Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 937
Filter
1.
Environ Res ; : 119524, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972338

ABSTRACT

This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors and custom-built devices. The discussion encompasses both standardized and non-standardized measurement protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights the prevalent use of mobile apps for characterizing 5G-NR radio network data. A growing need for low-cost measurement devices is observed, commonly referred to as "sensors" or "sensor nodes," that are capable of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated) measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating the available measurement data.

2.
Article in English | MEDLINE | ID: mdl-38986477

ABSTRACT

Both macroscopic Ginzburg-Landau Lagrangian and microscopic gauge-invariant kinetic equation suggest a finite Higgs-mode generation in the second-order optical response of superconductors at clean limit, whereas the previous derivations through the path-integral approach and Eilenberger equation within the Matsubara formalism failed to give such generation. The crucial treatment leading to this controversy lies at an artificial scheme that whether the external optical frequency is taken as continuous variable or bosonic Matsubara frequency to handle the gap dynamics within the Matsubara formalism. To resolve this issue, we derive the effective action of the superconducting gap near Tcin the presence of the vector potential through the path-integral approach, to fill the long missing blank of the microscopic derivation of the Ginzburg-Landau Lagrangian in superconductors. It is shown that only by taking optical frequency as continuous variable within the Matsubara formalism, can one achieve the fundamental Ginzburg-Landau Lagrangian, and in particular, the finite Ginzburg-Landau kinetic term leads to a finite Higgs-mode generation at clean limit. To further eliminate the confusion of the Matsubara frequency through a separate framework, we apply the Eilenberger equation within the Keldysh formalism, which is totally irrelevant to the Matsubara space. By calculating the gap dynamics in the second-order response, it is analytically proved that the involved optical frequency is a continuous variable rather than bosonic Matsubara frequency, causing a finite Higgs-mode generation at clean limit. .

3.
Int J Dev Neurosci ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967459

ABSTRACT

Nitric oxide (NO) and electromagnetic fields (EMF) have been extensively studied for their roles in neurobiology, particularly in regulating cerebral functions and synaptic plasticity. This study investigates the impact of EMFs on NO modulation and its subsequent effects on neurodevelopment, building upon prior research examining EMF exposure's consequences on Wistar albino rats. Rats were exposed perinatally to either tap water, 1 g/L of L-arginine (LA) or 0.5 g/L of N-methylarginine (NMA). Half of the rats in each group were also exposed to a 7-Hz square-wave EMF at three separate intensities (5, 50 and 500 nT) for 2-14 days following birth. Animals were allowed to develop, and their brains were harvested later in adulthood (mean age = 568.17 days, SD = 162.73). Histological analyses were used to elucidate structural changes in key brain regions. All brains were stained with Toluidine Blue O (TBO), enabling the visualization of neurons. Neuronal counts were then conducted in specific regions of interest (e.g. hippocampus, cortices, amygdala and hypothalamus). Histological analyses revealed significant alterations in neuronal density in specific brain regions, particularly in response to EMF exposure and pharmacological interventions. Notable findings include a main EMF exposure effect where increased neuronal counts were observed in the secondary somatosensory cortex under low EMF intensities (p < 0.001) and sex-specific responses in the hippocampus, where a significant increase in neuronal counts was observed in the left CA3 region in female rats exposed to EMF compared to unexposed females (t(18) = 2.371, p = 0.029). Additionally, a significant increase in neuronal counts in the right entorhinal cortex was seen in male rats exposed to EMF compared to unexposed males (t(18) = 2.216, p = 0.040). These findings emphasize the complex interaction among sex, EMF exposure and pharmacological agents on neuronal dynamics across brain regions, highlighting the need for further research to identify underlying mechanisms and potential implications for cognitive function and neurological health in clinical and environmental contexts.

4.
Bioengineering (Basel) ; 11(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927809

ABSTRACT

Magnetic scaffolds (MagSs) are magneto-responsive devices obtained by the combination of traditional biomaterials (e.g., polymers, bioceramics, and bioglasses) and magnetic nanoparticles. This work analyzes the literature about MagSs used as drug delivery systems for tissue repair and cancer treatment. These devices can be used as innovative drugs and/or biomolecules delivery systems. Through the application of a static or dynamic stimulus, MagSs can trigger drug release in a controlled and remote way. However, most of MagSs used as drug delivery systems are not optimized and properly modeled, causing a local inhomogeneous distribution of the drug's concentration and burst release. Few physical-mathematical models have been presented to study and analyze different MagSs, with the lack of a systematic vision. In this work, we propose a modeling framework. We modeled the experimental data of drug release from different MagSs, under various magnetic field types, taken from the literature. The data were fitted to a modified Gompertz equation and to the Korsmeyer-Peppas model (KPM). The correlation coefficient (R2) and the root mean square error (RMSE) were the figures of merit used to evaluate the fitting quality. It has been found that the Gompertz model can fit most of the drug delivery cases, with an average RMSE below 0.01 and R2>0.9. This quantitative interpretation of existing experimental data can foster the design and use of MagSs for drug delivery applications.

5.
Sensors (Basel) ; 24(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38894152

ABSTRACT

In this work we propose a novel device for controlling the flow of information using Weyl fermions. Based on a previous work by our group, we show that it is possible to fully control the flow of Weyl fermions on several different channels by applying an electric field perpendicular to the direction of motion of the particles on each channel. In this way, we can transmit information as logical bits, depending on the existence or not of a Weyl current on each channel. We also show that the response time of this device is exceptionally low, less than 1 ps, for typical values of its parameters, allowing for the control of the flow of information at extremely high rates of the order of 100 Petabits per second. Alternatively, this device could also operate as an electric field sensor. In addition, we demonstrate that Weyl fermions can be efficiently guided through the proposed device using appropriate magnetic fields. Finally, we discuss some particularly interesting remarks regarding the electromagnetic interactions of high-energy particles.

7.
Environ Int ; 190: 108817, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38880061

ABSTRACT

BACKGROUND: The World Health Organization (WHO) is bringing together evidence on radiofrequency electromagnetic field (RF-EMF) exposure in relation to health outcomes, previously identified as priorities for research and evaluation by experts in the field, to inform exposure guidelines. A suite of systematic reviews have been undertaken by a network of topic experts and methodologists to collect, assess and synthesise data relevant to these guidelines. Following the WHO handbook for guideline development and the COSTER conduct guidelines, we systematically reviewed the evidence on the potential effects of RF-EMF exposure on male fertility in human observational studies. METHODS: We conducted a broad and sensitive search for potentially relevant records within the following bibliographic databases: MEDLINE; Embase; Web of Science and EMF Portal. We also conducted searches of grey literature through relevant databases including OpenGrey, and organisational websites and consulted RF-EMF experts. We hand searched reference lists of included study records and for citations of these studies. We included quantitative human observational studies on the effect of RF-EMF exposure in adult male participants on infertility: sperm concentration; sperm morphology; sperm total motility; sperm progressive motility; total sperm count; and time to pregnancy. Titles and abstracts followed by full texts were screened in blinded duplicate against pre-set eligibility criteria with consensus input from a third reviewer as required. Data extraction from included studies was completed by two reviewers, as was risk of bias assessment using the Office of Health Assessment and Translation (OHAT) tool. We conducted a dose-response meta-analysis as possible and appropriate. Certainty of the evidence was assessed by two reviewers using the OHAT GRADE tool with input from a third reviewer as required. RESULTS: We identified nine studies in this review; seven were general public studies (with the general public as the population of interest) and two were occupational studies (with specific workers/workforces as the population of interest). General public studies. Duration of phone use: The evidence is very uncertain surrounding the effects of RF-EMF on sperm concentration (10/6 mL) (MD (mean difference) per hour of daily phone use 1.6 106/mL, 95 % CI -1.7 to 4.9; 3 studies), sperm morphology (MD 0.15 percentage points of deviation of normal forms per hour, 95 % CI -0.21 to 0.51; 3 studies), sperm progressive motility (MD -0.46 percentage points per hour, 95 % CI -1.04 to 0.13; 2 studies) and total sperm count (MD per hour -0.44 106/ejaculate, 95 % CI -2.59 to 1.7; 2 studies) due to very low-certainty evidence. Four additional studies reported on the effect of mobile phone use on sperm motility but were unsuitable for pooling; only one of these studies identified a statistically significant effect. All four studies were at risk of exposure characterisation and selection bias; two of confounding, selective reporting and attrition bias; three of outcome assessment bias and one used an inappropriate statistical method. Position of phone: There may be no or little effect of carrying a mobile phone in the front pocket on sperm concentration, total count, morphology, progressive motility or on time to pregnancy. Of three studies reporting on the effect of mobile phone location on sperm total motility and, or, total motile count, one showed a statistically significant effect. All three studies were at risk of exposure characterisation and selection bias; two of confounding, selective reporting and attrition bias; three of outcome assessment bias and one used inappropriate statistical method. RF-EMF Source: One study indicates there may be little or no effect of computer or other electric device use on sperm concentration, total motility or total count. This study is at probably high risk of exposure characterisation bias and outcome assessment bias. Occupational studies. With only two studies of occupational exposure to RF-EMF and heterogeneity in the population and exposure source (technicians exposed to microwaves or seamen exposed to radar equipment), it was not plausible to statistically pool findings. One study was at probably or definitely high risk of bias across all domains, the other across domains for exposure characterisation bias, outcome assessment bias and confounding. DISCUSSION: The majority of evidence identified was assessing localised RF-EMF exposure from mobile phone use on male fertility with few studies assessing the impact of phone position. Overall, the evidence identified is very uncertain about the effect of RF-EMF exposure from mobile phones on sperm outcomes. One study assessed the impact of other RF-EMF sources on male fertility amongst the general public and two studies assessed the impact of RF-EMF exposure in occupational cohorts from different sources (radar or microwave) on male fertility. Further prospective studies conducted with greater rigour (in particular, improved accuracy of exposure measurement and appropriate statistical method use) would build the existing evidence base and are required to have greater certainty in any potential effects of RF-EMF on male reproductive outcomes. Prospero Registration: CRD42021265401 (SR3A).

8.
Environ Int ; 190: 108816, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38880062

ABSTRACT

BACKGROUND: To inform radiofrequency electromagnetic field (RF-EMF) exposure guidelines the World Health Organization (WHO) is bringing together evidence on RF-EMF in relation to health outcomes prioritised for evaluation by experts in this field. Given this, a network of topic experts and methodologists have conducted a series of systematic reviews collecting, assessing, and synthesising data of relevance to these guidelines. Here we present a systematic review of the effect of RF-EMF exposure on adverse pregnancy outcomes in human observational studies which follows the WHO handbook for guideline development and the COSTER conduct guidelines. METHODS: We conducted a broad, sensitive search for potentially relevant records within the following bibliographic databases: MEDLINE; Embase; and the EMF Portal. Grey literature searches were also conducted through relevant databases (including OpenGrey), organisational websites and via consultation of RF-EMF experts. We included quantitative human observational studies on the effect of RF-EMF exposure in adults' preconception or pregnant women on pre-term birth, small for gestational age (SGA; associated with intrauterine growth restriction), miscarriage, stillbirth, low birth weight (LBW) and congenital anomalies. In blinded duplicate, titles and abstracts then full texts were screened against eligibility criteria. A third reviewer gave input when consensus was not reached. Citation chaining of included studies was completed. Two reviewers' data extracted and assessed included studies for risk of bias using the Office of Health Assessment and Translation (OHAT) tool. Random effects meta-analyses of the highest versus the lowest exposures and dose-response meta-analysis were conducted as appropriate and plausible. Two reviewers assessed the certainty in each body of evidence using the OHAT GRADE tool. RESULTS: We identified 18 studies in this review; eight were general public studies (with the general public as the population of interest) and 10 were occupational studies (with the population of interest specific workers/workforces). General public studies. From pairwise meta-analyses of general public studies, the evidence is very uncertain about the effects of RF-EMF from mobile phone exposure on preterm birth risk (relative risk (RR) 1.14, 95% confidence interval (CI): 0.97-1.34, 95% prediction interval (PI): 0.83-1.57; 4 studies), LBW (RR 1.14, 95% CI: 0.96-1.36, 95% PI: 0.84-1.57; 4 studies) or SGA (RR 1.13, 95% CI: 1.02-1.24, 95% PI: 0.99-1.28; 2 studies) due to very low-certainty evidence. It was not feasible to meta-analyse studies reporting on the effect of RF-EMF from mobile phone exposure on congenital anomalies or miscarriage risk. The reported effects from the studies assessing these outcomes varied and the studies were at some risk of bias. No studies of the general public assessed the impact of RF-EMF exposure on stillbirth. Occupational studies. In occupational studies, based on dose-response meta-analyses, the evidence is very uncertain about the effects of RF-EMF amongst female physiotherapists using shortwave diathermy on miscarriage due to very low-certainty evidence (OR 1.02 95% CI 0.94-1.1; 2 studies). Amongst offspring of female physiotherapists using shortwave diathermy, the evidence is very uncertain about the effects of RF-EMF on the risk of congenital malformations due to very low-certainty evidence (OR 1.4, 95% CI 0.85 to 2.32; 2 studies). From pairwise meta-analyses, the evidence is very uncertain about the effects of RF-EMF on the risk of miscarriage (RR 1.06, 95% CI 0.96 to 1.18; very low-certainty evidence), pre-term births (RR 1.19, 95% CI 0.32 to 4.37; 3 studies; very low-certainty evidence), and low birth weight (RR 2.90, 95% CI: 0.69 to 12.23; 3 studies; very low-certainty evidence). Results for stillbirth and SGA could not be pooled in meta-analyses. The results from the studies reporting these outcomes were inconsistent and the studies were at some risk of bias. DISCUSSION: Most of the evidence identified in this review was from general public studies assessing localised RF-EMF exposure from mobile phone use on female reproductive outcomes. In occupational settings, each study was of heterogenous whole-body RF-EMF exposure from radar, short or microwave diathermy, surveillance and welding equipment and its effect on female reproductive outcomes. Overall, the body of evidence is very uncertain about the effect of RF-EMF exposure on female reproductive outcomes. Further prospective studies conducted with greater rigour (particularly improved accuracy of exposure measurement and using appropriate statistical methods) are required to identify any potential effects of RF-EMF exposure on female reproductive outcomes of interest.

9.
Sensors (Basel) ; 24(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931592

ABSTRACT

This paper investigates the electromagnetic fields being scattered by a metal spherical object in a vacuum environment, providing a numerical implementation of the obtained analytical results. A time-harmonic magnetic dipole source, far enough, emits the incident field at low frequencies, oriented arbitrarily in the three-dimensional space. The aim is to find a detailed solution to the scattering problem at spherical coordinates, which is useful for data inversion. Based on the theory of low frequencies, the Maxwell-type problem is transformed into Laplace's or Poisson's interconnected equations, accompanied by the proper boundary conditions on the perfectly conducting sphere and the radiation conditions at infinity, which are solved gradually. Broadly, the static and the first three dynamic terms are sufficient, while the terms of a higher order are negligible, which is confirmed by the field graphical representation.

10.
Sci Rep ; 14(1): 10182, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702382

ABSTRACT

Progressive cartilage deterioration leads to chronic inflammation and loss of joint function, causing osteoarthritis (OA) and joint disease. Although symptoms vary among individuals, the disease can cause severe pain and permanent disability, and effective therapies are urgently needed. Human Adipose-Derived Stem Cells (ADSCs) may differentiate into chondrocytes and are promising for treating OA. Moreover, recent studies indicate that electromagnetic fields (EMFs) could positively affect the chondrogenic differentiation potential of ADSCs. In this work, we investigated the impact of EMFs with frequencies of 35 Hertz and 58 Hertz, referred to as extremely low frequency-EMFs (ELF-EMFs), on the chondrogenesis of ADSCs, cultured in both monolayer and 3D cell micromasses. ADSC cultures were daily stimulated for 36 min with ELF-EMFs or left unstimulated, and the progression of the differentiation process was evaluated by morphological analysis, extracellular matrix deposition, and gene expression profiling of chondrogenic markers. In both culturing conditions, stimulation with ELF-EMFs did not compromise cell viability but accelerated chondrogenesis by enhancing the secretion and deposition of extracellular matrix components at earlier time points in comparison to unstimulated cells. This study showed that, in an appropriate chondrogenic microenvironment, ELF-EMFs enhance chondrogenic differentiation and may be an important tool for supporting and accelerating the treatment of OA through autologous adipose stem cell therapy.


Subject(s)
Adipose Tissue , Cell Differentiation , Chondrogenesis , Electromagnetic Fields , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Cell Survival/radiation effects
11.
Sleep Breath ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744804

ABSTRACT

PURPOSE: The cardiorespiratory polysomnography (PSG) is an expensive and limited resource. The Sleepiz One + is a novel radar-based contactless monitoring device that can be used e.g. for longitudinal detection of nocturnal respiratory events. The present study aimed to compare the performance of the Sleepiz One + device to the PSG regarding the accuracy of apnea-hypopnea index (AHI). METHODS: From January to December 2021, a total of 141 adult volunteers who were either suspected of having sleep apnea or who were healthy sleepers took part in a sleep study. This examination served to validate the Sleepiz One + device in the presence and absence of additional SpO2 information. The AHI determined by the Sleepiz One + monitor was estimated automatically and compared with the AHI derived from manual PSG scoring. RESULTS: The correlation between the Sleepiz-AHI and the PSG-AHI with and without additional SpO2 measurement was rp = 0.94 and rp = 0,87, respectively. In general, the Bland-Altman plots showed good agreement between the two methods of AHI measurement, though their deviations became larger with increasing sleep-disordered breathing. Sensitivity and specificity for recordings without additional SpO2 was 85% and 88%, respectively. Adding a SpO2 sensor increased the sensitivity to 88% and the specificity to 98%. CONCLUSION: The Sleepiz One + device is a valid diagnostic tool for patients with moderate to severe OSA. It can also be easily used in the home environment and is therefore beneficial for e.g. immobile and infectious patients. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION FOR PROSPECTIVELY REGISTERED TRIALS: This study was registered on clinicaltrials.gov (NCT04670848) on 2020-12-09.

12.
Risk Anal ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774944

ABSTRACT

There is an unprecedented exposure of living organisms to mobile communications radiofrequency electromagnetic field (RF-EMF) emissions. Guidelines on exposure thresholds to limit thermal effects from these emissions are restricted to humans. However, tissue heating can occur in all living organisms that are exposed. In addition, exposure at millimetric frequencies used by 5G may impact surface tissues and organs of plants and small-size species. It is also expected that the addition of 5G to existing networks will intensify radiofrequency absorption by living organisms. A European Parliament report proposed policy options on the effects of RF-EMF exposure of plants, animals, and other living organisms in the context of 5G: funding more research, implementing monitoring networks, accessing more information from operators on antennas and EMF emissions, and developing compliance studies when antennas are installed. However, there is no evidence on the preferences of relevant stakeholders regarding these policy options. This paper reports the findings of a survey of key European stakeholders' policy option preferences based on the European Parliament's report. It reveals a broad consensus on funding more research on the effects of exposure of plants, animals, and other living organisms to EMFs. It also highlights the need for deliberation concerning the other policy options that could provide solutions for regulatory authorities, central administrations, the private sector, nongovernmental associations and advocates, and academics. Such deliberation would pave the way for effective solutions, focusing on long-term output from funding research, and enabling short-term socially and economically acceptable actions for all parties concerned.

13.
Bioelectromagnetics ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807301

ABSTRACT

Numerous studies have demonstrated the efficacy of extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) in accelerating the wound healing process in vitro and in vivo. Our study focuses specifically on ELF-PEMF applied with the Magnomega® device and aims to assess their effect during the main stages of the proliferative phase of dermal wound closure, in vitro. Thus, after the characterization of the EMFs delivered by the Magnomega® unit, primary culture of human dermal fibroblasts (HDFs) were exposed, or not for the control culture, to 10-12 and 100 Hz ELF-PEMF. These parameters are used in clinical practice by physiotherapists in order to enhance healing of dermal lesions in patients. HDFs proliferation was first assessed and revealed an increase in the expression of one of the two genetic markers of cell proliferation tested (PCNA and MKI67), after initial exposure of the cells to 10-12 Hz PEMF. Next, migration of HDFs was investigated by performing scratch assays on HDF layers. The observed wound closure kinetics corroborate the early organization of actin stress fibers that was revealed in the cytoplasm of HDFs exposed to 100 Hz ELF-PEMF. Also, maturation of HDFs into myofibroblasts was significantly increased in cells exposed to 10-12 or to 100 Hz PEMF. The present study is the first to demonstrate, in vitro, an early stimulation of HDFs, after their exposure to ELF-PEMF delivered by the Magnomega® device, which could contribute to an acceleration of the wound healing process.

14.
Electromagn Biol Med ; 43(3): 145-155, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38699873

ABSTRACT

Exposure to electromagnetic fields causes a variety of health problems in living systems. We investigated EMF pollution in Sanliurfa city center and also investigated anxiety-depression symptoms in individuals (18-40 years old) exposed to this pollution. For this purpose, electric field and magnetic field measurements were taken at Electricity Distribution Center and 44 substations (for each transformer), at 0 points, 1 meter away, 2 meters away and the house/office closest to the transformer. The experimental group was individuals living in electricity distribution center residences and individuals living near transformers (n = 55). The control group was selected from individuals who lived outside the city center of Sanliurfa, did not have transformers or high transmission lines near their homes, and did not have any chronic diseases that could cause stress (n = 50). Anxiety and depression symptoms of the groups were measured using the Beck Anxiety Inventory Scale (BAI) and Beck Depression Inventory Scale (BDI). The relationship between EMF pollution and anxiety-depression was evaluated statistically. Maximum MF and EF values were recorded as 0.22 mT and 65.9 kV/m, respectively. All measured MF values were below standards, but EF values were above standards at some points. In conclusion, there is no statistically convincing evidence of a relationship between EMF exposure and anxiety-depression (p > 0.05). This result shows that there may be more meaningful results in places with higher EMF levels. We interpreted the fact that exposure to electromagnetic fields does not cause anxiety and depression in individuals, as the measured values are below the limit values.


Electromagnetic field pollution causes various health problems in living systems. Research on this subject continues.We investigated electromagnetic field pollution in Sanliurfa city center and investigated the psychological effects on individuals exposed to this pollution. For this purpose, electric and magnetic field measurements were made at 0 points, 1 meter, 2 meters away and at the closest places to the transformer in 44 substations.The experimental group was individuals living near a transformer, the control group was individuals living outside the city center and without a transformer/high transmission line near their home. Anxiety and depression symptoms of the groups were measured using the Beck Anxiety and Depression test.The relationship between EMF pollution and anxiety-depression was evaluated statistically.As a result, no statistical change was observed regarding a relationship between electromagnetic pollution and anxiety-depression.


Subject(s)
Anxiety , Depression , Electromagnetic Fields , Humans , Adult , Male , Female , Young Adult , Electromagnetic Fields/adverse effects , Adolescent , Turkey , Magnetic Fields/adverse effects
15.
Neurology (Chic) ; 3(1)2024.
Article in English | MEDLINE | ID: mdl-38699565

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative dementia worldwide. AD is a multifactorial disease that causes a progressive decline in memory and function precipitated by toxic beta-amyloid (Aß) proteins, a key player in AD pathology. In 2022, 6.5 million Americans lived with AD, costing the nation $321billion. The standard of care for AD treatment includes acetylcholinesterase inhibitors (AchEIs), NMDA receptor antagonists, and monoclonal antibodies (mAbs). However, these methods are either: 1) ineffective in improving cognition, 2) unable to change disease progression, 3) limited in the number of therapeutic targets, 4) prone to cause severe side effects (brain swelling, microhemorrhages with mAb, and bradycardia and syncope with AchEIs), 5) unable to effectively cross the blood-brain barrier, and 6) lack of understanding of the aging process on the disease. mAbs are available to lower Aß, but the difficulties of reducing the levels of the toxic Aß proteins in the brain without triggering brain swelling or microhemorrhages associated with mAbs make the risk-benefit profile of mAbs unclear. A novel multitarget, effective, and safe non-invasive approach utilizing Repeated Electromagnetic Field Stimulation (REMFS) lowers Aß levels in human neurons and memory areas, prevents neuronal death, stops disease progression, and improves memory without causing brain edema or bleeds in AD mice. This REMFS treatment has not been developed for humans because current EMF devices have poor penetration depth and inhomogeneous E-field distribution in the brain. Here, we discussed the biology of these effects in neurons and the design of optimal devices to treat AD.

16.
Ecotoxicol Environ Saf ; 279: 116486, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38820877

ABSTRACT

Human exposure to radiofrequency electromagnetic fields (RF-EMF) is restricted to prevent thermal effects in the tissue. However, at very low intensity exposure "non-thermal" biological effects, like oxidative stress, DNA or chromosomal aberrations, etc. collectively termed genomic-instability can occur after few hours. Little is known about chronic (years long) exposure with non-thermal RF-EMF. We identified two neighboring housing estates in a rural region with residents exposed to either relatively low (control-group) or relatively high (exposed-group) RF-EMF emitted from nearby mobile phone base stations (MPBS). 24 healthy adults that lived in their homes at least for 5 years volunteered. The homes were surveyed for common types of EMF, blood samples were tested for oxidative status, transient DNA alterations, permanent chromosomal damage, and specific cancer related genetic markers, like MLL gene rearrangements. We documented possible confounders, like age, sex, nutrition, life-exposure to ionizing radiation (X-rays), occupational exposures, etc. The groups matched well, age, sex, lifestyle and occupational risk factors were similar. The years long exposure had no measurable effect on MLL gene rearrangements and c-Abl-gene transcription modification. Associated with higher exposure, we found higher levels of lipid oxidation and oxidative DNA-lesions, though not statistically significant. DNA double strand breaks, micronuclei, ring chromosomes, and acentric chromosomes were not significantly different between the groups. Chromosomal aberrations like dicentric chromosomes (p=0.007), chromatid gaps (p=0.019), chromosomal fragments (p<0.001) and the total of chromosomal aberrations (p<0.001) were significantly higher in the exposed group. No potential confounder interfered with these findings. Increased rates of chromosomal aberrations as linked to excess exposure with ionizing radiation may also occur with non-ionizing radiation exposure. Biological endpoints can be informative for designing exposure limitation strategies. Further research is warranted to investigate the dose-effect-relationship between both, exposure intensity and exposure time, to account for endpoint accumulations after years of exposure. As established for ionizing radiation, chromosomal aberrations could contribute to the definition of protection thresholds, as their rate reflects exposure intensity and exposure time.


Subject(s)
Cell Phone , Electromagnetic Fields , Genomic Instability , Oxidative Stress , Humans , Male , Female , Electromagnetic Fields/adverse effects , Germany , Adult , Middle Aged , Genomic Instability/radiation effects , Chromosome Aberrations , Environmental Exposure , Radio Waves/adverse effects , DNA Damage
17.
Environ Int ; 188: 108779, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821015

ABSTRACT

BACKGROUND: We aimed to assess evidence of long-term effects of exposure to radiofrequency (RF) electromagnetic fields (EMF) on indicators of cognition, including domains of learning and memory, executive function, complex attention, language, perceptual motor ability and social cognition, and of an exposure-response relationship between RF-EMF and cognition. METHODS: We searched PubMed, Embase, PsycInfo and the EMF-Portal on September 30, 2022 without limiting by date or language of publication. We included cohort or case-control studies that evaluated the effects of RF exposure on cognitive function in one or more of the cognitive domains. Studies were rated for risk of bias using the OHAT tool and synthesised using fixed effects meta-analysis. We assessed the certainty of the evidence using the GRADE approach and considered modification by OHAT for assessing evidence of exposures. RESULTS: We included 5 studies that reported analyses of data from 4 cohorts with 4639 participants consisting of 2808 adults and 1831 children across three countries (Australia, Singapore and Switzerland) conducted between 2006 and 2017. The main source of RF-EMF exposure was mobile (cell) phone use measured as calls per week or minutes per day. For mobile phone use in children, two studies (615 participants) that compared an increase in mobile phone use to a decrease or no change were included in meta-analyses. Learning and memory. There was little effect on accuracy (mean difference, MD -0.03; 95% CI -0.07 to 0.02) or response time (MD -0.01; 95% CI -0.04 to 0.02) on the one-back memory task; and accuracy (MD -0.02; 95%CI -0.04 to 0.00) or response time (MD -0.01; 95%CI -0.04 to 0.03) on the one card learning task (low certainty evidence for all outcomes). Executive function. There was little to no effect on the Stroop test for the time ratio ((B-A)/A) response (MD 0.02; 95% CI -0.01 to 0.04, very low certainty) or the time ratio ((D-C)/C) response (MD 0.00; 95% CI -0.06 to 0.05, very low certainty), with both tests measuring susceptibility to interference effects. Complex attention. There was little to no effect on detection task accuracy (MD 0.02; 95% CI -0.04 to 0.08), or response time (MD 0.02;95% CI 0.01 to 0.03), and little to no effect on identification task accuracy (MD 0.00; 95% CI -0.04 to 0.05) or response time (MD 0.00;95% CI -0.01 to 0.02) (low certainty evidence for all outcomes). No other cognitive domains were investigated in children. A single study among elderly people provided very low certainty evidence that more frequent mobile phone use may have little to no effect on the odds of a decline in global cognitive function (odds ratio, OR 0.81; 95% CI 0.42 to 1.58, 649 participants) or a decline in executive function (OR 1.07; 95% CI 0.37 to 3.05, 146 participants), and may lead to a small, probably unimportant, reduction in the odds of a decline in complex attention (OR 0.67;95%CI 0.27 to 1.68, 159 participants) and a decline in learning and memory (OR 0.75; 95% CI 0.29 to 1.99, 159 participants). An exposure-response relationship was not identified for any of the cognitive outcomes. DISCUSSION: This systematic review and meta-analysis found only a few studies that provided very low to low certainty evidence of little to no association between RF-EMF exposure and learning and memory, executive function and complex attention. None of the studies among children reported on global cognitive function or other domains of cognition. Only one study reported a lack of an effect for all domains in elderly persons but this was of very low certainty evidence. Further studies are needed to address all types of populations, exposures and cognitive outcomes, particularly studies investigating environmental and occupational exposure in adults. Future studies also need to address uncertainties in the assessment of exposure and standardise testing of specific domains of cognitive function to enable synthesis across studies and increase the certainty of the evidence. OTHER: This review was partially funded by the WHO radioprotection programme and prospectively registered on PROSPERO CRD42021257548.


Subject(s)
Cognition , Radio Waves , Humans , Cognition/radiation effects , Radio Waves/adverse effects , Electromagnetic Fields/adverse effects , Observational Studies as Topic , Child , Cell Phone , Environmental Exposure/statistics & numerical data , Adult , Memory
19.
Environ Int ; 187: 108612, 2024 May.
Article in English | MEDLINE | ID: mdl-38640611

ABSTRACT

BACKGROUND: The technological applications of radiofrequency electromagnetic fields (RF-EMF) have been steadily increasing since the 1950s exposing large proportions of the population. The World Health Organization (WHO) is assessing the potential health effects of exposure to RF-EMF. OBJECTIVES: To systematically assess the effects of exposure to RF-EMF on self-reported non-specific symptoms in human subjects and to assess the accuracy of perceptions of presence or absence of RF-EMF exposure. METHODS: Eligibility criteria: experimental studies carried out in the general population and in individuals with idiopathic environmental intolerance attributed to EMF (IEI-EMF), in any language. INFORMATION SOURCES: Medline, Web of Science, PsycInfo, Cochrane Library, Epistemonikos, Embase and EMF portal, searched till April 2022. Risk of Bias (ROB): we used the RoB tool developed by OHAT adapted to the topic of this review. SYNTHESIS OF RESULTS: we synthesized studies using random effects meta-analysis and sensitivity analyses, where appropriate. RESULTS: Included studies: 41 studies were included, mostly cross over trials and from Europe, with a total of 2,874 participants. SYNTHESIS OF RESULTS: considering the primary outcomes, we carried out meta-analyses of 10 exposure-outcomes pairs. All evidence suggested no or small non-significant effects of exposure on symptoms with high (three comparisons), moderate (four comparisons), low (one comparison) and very low (two comparisons) certainty of evidence. The effects (standard mean difference, where positive values indicate presence of symptom being exposed) in the general population for head exposure were (95% confidence intervals) 0.08 (-0.07 to 0.22) for headache, -0.01 (-0.22 to 0.20) for sleeping disturbances and 0.13 (-0.51 to 0.76) for composite symptoms; and for whole-body exposure: 0.09 (-0.35 to 0.54), 0.00 (-0.15 to 0.15) for sleeping disturbances and -0.05 (-0.17 to 0.07) for composite symptoms. For IEI-EMF individuals SMD ranged from -0.19 to 0.11, all of them with confidence intervals crossing the value of zero. Further, the available evidence suggested that study volunteers could not perceive the EMF exposure status better than what is expected by chance and that IEI-EMF individuals could not determine EMF conditions better than the general population. DISCUSSION: Limitations of evidence: experimental conditions are substantially different from real-life situations in the duration, frequency, distance and position of the exposure. Most studies were conducted in young, healthy volunteers, who might be more resilient to RF-EMF than the general population. The outcomes of interest in this systematic review were symptoms, which are self-reported. The available information did not allow to assess the potential effects of exposures beyond acute exposure and in elderly or in chronically ill people. It cannot be ruled out that a real EMF effect in IEI-EMF groups is masked by a mix with insensitive subjects. However, studies on symptoms reporting and/or field perceptions did not find any evidence that there were particularly vulnerable individuals in the IEI-EMF group, although in open provocation studies, when volunteers were informed about the presence or absence of EMF exposure, such differences were consistently observed. INTERPRETATION: available evidence suggests that acute RF-EMF below regulatory limits does not cause symptoms and corresponding claims in the everyday life are related to perceived and not to real EMF exposure status.


Subject(s)
Electromagnetic Fields , Environmental Exposure , Radio Waves , Self Report , Humans , Electromagnetic Fields/adverse effects , Radio Waves/adverse effects
20.
Methods Mol Biol ; 2788: 375-395, 2024.
Article in English | MEDLINE | ID: mdl-38656526

ABSTRACT

Geomagnetic field (GMF) protects living organisms on the Earth from the radiation coming from space along with other environmental factors during evolution, and it has affected the growth and development of plants. Many researchers have always been interested in investigating these effects in different aspects. In this chapter, we focus on the methods of using different types of magnetic fields (MFs) to investigate the dimensions of their biological effects on plants. The aim is to increase seed germination, growth characters, and yield of plants using the following methods: (1) Using MFs lower than GMF to study effects of GMF on the growth and yield of plants. (2) Using reversed magnetic fields (RMFs) lower than GMF to study its effects on the growth and development of plants during evolution. (3) Using static magnetic fields (SMFs) higher than GMF and reversed SMFs to study effects of the south (S) and north (N) magnetic pole on plants. (4) Using electromagnetic fields (EMFs) to increase and accelerate seed germination, growth, and yield of plants, and establish the status of plants against other environmental stresses. (5) Using magnetized water (MW) to improve plant seed germination, growth, and yield. (6) Using high gradient magnetic field (HGMF) to study magneto-tropism in plants. In this chapter, we recommend application of various types of MFs to study their biological effects on plants to improve crop production.


Subject(s)
Germination , Magnetic Fields , Plant Development , Seeds , Germination/radiation effects , Seeds/growth & development , Seeds/radiation effects , Plant Development/radiation effects , Plants/radiation effects , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...