Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-37284179

ABSTRACT

Electrocardiographic imaging (ECGI) presents a clinical opportunity to noninvasively understand the sources of arrhythmias for individual patients. To help increase the effectiveness of ECGI, we provide new ways to visualize associated measurement and modeling errors. In this paper, we study source localization uncertainty in two steps: First, we perform Monte Carlo simulations of a simple inverse ECGI source localization model with error sampling to understand the variations in ECGI solutions. Second, we present multiple visualization techniques, including confidence maps, level-sets, and topology-based visualizations, to better understand uncertainty in source localization. Our approach offers a new way to study uncertainty in the ECGI pipeline.

2.
Front Physiol ; 14: 1197778, 2023.
Article in English | MEDLINE | ID: mdl-37362428

ABSTRACT

Introduction: Localization of premature ventricular contraction (PVC) origin to guide the radiofrequency ablation (RFA) procedure is one of the prominent clinical goals of non-invasive electrocardiographic imaging. However, the results reported in the literature vary significantly depending on the source model and the level of complexity in the forward model. This study aims to compare the paced and spontaneous PVC localization performances of dipole-based and potential-based source models and corresponding inverse methods using the same clinical data and to evaluate the effects of torso inhomogeneities on these performances. Methods: The publicly available EP solution data from the EDGAR data repository (BSPs from a maximum of 240 electrodes) with known pacing locations and the Bratislava data (BSPs in 128 leads) with spontaneous PVCs from patients who underwent successful RFA procedures were used. Homogeneous and inhomogeneous torso models and corresponding forward problem solutions were used to relate sources on the closed epicardial and epicardial-endocardial surfaces. The localization error (LE) between the true and estimated pacing site/PVC origin was evaluated. Results: For paced data, the median LE values were 25.2 and 13.9 mm for the dipole-based and potential-based models, respectively. These median LE values were higher for the spontaneous PVC data: 30.2-33.0 mm for the dipole-based model and 28.9-39.2 mm for the potential-based model. The assumption of inhomogeneities in the torso model did not change the dipole-based solutions much, but using an inhomogeneous model improved the potential-based solutions on the epicardial-endocardial ventricular surface. Conclusion: For the specific task of localization of pacing site/PVC origin, the dipole-based source model is more stable and robust than the potential-based source model. The torso inhomogeneities affect the performances of PVC origin localization in each source model differently. Hence, care must be taken in generating patient-specific geometric and forward models depending on the source model representation used in electrocardiographic imaging (ECGI).

3.
Front Physiol ; 14: 1100471, 2023.
Article in English | MEDLINE | ID: mdl-36744034

ABSTRACT

The study of cardiac electrophysiology is built on experimental models that span all scales, from ion channels to whole-body preparations. Novel discoveries made at each scale have contributed to our fundamental understanding of human cardiac electrophysiology, which informs clinicians as they detect, diagnose, and treat complex cardiac pathologies. This expert review describes an engineering approach to developing experimental models that is applicable across scales. The review also outlines how we applied the approach to create a set of multiscale whole-body experimental models of cardiac electrophysiology, models that are driving new insights into the response of the myocardium to acute ischemia. Specifically, we propose that researchers must address three critical requirements to develop an effective experimental model: 1) how the experimental model replicates and maintains human physiological conditions, 2) how the interventions possible with the experimental model capture human pathophysiology, and 3) what signals need to be measured, at which levels of resolution and fidelity, and what are the resulting requirements of the measurement system and the access to the organs of interest. We will discuss these requirements in the context of two examples of whole-body experimental models, a closed chest in situ model of cardiac ischemia and an isolated-heart, torso-tank preparation, both of which we have developed over decades and used to gather valuable insights from hundreds of experiments.

4.
Front Cardiovasc Med ; 9: 1052195, 2022.
Article in English | MEDLINE | ID: mdl-36518686

ABSTRACT

Introduction: Catheter ablation of persistent AF has not been consistently successful in terminating AF or preventing arrhythmia recurrences. Non-invasive Electrocardiographic Imaging (ECGI) can help to understand recurrences by mapping the mechanisms of pre-ablation AF and comparing them with the patterns of recurrent arrhythmias in the same patient. Methods: Seventeen persistent AF patients underwent ECGI before their first catheter ablation. Time-domain activation maps and phase progression maps were obtained on the bi-atrial epicardium. Location of arrhythmogenic drivers were annotated on the bi-atrial anatomy. Activation and phase movies were examined to understand the wavefront dynamics during AF. Eight patients recurred within 12 months of ablation and underwent a follow-up ECGI. Driver locations and movies were compared for pre- and post-ablation AF. Results: A total of 243 focal drivers were mapped during pre-ablation AF. 62% of the drivers were mapped in the left atrium (LA). The pulmonary vein region harbored most of the drivers (43%). 35% of the drivers were mapped in the right atrium (RA). 59% (10/17) and 53% (9/17) of patients had repetitive sources in the left pulmonary veins (LPV) and left atrial appendage (LAA), and the lower half of RA, respectively. All patients had focal drivers. 29% (5/17) of patients had macro-reentry waves. 24% (4/17) of patients had rotors. Activation patterns during persistent AF varied from single macro-reentry to complex activity with multiple simultaneous wavefronts in both atria, resulting in frequent wave collisions. A total of 76 focal driver activities were mapped in 7/8 patients during recurrence. 59% of the post-ablation AF drivers were mapped in the LA. The pulmonary vein region harbored 50% of total drivers. 39% of sources were mapped in the RA. AF complexity remained similar post-ablation. 58% (44/76) of pre-ablation sources persisted during recurrence. 38% (3/8) of patients had macro-reentry and one patient had rotors. Conclusion: ECGI provides patient-specific information on mechanisms of persistent AF and recurrent arrhythmia. More than half pre-ablation sources repeated during post-ablation recurrence. This study provides direct evidence for drivers that persist days and months after the ablation procedure. Patient-tailored bi-atrial ablation is needed to successfully target persistent AF and prevent recurrence. ECGI can potentially predict recurrence and assist in choice of therapy.

5.
Card Electrophysiol Clin ; 14(2): 311-321, 2022 06.
Article in English | MEDLINE | ID: mdl-35715088

ABSTRACT

Fusion pacing, which exploits conduction via the intrinsic His-Purkinje system, forms the basis of recent cardiac resynchronization therapy (CRT) optimization algorithms. However, settings need to be constantly adjusted to accommodate for changes in AV conduction, and the algorithms are not always available (eg, depending on the device, in case of AV block or with atrial fibrillation). His-optimized cardiac resynchronization therapy (HOT-CRT), and left-bundle branch optimized cardiac resynchronization therapy (LOT-CRT) which combines conduction system pacing with ventricular fusion pacing, provide constant fusion with ventricular activation (irrespective of intrinsic AV conduction). These modalities provide promising treatment strategies for patients with heart failure, especially in those with chronic atrial fibrillation who require CRT (in whom the atrial port is usually plugged and can be used to connect the conduction system pacing lead).


Subject(s)
Atrial Fibrillation , Cardiac Resynchronization Therapy , Heart Failure , Bundle of His , Electrocardiography , Heart Failure/therapy , Humans , Treatment Outcome
6.
Sensors (Basel) ; 22(6)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336502

ABSTRACT

Electrocardiographic imaging (ECGi) reconstructs electrograms at the heart's surface using the potentials recorded at the body's surface. This is called the inverse problem of electrocardiography. This study aimed to improve on the current solution methods using machine learning and deep learning frameworks. Electrocardiograms were simultaneously recorded from pigs' ventricles and their body surfaces. The Fully Connected Neural network (FCN), Long Short-term Memory (LSTM), Convolutional Neural Network (CNN) methods were used for constructing the model. A method is developed to align the data across different pigs. We evaluated the method using leave-one-out cross-validation. For the best result, the overall median of the correlation coefficient of the predicted ECG wave was 0.74. This study demonstrated that a neural network can be used to solve the inverse problem of ECGi with relatively small datasets, with an accuracy compatible with current standard methods.


