis by mass spectrometry were also conducted. RESULTS: Leptin was able to increase cell proliferation, migration, and colony-forming ability, despite the suppressive effect induced by irradiation. Furthermore, the leptin promoted a significant reduction of ROS intracellular accumulation, and increased expression of the cancer-related proteins, as ACTC1, KRT6A, and EEF2 in irradiated OSCC cells. CONCLUSIONS: Our findings suggest that leptin impairs responsivity of OSCC cells to the ionizing radiation, reducing the suppressive effects of irradiation on the neoplastic phenotype, and increasing protein expression critical to carcinogenesis.


Subject(s)
Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/radiotherapy , Leptin/adverse effects , Mouth Neoplasms/pathology , Mouth Neoplasms/radiotherapy , Radiation, Ionizing , Actins/genetics , Actins/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Gene Expression/drug effects , Gene Expression/radiation effects , Humans , Keratin-6/genetics , Keratin-6/metabolism , Leptin/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL