Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
J Fluoresc ; 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38183590

ABSTRACT

The interaction between silver nanoparticles (AgNPs) and molecules producing coronas plays a key role in cytotoxicity mechanisms. Once adsorbed coronas determine the destiny of nanomaterials in vivo, their effective deployment in the biomedical field requires a comprehensive understanding of the dynamic interactions of biomolecules with nanoparticles. In this work, we characterized 40 nm AgNPs in three different nutritional cell media at different molar concentrations and incubation times to study the binding mechanism of molecules on surface nanoparticles. In addition, their cytotoxic effects have been studied in three cell lineages used as tissue regeneration models: FN1, HUV-EC-C, RAW 264.7. According to the data, when biomolecules from DMEM medium were in contact with AgNPs, agglomeration and precipitation occurred. However, FBS medium proteins indicated the formation of coronas over the nanoparticles. Nonetheless, little adsorption of molecules around the nanoparticles was observed when compared to DMEM supplemented with 10% FBS. These findings indicate that when nanoparticles and bioproteins from supplemented media interact, inorganic salts from DMEM contribute to produce large bio-coronas, the size of which varies with the concentration and time. The static quenching mechanism was shown to be responsible for the fluorescence quenching of the bioprotein aggregates on the AgNPs surface. The calculated bioprotein-nanoparticle surface binding constants were on the order of 105 M-1 at 37 °C, with hydrophobic interactions driven by enthalpy and entropy playing a role, as confirmed by thermodynamic analysis. Cytotoxicity data showed a systematic degrowth in the viable cell population as the number of nanoparticles increased and the diameter of coronas decreased. Cytotoxic intervals associated with half decrease of cell population were established for AgNPs molar concentration of 75 µM for 24 h and 50 µM for 48 h. In summary, through the cytotoxicity mechanism of bio-coronas we are able to manipulate cells' expansion rates to promote specific processes, such inflammatory mechanisms, at different time instants.

2.
Biomedicines ; 12(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255245

ABSTRACT

As cell culture supplements, human platelet lysate (PL) and human platelet lysate serum (PLS) are alternatives to fetal bovine serum (FBS) due to FBS-related issues such as ethical concerns, variability between batches, and the possible introduction of xenogenic contaminants. This study compared the composition and efficacy of PL, PLS, and FBS as supplements in the culture and cryopreservation of human dermal fibroblasts, Wharton's jelly-derived mesenchymal stem cells (WJ-MCS), and adipose tissue (AdMSC). Biochemical components, some growth factors, and cytokines present in each of them were analyzed; in addition, the cells were cultured in media supplemented with 5% PL, 5% PLS, and 10% FBS and exposed to different freezing and thawing solutions with the supplements under study. Biochemical parameters were found to be similar in PL and PLS compared to FBS, with some differences in fibrinogen and calcium concentration. Growth factors and cytokines were higher in PL and PLS compared to FBS. Cell proliferation and morphology showed no significant differences between the three culture media. Regarding the cryopreservation and thawing of cells, better results were obtained with PLS and FBS. In conclusion, PL and PLS are an excellent choice to replace the standard supplement of animal origin (FBS) in the media used for the culture and cryopreservation of fibroblasts, WJ-MSC, and AdMSC.

3.
Mol Biol Rep ; 47(4): 2475-2486, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32124173

ABSTRACT

Classical methods used for culture of adipose-derived mesenchymal stromal cells (ADSCs) use xenobiotic components, which may present a potential risk for biological contamination and/or elicit immunological reactions. Therefore, the aim of this study was to establish a xeno-free methodology for the isolation and proliferation of human ADSCs (hADSCs). hADSCs were isolated by enzymatic digestion or mechanical dissociation and cultured in the presence of fetal bovine serum or human platelet lysate. Proliferation curves were performed as a function of time from the cell culture and used to calculate the population doubling time. Immunophenotyping and differentiation tests were used to identify and characterize the hADSCs. Human ADSCs isolated and cultured in conventional or xenobiotic-free conditions peaked at different days but achieved similar maximum proliferation. The hADSCs differentiation ability was similar in all groups. The characterization of hADSCs by flow cytometry showed low contamination of the cultures by other cell types. The xenobiotic-free methodology described in this study is a feasible and reproducible alternative for isolation and proliferation of hADSCs. This methodology is in accordance with the recommendations of the National Health Surveillance Agency, which proposes avoidance of xenobiotic products.


Subject(s)
Cell Culture Techniques/methods , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Culture Media , Flow Cytometry/methods , Humans , Immunophenotyping/methods , Xenobiotics
4.
Article in English | VETINDEX | ID: vti-444074

ABSTRACT

The main goal of this study is to alert researchers who work with cell cultures for the risk of contamination by structures called nanobacteria (NB). NB are tiny structures with size varying from 80 to 500 nm, commonly occurring in clusters and producing a biofilm which contains carbonate or hydroxyl apatite. The most likely source of cell culture contamination by such organisms is serum used as supplement in culture media. The presence of NB leads to a progressive culture deterioration with accumulation of granules (probably phagocytized NB) in cytoplasmic vacuoles, an increasing number of dead cells in the supernatant and degeneration of cells that remained attached to the bottom of the vessel. NB can also be found in culture supernatants where they are found in clusters with variable size and displaying brownian movement. In this study, 19 cell lineages, 8 batches of sera and 1 batch of growth supplement from different sources were analyzed. Samples from sera were cultured in Eagle's Minimum Essential Medium (E-MEM) or incubated directly at 37ºC. Tests carried out to detect the presence of extracellular bacteria, Mycoplasma sp and viruses were all negative. Analysis by scanning electron microscopy (SEM) revealed tiny oval structures less than 500 nm in size, isolated or in small groups, in all material analyzed except in one fetal bovine serum batch.


O principal objetivo deste estudo é alertar aos pesquisadores que trabalham com cultivos celulares sobre o risco de contaminação por estruturas denominadas nanobactérias (NB). NB são estruturas muito pequenas cujo tamanho varia de 80 a 500 nm e que comumente ocorrem em agrupamentos, produzindo biofilme de carbonato ou hidroxiapatita. A fonte mais provável de contaminação dos cultivos celulares por tais organismos é o soro utilizado como suplemento nos meios de cultura. A presença de NB leva a uma progressiva deterioração do cultivo com acúmulo de grânulos (provavelmente NB fagocitadas) em vacúolos citoplasmáticos, um número cada vez maior de células mortas no sobrenadante e degeneração das células que permaneceram aderidas à superfície do frasco de cultura. NB podem ser encontradas também em sobrenadantes de cultivos onde são observadas em agrupamentos de tamanho variável com movimento browniano. Neste estudo, 19 linhagens celulares, 8 lotes de soro e 1 lote de suplemento de diferentes procedências foram analisados. Amostras de soros foram cultivadas em Meio Essencial Mínimo de Eagle (E-MEM) ou incubados diretamente a 37ºC. Testes efetuados para detectar a presença de bactérias extracelulares, Mycoplasma sp e vírus foram todos negativos. Análise por microscopia eletrônica de varredura (SEM) revelou minúsculas estruturas ovóides com tamanho inferior a 500 nm, isoladas ou em pequenos agrupamentos, em todos os materiais analisados exceto em um lote de soro fetal bovino.

SELECTION OF CITATIONS
SEARCH DETAIL