Subject(s)
Deep Learning , Animals , Electrocardiography , Machine Learning , Neural Networks, Computer , Swine
7.
Front Physiol ; 12: 737609, 2021.
Article in English | MEDLINE | ID: mdl-34744778

ABSTRACT

Background: The detection and localization of electrophysiological substrates currently involve invasive cardiac mapping. Electrocardiographic imaging (ECGI) using the equivalent dipole layer (EDL) method allows the noninvasive estimation of endocardial and epicardial activation and repolarization times (AT and RT), but the RT validation is limited to in silico studies. We aimed to assess the temporal and spatial accuracy of the EDL method in reconstructing the RTs from the surface ECG under physiological circumstances and situations with artificially induced increased repolarization heterogeneity. Methods: In four Langendorff-perfused pig hearts, we simultaneously recorded unipolar electrograms from plunge needles and pseudo-ECGs from a volume-conducting container equipped with 61 electrodes. The RTs were computed from the ECGs during atrial and ventricular pacing and compared with those measured from the local unipolar electrograms. Regional RT prolongation (cooling) or shortening (pinacidil) was achieved by selective perfusion of the left anterior descending artery (LAD) region. Results: The differences between the computed and measured RTs were 19.0 ± 17.8 and 18.6 ± 13.7 ms for atrial and ventricular paced beats, respectively. The region of artificially delayed or shortened repolarization was correctly identified, with minimum/maximum RT roughly in the center of the region in three hearts. In one heart, the reconstructed region was shifted by ~2.5 cm. The total absolute difference between the measured and calculated RTs for all analyzed patterns in selectively perfused hearts (n = 5) was 39.6 ± 27.1 ms. Conclusion: The noninvasive ECG repolarization imaging using the EDL method of atrial and ventricular paced beats allows adequate quantitative reconstruction of regions of altered repolarization.

8.
Front Physiol ; 12: 730736, 2021.
Article in English | MEDLINE | ID: mdl-34671274

ABSTRACT

This study presents a novel non-invasive equivalent dipole layer (EDL) based inverse electrocardiography (iECG) technique which estimates both endocardial and epicardial ventricular activation sequences. We aimed to quantitatively compare our iECG approach with invasive electro-anatomical mapping (EAM) during sinus rhythm with the objective of enabling functional substrate imaging and sudden cardiac death risk stratification in patients with cardiomyopathy. Thirteen patients (77% males, 48 ± 20 years old) referred for endocardial and epicardial EAM underwent 67-electrode body surface potential mapping and CT imaging. The EDL-based iECG approach was improved by mimicking the effects of the His-Purkinje system on ventricular activation. EAM local activation timing (LAT) maps were compared with iECG-LAT maps using absolute differences and Pearson's correlation coefficient, reported as mean ± standard deviation [95% confidence interval]. The correlation coefficient between iECG-LAT maps and EAM was 0.54 ± 0.19 [0.49-0.59] for epicardial activation, 0.50 ± 0.27 [0.41-0.58] for right ventricular endocardial activation and 0.44 ± 0.29 [0.32-0.56] for left ventricular endocardial activation. The absolute difference in timing between iECG maps and EAM was 17.4 ± 7.2 ms for epicardial maps, 19.5 ± 7.7 ms for right ventricular endocardial maps, 27.9 ± 8.7 ms for left ventricular endocardial maps. The absolute distance between right ventricular endocardial breakthrough sites was 30 ± 16 mm and 31 ± 17 mm for the left ventricle. The absolute distance for latest epicardial activation was median 12.8 [IQR: 2.9-29.3] mm. This first in-human quantitative comparison of iECG and invasive LAT-maps on both the endocardial and epicardial surface during sinus rhythm showed improved agreement, although with considerable absolute difference and moderate correlation coefficient. Non-invasive iECG requires further refinements to facilitate clinical implementation and risk stratification.

9.
Med Biol Eng Comput ; 58(8): 1739-1749, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32474796

ABSTRACT

The solution of the inverse problem of electrocardiology allows the reconstruction of the spatial distribution of the electrical activity of the heart from the body surface electrocardiogram (electrocardiographic imaging, ECGI). ECGI using the equivalent dipole layer (EDL) model has shown to be accurate for cardiac activation times. However, validation of this method to determine repolarization times is lacking. In the present study, we determined the accuracy of the EDL model in reconstructing cardiac repolarization times, and assessed the robustness of the method under less ideal conditions (addition of noise and errors in tissue conductivity). A monodomain model was used to determine the transmembrane potentials in three different excitation-repolarization patterns (sinus beat and ventricular ectopic beats) as the gold standard. These were used to calculate the body surface ECGs using a finite element model. The resulting body surface electrograms (ECGs) were used as input for the EDL-based inverse reconstruction of repolarization times. The reconstructed repolarization times correlated well (COR > 0.85) with the gold standard, with almost no decrease in correlation after adding errors in tissue conductivity of the model or noise to the body surface ECG. Therefore, ECGI using the EDL model allows adequate reconstruction of cardiac repolarization times. Graphical abstract Validation of electrocardiographic imaging for repolarization using forward calculated body surface ECGs from simulated activation-repolarization sequences.


Subject(s)
Diagnostic Imaging/methods , Electrocardiography/methods , Endocardium/diagnostic imaging , Epicardial Mapping/methods , Adult , Body Surface Potential Mapping/methods , Computer Simulation , Humans , Myocardium/pathology
10.
J Electrocardiol ; 51(6S): S92-S97, 2018.
Article in English | MEDLINE | ID: mdl-30177365

ABSTRACT

BACKGROUND: Rapid accurate localization of the site of ventricular activation origin during catheter ablation for ventricular arrhythmias could facilitate the procedure. Electrocardiographic imaging (ECGI) using large lead sets can localize the origin of ventricular activation. We have developed an automated method to identify sites of early ventricular activation in real time using the 12-lead ECG. We aim to compare the localization accuracy of ECGI and the automated method, identifying pacing sites/VT exit based on a patient-specific model. METHODS: A patient undergoing ablation of VT on the left-ventricular endocardium and epicardium had 120-lead body-surface potential mapping (BSPM) recorded during the procedure. (1) ECGI methodology: The L1-norm regularization was employed to reconstruct epicardial potentials based on patient-specific geometry for localizing endocardial ventricular activation origin. We used the BSPM data corresponding to known endocardial pacing sites and a VT exit site identified by 3D contact mapping to analyze them offline. (2) The automatedmethod: location coordinates of pacing sites together with the time integral of the first 120 ms of the QRS complex of 3 ECG predictors (leads III, V2 and V6) were used to calculate patient-specific regression coefficients to predict the location of unknown sites of ventricular activation origin ("target" sites). Localization error was quantified over all pacing sites in millimeters by comparing the calculated location and the known reference location. RESULTS: Localization was tested for 14 endocardial pacing sites and 1 epicardial VT exit site. For 14 endocardial pacing sites the mean localization error of the automated method was significantly lower than that of the ECGI (8.9 vs. 24.9 mm, p < 0.01), when 10 training pacing sites are used. Emulation of a clinical procedure demonstrated that the automated method achieved localization error of <5 mm for the VT-exit site; while the ECGI approach approximately correlates with the site of VT exit from the scar within a distance of 18.4 mm. CONCLUSIONS: The automated method using only 3 ECGs shows promise to localize the origin of ventricular activation as tested by pacing, and the VT-exit site and compares favourably to inverse solution calculation, avoiding cumbersome lead sets. As 12-lead ECG data is acquired by current 3D mapping systems, it is conceivable that the algorithm could be directly incorporated into a mapping system. Further validation in a prospective cohort study is needed to confirm and extend observations reported in this study.


Subject(s)
Body Surface Potential Mapping/methods , Catheter Ablation , Electrocardiography/methods , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/surgery , Humans , Signal Processing, Computer-Assisted , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL