Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.239
Filter
1.
Int J Cosmet Sci ; 46(4): 526-543, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113291

ABSTRACT

Ceramides are a family of lipids constituted by a sphingoid base and a fatty acid. In the skin, they are mainly present in the stratum corneum where, with cholesterol and free fatty acids, they constitute the inter-corneocyte lipids. With the other lipid groups, they play a key role in the formation of dense lamellar structures between adjacent corneocytes, collectively ensuring the vital efficient barrier to water evaporation and protection from foreign agents´ penetration. Changes in ceramide level and relative composition, with potential impairment of lipid arrangement, have been evidenced in different skin conditions and skin diseases. Therefore, use of suitably formulated ceramides has been proposed for topical treatment to help re-structure damaged lipid arrangement and repair impaired skin barrier function. Nonetheless, the formulation of ceramides in products necessitates specific processes such as heating to high temperature before their introduction in the final formula. In this review on the structure, the role and the potential of ceramides for skincare, we point out the necessity of rigorous process when formulating ceramides into the final product. We demonstrate the counterproductive effects of undissolved ceramides on skin barrier repair capacity of the formulas, when assessed in different in vitro models of disrupted skin barrier.


Les céramides sont une famille de lipides constituée d'une base sphingoïde et d'un acide gras. Dans la peau, ils sont principalement présents dans la couche cornée où, avec le cholestérol et les acides gras libres, ils constituent les lipides inter­cornéocytes. Avec les autres groupes de lipides, ils jouent un rôle clé dans la formation de structures lamellaires denses entre les cornéocytes adjacents, assurant collectivement la barrière efficace vitale contre l'évaporation de l'eau et la protection contre la pénétration des agents étrangers. Des modifications du taux de céramides et de la composition relative, avec une altération potentielle de l'arrangement lipidique, ont été observées dans différentes affections cutanées et maladies cutanées. Par conséquent, l'utilisation de céramides formulés de manière appropriée a été proposée pour un traitement topique afin d'aider à restructurer la disposition des lipides endommagés et à réparer la fonction de barrière cutanée altérée. Néanmoins, la formulation des céramides dans les produits nécessite des processus spécifiques tels que le chauffage à température élevée avant leur introduction dans la formule finale. Dans cette revue sur la structure, le rôle et le potentiel des céramides pour les soins de la peau, nous soulignons la nécessité d'un processus rigoureux lors de la formulation des céramides dans le produit final. Nous démontrons les effets contre­productifs des céramides non dissous sur la capacité de réparation de la barrière cutanée des formules, lorsqu'ils sont évalués dans différents modèles in vitro de barrière cutanée perturbée.


Subject(s)
Ceramides , Skin Care , Skin , Ceramides/chemistry , Humans , Skin/metabolism , Skin Care/methods
2.
Food Chem X ; 23: 101636, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39113734

ABSTRACT

Emulsion gels mimic the rheological properties of solid and semi-solid fats, offering a viable solution to replace conventional fats in low-fat food formulations. In this study, gel emulsions stabilized with stigmasterol (ST) and polyglycerol polyricinoleate (PGPR) complexes were prepared. Initially, we examined the effect of the ST/PGPR complex on the mechanism of gel emulsion stabilization. Our findings revealed that the gel emulsion formulated with 3% PGPR and ST exhibited a robust structure, effectively stabilizing the entire system and ensuring uniform distribution, and increasing ST concentration led to greater stability of the gel emulsion system. Stability assessments demonstrated that gel emulsions containing 3% PGPR and varying ST concentrations exhibited remarkable thermal stability and effectively delayed oil oxidation. These results underscore the high stability of gel emulsions stabilized with the ST/PGPR complex, highlighting their potential as a margarine substitute.

3.
Int J Biol Macromol ; 277(Pt 3): 134297, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097055

ABSTRACT

Minoxidil (MXD) is the only topical over-the-counter medicine approved by the United States Food and Drug Administration for the treatment of androgenetic alopecia. For the purpose of targeting the delivery of MXD to dermal papilla in the hair follicle, MXD Pickering emulsion gels were fabricated based on the designability of deep eutectic solvent (DES) and the versatility of cellulose nanocrystal (CNC) and sodium carboxymethyl cellulose (CMC-Na). Structural studies and theoretical calculations results suggest that CNC can stabilize the interface between the MXD-DES and water, leading to the formation of Pickering emulsions. The rheological properties and stabilities of MXD Pickering emulsions were enhanced through gelation using CMC-Na, which highlights the good compatibility and effectiveness of natural polysaccharides in emulsion gels. Due to the particle size of emulsion droplets (679 nm) and the rheological properties of emulsion gel, the fabricated MXD formulations show in vivo hair regrowth promotion and hair follicle targeting capabilities. Interestingly, the MXD Pickering emulsion-based formulations exert therapeutic effects by upregulating the expression of hair growth factors. The proposed nanodrug strategy based on supramolecular strategies of CNC and CMC-Na provides an interesting avenue for androgenetic alopecia treatment.

4.
Int J Biol Macromol ; 277(Pt 2): 134314, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094879

ABSTRACT

To develop novel food-grade Pickering emulsion stabilizers, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was prepared into Pickering emulsion stabilizers after different mechanical pretreatments (shear, high-pressure homogenization, ultrasonic, and combined mechanical pretreatment). With the increase in mechanical pretreatment types, the covalent binding of proteins and polysaccharides in IRBPPP gradually enhanced, the breakage efficiency of IRBPPP gradually increased (IRBPPP particle size decreased from 220.54 to 67.89 µm, the specific surface area of IRBPPP particle increased from 993.47 to 2033.86 cm-1/g), and the microstructure of IRBPPP gradually showed an orderly network structure, which enhanced the IRBPPP dispersion stability and the Pickering emulsion stability. Pickering emulsion stability was highly correlated (P < 0.01) with the breakage efficiency of IRBPPP particles. Overall, the combined mechanical pretreatment improved the stability of the IRBPPP-stabilized Pickering emulsion. The study added value to rice bran products and offered a new way to create stable food-grade Pickering emulsions for functional foods using natural protein-polysaccharide-phenol complex particles.

5.
Food Chem ; 460(Pt 2): 140674, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39089025

ABSTRACT

Citrus oil (CO) is a commonly used natural flavor with high volatility, which is not conducive to sustained release under food environmental stress. This study constructed novel ß-cyclodextrin/cationic cellulose nanocrystal (ß-CD/C-CNC) complexes via noncovalent interaction, which were used to stabilize CO-loaded Pickering emulsions (PEß-CD/C-CNC). The C-CNC greatly improved the physical stability, droplet dispersion and viscoelasticity of PEß-CD/C-CNC by forming a tight network structure, as verified by rheological behavior. Moreover, C-CNC improved the wettability of ß-CD/C-CNC complexes and enhanced the interaction between adjacent ß-CD/C-CNC complexes. C-CNC also contributed to the interfacial viscoelasticity, hydrated mass, and layer thickness via the interfacial dilational modulus and QCM-D. ß-CD/C-CNC complexes adsorbed on the oil-water interface gave rise to a dense filling layer as a physical barrier, enhancing the sustained-release performance of PEß-CD/C-CNC by limiting diffusion of citrus essential oil into the headspace. This study provides new technical approaches for aroma retention in the food industry.

6.
J Microencapsul ; : 1-16, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092777

ABSTRACT

AIM: This study was aimed at investigating the cytotoxic effect of a novel combination of doxorubicin (DOX) and nano-formulation of Santolina chamaecyparissus L. essential oil (SCEO-NANO) on hepatic (HepG2) and colon (HT29) cancer cell lines. METHODS: A nano-emulsion was prepared by high-pressure homogenisation, then analysed by zetasizer and Fourier transform infrared spectroscopy. HepG2 and HT29 cells were used in in vitro tests for apoptosis detection. RESULTS: Formulated droplet size increased in DOX@SCEO-NANO/DOX to 11.54 ± 0.02 with uniform distribution (PDI = 0.13 ± 0.01), when compared with SCEO-NANO (size: 8.91 ± 0.02 nm; PDI = 0.1 ± 0.02). In both cells, DOX@SCEO-NANO/DOX led to a considerable reduction in colony formation. Compared to DOX, apoprotein proteins were overexpressed in HepG2 cells, showing increases of 8.66-fold for caspase-3 and 4.24-fold for the Bax/Bcl-2 ratio. In HT29 cells, ROS-dependent necrosis and apoptosis were seen. Comparing DOX@SCEO-NANO/DOX versus DOX, greater levels of caspase-3 and the Bax/Bcl-2 ratio were observed. CONCLUSION: The DOX@SCEO-NANO/DOX formulation showed potential for targeted eradication of colon adenocarcinoma and hepatocellular carcinoma cells.

7.
J Sci Food Agric ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105634

ABSTRACT

BACKGROUND: Rice bran oil body is rich in nutritional value, which is a byproduct of rice processing. The aim of this study is to develop a novel emulsion-filled gel with lutein-loaded rice bran oil body and investigate its functionality as a fat replacer in cookies. The effects of incorporating structured oil body in the form of emulsion-filled gel instead of butter in cookies with a ratio of 0, 10, 20 and 50 wt% formulation were determined by measuring appearance, texture, thermodynamic properties, moisture distribution and microstructure. RESULTS: The results demonstrated the relationship between geometry, moisture and structure. The 20 wt% emulsion-filled gel substitution ratio yielded mobility and distribution abilities of melted fat and sugar in the cookies that were closest to those of butter. The addition of emulsion-filled gel increased the L* value and decreased the a* value, while the b* value of the cookie increased due to the advanced delivery of lutein by oil body. By controlling the addition ratio, the texture of the cookies can be adjusted. Starch granules were separated due to colloidal particles, reducing saturated fat content and decreasing cookie gelatinization enthalpy. The fat coating on starch particles enhanced the binding capacity of free water, improving air entrapment and forming a constrained gluten network structure. CONCLUSION: These findings provide a theoretical basis for rice bran oil body as a novel substitute for butter in the development of healthy, high-quality cookies. © 2024 Society of Chemical Industry.

8.
Drug Dev Ind Pharm ; : 1-13, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39093556

ABSTRACT

OBJECTIVE: Preparation and characterization of nano-emulsion formulations for Asparagus densiflorus aerial and root parts extracts. SIGNIFICANCE: Genus Asparagus is known for its antimicrobial and anticancer activities, however, freeze dried powder of aqueous - alcoholic extract prepared in this study, exhibited a limited water solubility, limiting its therapeutic application. Thus, encapsulation of its phytochemicals into nano-emulsion is proposed as a solution to improve water solubility, and facilitate its clinical translation. METHODS: the composition of extracts for both aerial and root parts of Asparagus densiflorus was identified by HPLC and LC-MS analysis. Nano-emulsion was prepared via homogenization where a mixture of Castor oil: phosphate buffered saline (10 mM, pH 7.4): Tween 80: PEG 600 in a ratio of 10: 5: 2.5: 2.5, respectively. Nano-emulsion formulations were characterized for particle size, polydispersity index (PDI), zeta potential, TEM, viscosity and pH. Then, the antibacterial and anticancer activities of nano-emulsion formulations versus their pure plant counterparts was assessed. RESULTS: The analysis of extracts identified several flavonoids, phenolics, and saponins which were reported to have antimicrobial and anticancer activities. Nano-emulsion formulations were monodispersed with droplet sizes ranging from 80.27 ± 2.05 to 111.16 ± 1.97 nm, and polydispersity index ≤0.3. Nano-emulsion formulations enhanced significantly the antibacterial (multidrug resistant bacteria causing skin and dental soft tissues infections) and anticancer (HuH7, HEPG2, H460 and HCT116) activities compared to their pure plant extract counterparts. CONCLUSION: Employing a nano-delivery system as a carrier for phytochemicals might be an effective strategy to enhance their pharmacological activity, overcome their limitations, and ultimately increase their potential for clinical applications.

9.
Article in English | MEDLINE | ID: mdl-39102562

ABSTRACT

Nucleation and growth of sparingly soluble salts, referred to as scaling, has posed substantial challenges in industrial processes that deal with multiphase flows, including enhanced oil recovery (EOR). During crude oil extraction/recovery, seawater is injected into oil reservoirs and yields water-in-oil (W/O) emulsions that may undergo calcium carbonate (CaCO3) scaling. Common antiscaling macromolecules and nanoparticles have adverse environmental impacts and/or are limited to functioning only in single-phase aqueous media. Here, we develop a novel antiscaling cellulose-based nanoparticle that enables scale-resistant Pickering emulsions. Cellulose fibrils are rationally nanoengineered to yield amphiphilic hairy cellulose nanocrystals (AmHCNC), bearing hydrophilic dicarboxylate groups and hydrophobic alkyl chains on disordered cellulose chains (hairs) protruding from nanocrystal ends. The unique chemical and structural properties of AmHCNC render them the first dual functional antiscaling and emulsion stabilizing nanoparticle. AmHCNC stabilize W/O Pickering emulsions at a concentration of 1.00 wt % for 1 week while inhibiting CaCO3 scale formation up to 70% by mass at a supersaturation degree of ∼101 compared with the synthetic surfactant Span 80. To the best of our knowledge, this study presents the first biopolymer-based solution for the long-lasting scaling challenge in multiphase media, which may set the stage for developing sustainable scale-resistant multiphase flows in a broad spectrum of industrial sectors.

10.
Int J Biol Macromol ; : 134155, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098462

ABSTRACT

N-doped TiO2/carbon composites (N-TiPC) have shown excellent photodegradation performances to the organic contaminants but are limited by the multistage preparation (i.e., preparation of porous carbon, preparation of N-doped TiO2, and loading of N-doped TiO2 on porous carbon). Here, we develop a handy way by combining the Pickering emulsion-gel template route and chelation reaction of polysaccharides. The N-TiPC is obtained by calcinating pectin/Dl-serine hydrazide hydrochloride (SHH)-Ti4+ chelate and is further described by modern characterization techniques. The results show that the N atom is successfully doped into the TiO2 lattice, and the bandgap value of N-TiPC is reduced to 2.3 eV. Moreover, the particle size of N-TiPC remains about 10 nm. The configurations of the composites are simulated using DFT calculation. The photocatalytic experiments show that N-TiPC has a high removal efficiency for methylene blue (MB) and oxytetracycline hydrochloride (OTC-HCL). The removal ratios of MB (20 mg/L, 50 mL) and OTC-HCL (30 mg/L, 50 mL) are 99.41 % and 78.29 %, respectively. The cyclic experiments show that the photocatalyst has good stability. Overall, this study provides a handy way to form N-TiPC with enhanced photodegradation performances. It can also be promoted to other macromolecules such as cellulose and its derivatives, sodium alginate, chitosan, lignin, etc.

11.
Small Methods ; : e2400348, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087373

ABSTRACT

Utilizing cell membranes from diverse cell types for biointerfacing has demonstrated significant advantages in enhancing colloidal stability and incorporating biological properties, tailored specifically for various biomedical applications. However, the structures of these materials, particularly emulsions interfaced with red blood cell (RBC) or platelet (PLT) membranes, remain an underexplored area. This study systematically employs small- and ultra-small-angle neutron scattering (SANS and USANS) with contrast variation to investigate the structure of emulsions containing perfluorohexane within RBC (RBC/PFH) and PLT membranes (PLT/PFH). The findings reveal that the scattering length density of RBC and PLT membranes is 1.5 × 10-6 Å-2, similar to 30% (w/w) deuterium oxide. Using this solvent as a cell membrane-matching medium, estimated droplet diameters are 770 nm (RBC/PFH) and 1.5 µm (PLT/PFH), based on polydispersed sphere model fitting. Intriguingly, calculated patterns and invariant analysis reveal native droplet architectures featuring entirely liquid PFH cores, differing significantly from the observed bubble-droplet core system in electron microscopy. This highlights the advantage of SANS and USANS in differentiating genuine colloidal structures in complex dispersions. In summary, this work underscores the pivotal role of SANS and USANS in characterizing biointerfaced colloids and in uncovering novel colloidal structures with significant potential for biomedical applications and clinical translation.

12.
J Sci Food Agric ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101210

ABSTRACT

BACKGROUND: A water-in-oil-in-water (W/O/W) double emulsion can simultaneously load hydrophilic and hydrophobic substances due to its unique two-membrane, three-phase structure. However, thermodynamic instability greatly limits the application of double emulsions in food processing. Further development of Pickering emulsions based on proteins, etc., can improve the stability and loading capacity. It is of great significance to promote their practical application. RESULTS: Herein, we prepared ultrasound pretreatment complex glycation-modified phycocyanin (UMPC) to stabilize a W/O/W Pickering emulsion for the codelivery of vitamin B12 (VB12) and vitamin E (VE). First, an inner water phase and oil phase containing polyglycerin polyricinoleate were homogenized to prepare a W/O emulsion. Subsequently, the W/O emulsion was homogenized with an outer water phase containing UMPC to obtain a W/O/W Pickering emulsion. A gel-like inner phase emulsion with excellent storage and thermal stabilities was obtained under the condition that the W/O emulsion volume ratio was 80% and the UMPC was stabilized by 10 g kg-1. The double emulsion after loading VB12 and VE showed good encapsulation effect during the storage period, the encapsulation rate could reach more than 90%, it also showed excellent protection effect under long-time storage and UV irradiation and the retention rate increased by more than 65%. In addition, the bioavailability of VB12 and VE significantly increased during simulated gastrointestinal digestion and reached 46.02% and 52.43%, respectively. CONCLUSION: These results indicate that the UMPC-stabilized W/O/W Pickering emulsion is an effective carrier for the codelivery of hydrophilic and hydrophobic bioactive molecules and also provides a means for useful exploration of an efficient and stable emulsion system stabilized by biological macromolecules. © 2024 Society of Chemical Industry.

13.
Article in English | MEDLINE | ID: mdl-39110913

ABSTRACT

Flocculation is a type of aggregation where the surfaces of approaching droplets are still at distances no closer than a few nanometers while still remaining in close proximity. In a high internal-phase oil-in-water (O/W) emulsion, the state of flocculation affects the bulk flow behavior and viscoelasticity, which can consequently control the three-dimensional (3D)-printing process and printing performance. Herein, we present the assembly of O/W Pickering high-internal-phase emulsions (Pickering-HIPEs) as printing inks and demonstrate how depletion flocculation in such Pickering-HIPE inks can be used as a facile colloidal engineering approach to tailor a porous 3D structure suitable for drug delivery. Pickering-HIPEs were prepared using different levels of cellulose nanocrystals (CNCs), co-stabilized using "raw" submicrometer-sized sustainable particles from a biomass-processing byproduct. In the presence of this sustainable particle, the higher CNC contents facilitated particle-induced depletion flocculation, which led to the formation of a mechanically robust gel-like ink system. Nonetheless, the presence of adsorbed particles on the surface of droplets ensured their stability against coalescence, even in such a highly aggregated system. The gel structures resulting from the depletion phenomenon enabled the creation of high-performance printed objects with tunable porosity, which can be precisely controlled at two distinct levels: first, by introducing voids within the internal structure of filaments, and second, by generating cavities (pore structures) through the elimination of the water phase. In addition to printing efficacy, the HIPEs could be applied for curcumin delivery, and in vitro release kinetics demonstrated that the porous 3D scaffolds engineered for the first time using depletion-flocculated HIPE inks played an important role in 3D scaffold disintegration and curcumin release. Thus, this study offers a unique colloidal engineering approach of using depletion flocculation to template 3D printing of sustainable inks to generate next-generation porous scaffolds for personalized drug deliveries.

14.
Food Chem ; 460(Pt 3): 140642, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39111043

ABSTRACT

A double-layer film was developed with tannic acid (TA) co-pigmented purple potato anthocyanin extract (PAE)-agar as the inner layer, and K-carrageenan-oregano essential oil Pickering emulsion (OPE)/silver nanoparticles (TA-AgNPs) as the outer layer. Molecular docking and FT-IR results elucidated that intermolecular hydrogen bond was the main interaction between components in the agar-carrageenan matrix, with TA and PAE contributing to intensified anthocyanin color through π-π stacking. The incorporation of OPE/TA-AgNPs enhanced the film's hydrophobicity (WCA > 100°) and UV-vis barrier (close to 0% at 200-320 nm, effectively impeding UVA, UVB, and UVC) properties and exhibited outstanding antioxidant (DPPH scavenging rate > 88%) and antimicrobial activities. This film showed a significant color change in the pH range of 2-12 (from pink to yellow) and a considerable sensitivity to volatile amines within 2 min. The films effectively alleviated beef spoilage (extending the shelf life of beef for 1d) and reflected the freshness of beef during storage. Additionally, the digital color information of the film was obtained by a smartphone combined with RGB values analysis to quantify the freshness of beef rapidly. Therefore, this study expands the application of food packaging films with freshness preservation and monitoring in the field of animal-derived food.

15.
Int J Biol Macromol ; : 134536, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111481

ABSTRACT

In recent years, nanocellulose (NC) has gained significant attention due to its remarkable properties, such as adjustable surface chemistry, extraordinary biological properties, low toxicity and low density. This review summarizes the preparation of NC derived from lignocellulosic biomass (LCB), including cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and lignin-containing cellulose nanofibrils (LCNF). It focuses on examining the impact of non-cellulosic components such as lignin and hemicellulose on the functionality of NC. Additionally, various surface modification strategies of NC were discussed, including esterification, etherification and silylation. The review also emphasizes the progress of NC application in areas such as Pickering emulsions, food packaging materials, food additives, and hydrogels. Finally, the prospects for producing NC from LCB and its application in food-related fields are examined. This work aims to demonstrate the effective benefits of preparing NC from lignocellulosic biomass and its potential application in the food industry.

16.
J Control Release ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111597

ABSTRACT

Immunological adjuvants are vaccine components that enhance long-lasting adaptive immune responses to weakly immunogenic antigens. Monophosphoryl lipid A (MPLA) is a potent and safe vaccine adjuvant that initiates an early innate immune response by binding to the Toll-like receptor 4 (TLR4). Importantly, the binding and recognition process is highly dependent on the monomeric state of MPLA. However, current vaccine delivery systems often prioritize improving the loading efficiency of MPLA, while neglecting the need to maintain its monomeric form for optimal immune activation. Here, we introduce a Pickering emulsion-guided MPLA monomeric delivery system (PMMS), which embed MPLA into the oil-water interface to achieve the monomeric loading of MPLA. During interactions with antigen-presenting cells, PMMS functions as a chaperone for MPLA, facilitating efficient recognition by TLR4 regardless of the presence of lipopolysaccharide-binding proteins. At the injection site, PMMS efficiently elicited local immune responses, subsequently promoting the migration of antigen-internalized dendritic cells to the lymph nodes. Within the draining lymph nodes, PMMS enhanced antigen presentation and maturation of dendritic cells. In C57BL/6 mice models, PMMS vaccination provoked potent antigen-specific CD8+ T cell-based immune responses. Additionally, PMMS demonstrated strong anti-tumor effects against E.G7-OVA lymphoma. These data indicate that PMMS provides a straightforward and efficient strategy for delivering monomeric MPLA to achieve robust cellular immune responses and effective cancer immunotherapy.

17.
Food Chem X ; 23: 101633, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39108623

ABSTRACT

Pasteurization, as a meaningful part of food processing, has received growing attention for regulating Pickering emulsion stability. In this research, the role of pasteurization and konjac glucomannan (KGM) in the modulation of Pickering emulsion properties was investigated. The results showed that the network structure formed by KGM inhibited the agglomeration of droplets due to pasteurization, which improved the heat stability of the Pickering emulsion. Increasing the concentration of KGM improved the densification of its network structure, as evidenced by the enhanced viscoelasticity of the emulsion after pasteurization. The retention rate of ß-carotene encapsulated in the Pickering emulsion could reach 99% after pasteurization at 65 °C for 30 min. Moreover, pasteurization further enhanced the inhibitory effect of KGM on free fatty acid release and implemented a manageable release of ß-carotene. This research offers theoretical guidance for the construction of highly stable Pickering emulsions for delivering temperature-sensitive hydrophobic ingredients.

18.
J Food Sci ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39086045

ABSTRACT

In this study, buckwheat flower polysaccharide conjugates (BFPCs) were synthesized and evaluated for their emulsification properties. The stability of BFPC-stabilized emulsions was assessed through particle size analysis, zeta potential measurements, microscopic observations, and rheological tests. Gum Arabic served as a control to compare BFPC's emulsifying efficacy across varying storage conditions, including exposure to metal ions, pH variations, and different heat treatment temperatures. Results showed that BFPC significantly lowered interfacial tension (16.2 mN/m) and effectively stabilized emulsions containing 60 wt% medium-chain triglycerides at a concentration of 1.0 wt%. Over a 20-day storage period, BFPC emulsions demonstrated robust resistance to heat (60-90°C), acidic conditions (pH 2.0-9.0), and ion concentrations (Na+, Ca2+). Moreover, in a high oil phase emulsion, BFPC enhanced the bioavailability of curcumin to 27.05%, markedly higher than the 7.10% observed without emulsification, underscoring its potential in nutrient delivery applications. PRACTICAL APPLICATION: Due to its excellent resistance, long-time emulsifying stability under different conditions, and its good effect in curcumin embedding, BFPC has a broad prospect and can be widely used under various conditions in food industry.

19.
Chembiochem ; : e202400345, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087277

ABSTRACT

Converting fatty acids into specialty chemicals is sustainable but hindered by the low efficiency and thermal instability of current oleic acid hydratases, along with mass transfer limitations in emulsion reactions. This study introduces an optimized continuous flow micro-reactor (CFMR) that efficiently transforms oleic acid at low (15 g·L-1) and high (50 g·L-1) concentrations, improving reaction efficiency and overcoming key conversion barriers. The first CFMR model showed reaction speeds surpassing traditional batch stirred tank reactors (BSTR). Optimizations were performed on three key components: liquid storage, mixer, and reaction section of the CFMR, with each round's best conditions carried into the next. This achieved a space-time yield of 597 g·L-1·d-1 at a 15 g·L-1 oleic acid load. To further enhance the yield, we optimized the emulsifier system to solve incomplete emulsification and developed a two-component feed microreactor (TCFMR) that addressed substrate and product inhibition at high loads, reaching a 91% conversion of 50 g·L-1 oleic acid in 30 minutes, with a space-time yield of 2312 g·L-1·d-1. These advancements represent significant progress in utilizing fatty acids and advancing sustainable chemical synthesis.

20.
Article in English | MEDLINE | ID: mdl-39087275

ABSTRACT

The pressing need for effective methods to separate oil and water in oily wastewater has spurred the development of innovative solutions. This work presents the creation and evaluation of a Janus nanofibrous membrane, also known as the Liquid Diode, developed using electrospinning (e-spinning) and buoyancy-assisted hydrothermal techniques. The membrane features a unique structure: one side is composed of PVDF nanofibers embedded with a GO/TiO2 composite, exhibiting in-air superhydrophobic and superoleophilic properties, while the reverse side consists of PVDF nanofibers with a ZnO nanorod array, demonstrating in-air superhydrophilic and underwater (UW) superoleophobic properties. This distinct asymmetric wettability enables the membrane to effectively separate both water-in-oil (w-in-o) and oil-in-water (o-in-w) emulsions, achieving an impressive liquid flux and separation efficiency (SEff). The in-air superhydrophobic side of the Janus nanofibrous membrane achieves a maximum oil flux (Fo) of 3506 ± 250 L m-2 h-1, while the in-air superhydrophilic side achieves a maximum water flux (Fw) of 1837 ± 150 L m-2 h-1, with SEff exceeding 98% for both sides. Furthermore, the Janus nanofibrous membrane maintained reliable mechanical stability after 10 cycles of sandpaper abrasion test and demonstrated excellent chemical stability when subjected to acidic, alkaline, cold water and hot water conditions for 24 h. These properties, combined with its ability in breaking down of organic contaminants (98% ± 2% in 210 min) and pharmaceutical contaminants (97% ± 2% in 210 min) under visible light, highlight its photocatalytic potential. Additionally, the membrane's antifouling and antibacterial properties suggest long-term and sustainable use in wastewater treatment applications. The synergistic combination of these superior properties positions the Janus nanofibrous membrane as a promising solution for addressing complex challenges in wastewater treatment and environmental remediation.

SELECTION OF CITATIONS
SEARCH DETAIL