Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
J Exp Child Psychol ; 246: 105979, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38861807

ABSTRACT

The current study examined predictions from embodied cognition for effects of finger counting on number processing. Although finger counting is spontaneous and nearly universal, counting habits reflect learning and culture. European cultures use a sub-base-five system, requiring a full hand plus additional fingers to express numbers exceeding 5. Chinese culture requires only one hand to express such numbers. We investigated the differential impact of early-acquired finger-based number representations on adult symbolic number processing. In total, 53 European and 56 Chinese adults performed two versions of the magnitude classification task, where numbers were presented either as Arabic symbols or as finger configurations consistent with respective cultural finger-counting habits. Participants classified numbers as smaller/larger than 5 with horizontally aligned buttons. Finger-based size and distance effects were larger in Chinese compared with Europeans. These differences did not, however, induce reliably different symbol processing signatures. This dissociation challenges the idea that sensory and motor habits shape our conceptual representations and implies notation-specific processing patterns.


Subject(s)
Cross-Cultural Comparison , Fingers , Humans , Female , Male , Adult , Young Adult , White People/psychology , Asian People , Adolescent , Cognition
2.
J Exp Child Psychol ; 244: 105931, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38669770

ABSTRACT

Recent empirical investigations have revealed that finger counting is a strategy associated with good arithmetic performance in young children. Fingers could have a special status during development because they operate as external support that provide sensory-motor and kinesthetic affordances in addition to visual input. However, it was unknown whether fingers are more helpful than manipulatives such as tokens during arithmetic problem solving. To address this question, we conducted a study with 93 Vietnamese children (48 girls) aged 4 and 5 years (mean = 58 months, range = 47-63) with high arithmetic and counting skills from families with relatively high socioeconomic status. Their behaviors were observed as they solved addition problems with manipulatives at their disposal. We found that children spontaneously used both manipulatives and fingers to solve the problems. Crucially, their performance was not higher when fingers rather than manipulatives were used (i.e., 70% vs. 81% correct answers, respectively). Therefore, at the beginning of learning, it is possible that, at least for children with high numerical skills, fingers are not the only gateway to efficient arithmetic development and manipulatives might also lead to proficient arithmetic.


Subject(s)
Fingers , Mathematics , Problem Solving , Humans , Female , Male , Child, Preschool , Child Development/physiology
3.
Appl Neuropsychol Child ; 13(3): 269-281, 2024.
Article in English | MEDLINE | ID: mdl-38569167

ABSTRACT

Finger-counting plays a crucial role in grounding and establishing mathematics, one of the most abstract domains of human cognition. While the combination of visual and proprioceptive information enables the coordination of finger movements, it was recently suggested that the emergence of finger-counting primarily relies on visual cues. In this study, we aimed to directly test this assumption by examining whether explicit finger-counting training (through tactile stimulation) may assist visually impaired children in overcoming their difficulties in learning mathematics. Two visually impaired participants (2 boys of 8.5 and 7.5 years) were therefore trained to use their fingers to calculate. Their pre- and post-training performance were compared to two control groups of sighted children who underwent either the same finger counting training (8 boys, 10 girls, Mage = 5.9 years; 10 kindergarteners and eight 1st graders) or another control vocabulary training (10 boys, 8 girls, Mage = 5.9 years; 11 kindergarteners and seven 1st graders). Results demonstrated that sighted children's arithmetic performance improved much more after the finger training than after the vocabulary training. Importantly, the positive impact of the finger training was also observed in both visually impaired participants (for addition and subtraction in one child; only for addition in the other child). These results are discussed in relation to the sensory compensation hypothesis and emphasize the importance of early and appropriate instruction of finger-based representations in both sighted and visually impaired children.


Subject(s)
Fingers , Humans , Male , Female , Child , Fingers/physiology , Mathematics , Child, Preschool , Learning/physiology , Mathematical Concepts , Touch Perception/physiology , Visually Impaired Persons/rehabilitation
4.
J Exp Child Psychol ; 242: 105892, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492555

ABSTRACT

Recent evidence suggests that using finger-based strategies is beneficial for the acquisition of basic numerical skills. There are basically two finger-based strategies to be distinguished: (a) finger counting (i.e., extending single fingers successively) and (b) finger number gesturing (i.e., extending fingers simultaneously to represent magnitudes). In this study, we investigated both spontaneous and prompted finger counting and finger number gesturing as well as their contribution to basic numerical skills in 3- to 5-year-olds (N = 156). Results revealed that only 6% of children spontaneously used their fingers for counting when asked to name a specific number of animals, whereas 59% applied finger number gesturing to show their age. This indicates that the spontaneous use of finger-based strategies depends heavily on the specific context. Moreover, children performed significantly better in prompted finger counting than in finger number gesturing, suggesting that both strategies build on each other. Finally, both prompted finger counting and finger number gesturing significantly and individually predicted counting, cardinal number knowledge, and basic arithmetic. These results indicate that finger counting and finger number gesturing follow and positively relate to numerical development.


Subject(s)
Fingers , Knowledge , Child , Humans , Child, Preschool , Cross-Sectional Studies , Mathematics
5.
J Exp Child Psychol ; 243: 105909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38522387

ABSTRACT

A limited number of studies have attempted to understand how motor deficits affect numerical abilities in children with developmental coordination disorder (DCD). The purpose of this study was to explore the functionality of finger-counting (FC) in children with DCD. The participants, 15 children with DCD and 15 typically developing (TD) children matched on school level and fluid reasoning abilities, were asked to use FC to solve an ordinal task with high working memory (WM) load. Behavioral measures supplemented with biomechanical measures, from three-dimensional motion analysis synchronized to a voice recording were used to assess children's performance and FC functionality (total duration, inter-finger [IF] transition, IF variance, finger/voice synchronization, and automatization of FC movements). Children with DCD were less accurate than TD children in using FC to solve ordinal problems with high WM load. This group difference could not be accounted for by poor FC skills given that FC movement turned out to be as functional in children with DCD as in their TD peers. When added to the model as a covariate, WM captured a greater proportion of intergroup variability than manual dexterity, further suggesting that their difficulties would be better accounted for by limited WM resources than by fine motor skills.


Subject(s)
Fingers , Memory, Short-Term , Motor Skills Disorders , Humans , Motor Skills Disorders/psychology , Motor Skills Disorders/physiopathology , Male , Female , Child , Motor Skills/physiology , Mathematics , Psychomotor Performance/physiology , Biomechanical Phenomena
6.
Acta Psychol (Amst) ; 241: 104079, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37944267

ABSTRACT

Teachers' beliefs and attitudes are known to guide the type of activities they implement in their classrooms. A traditional conception that finger counting is merely a back-up when children fail to use more sophisticated and efficient strategies could therefore prevent teachers from encouraging children's use of fingers in arithmetic tasks. However, the potential benefit of finger counting for young learners has been recently documented and setting aside its practice within classrooms may hinder children's mathematical skill development. It is therefore important to establish whether there is a discrepancy between teacher's beliefs regarding finger counting and the latest discoveries in this field of research. To this aim, we interrogated 413 teachers from preschool to Grade 5. We found that, despite being generally positive towards finger counting, teachers think that finger counting is typical of children who present math difficulties or lack of confidence, even during the first years of learning. These results are discussed considering what is known and what remains to be determined in the current scientific literature.


Subject(s)
Attitude , Learning , Child , Humans , Child, Preschool , Fingers , Schools
7.
Acta Psychol (Amst) ; 239: 104009, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586227

ABSTRACT

Numerical cognition might be embodied, that is, grounded in bodily actions. This claim is supported by the observation that, potentially due to our shared biology, finger counting is prevalent among a variety of cultures. Differences in finger counting are apparent even within Western cultures. Relatively few indigenous cultures have been systematically analyzed in terms of traditional finger counting and montring (i.e., communicating numbers with fingers) routines. Even fewer studies used the same protocols across cultures, allowing for a systematic comparison of indigenous and Western finger counting routines. We analyze the finger counting and montring routines of Tsimane' (N = 121), an indigenous people living in the Bolivian Amazon rainforest, depending on handedness, education level, and exposure to mainstream, industrialized Bolivian culture. Tsimane' routines are compared with those of German and British participants. Tsimane' reveal a greater variation in finger counting and montring routines, which seems to be modified by their education level. We outline a framework on how different factors such as handedness and reading direction might affect cross-cultural and within-cultural variation in finger counting.


Subject(s)
Cognition , Fingers , Humans , Bolivia , Functional Laterality , Indigenous Peoples , Culture
8.
Front Psychol ; 14: 1119561, 2023.
Article in English | MEDLINE | ID: mdl-37179854

ABSTRACT

Finger-based representation of numbers is a high-level cognitive strategy to assist numerical and arithmetic processing in children and adults. It is unclear whether this paradigm builds on simple perceptual features or comprises several attributes through embodiment. Here we describe the development and initial testing of an experimental setup to study embodiment during a finger-based numerical task using Virtual Reality (VR) and a low-cost tactile stimulator that is easy to build. Using VR allows us to create new ways to study finger-based numerical representation using a virtual hand that can be manipulated in ways our hand cannot, such as decoupling tactile and visual stimuli. The goal is to present a new methodology that can allow researchers to study embodiment through this new approach, maybe shedding new light on the cognitive strategy behind the finger-based representation of numbers. In this case, a critical methodological requirement is delivering precisely targeted sensory stimuli to specific effectors while simultaneously recording their behavior and engaging the participant in a simulated experience. We tested the device's capability by stimulating users in different experimental configurations. Results indicate that our device delivers reliable tactile stimulation to all fingers of a participant's hand without losing motion tracking quality during an ongoing task. This is reflected by an accuracy of over 95% in participants detecting stimulation of a single finger or multiple fingers in sequential stimulation as indicated by experiments with sixteen participants. We discuss possible application scenarios, explain how to apply our methodology to study the embodiment of finger-based numerical representations and other high-level cognitive functions, and discuss potential further developments of the device based on the data obtained in our testing.

9.
Acta Psychol (Amst) ; 233: 103841, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36709688

ABSTRACT

Finger counting facilitates numerical representations and mathematical processing. The current study investigated the association between finger counting habits and number processing by employing behavioral and electrophysiological measures. We explored whether small and large numerical primes influence the recognition of embodied target hand stimuli. Twenty-four right-handed participants that were grouped into right-starters (n = 13) and left-starters (n = 11) for finger counting performed a hand recognition task that consisted of numerical magnitudes as prime and hand recognition as targets. Based on the finger counting habits, congruent (i.e., left-starters: small number/left hand or large number/right hand; right-starters: small number/right hand or large number/left hand) and incongruent (i.e., left-starters: large number/left hand or small number/right hand; right-starters: large number/right hand or small number/left hand) conditions were presented to the participants. The participants were required to indicate whether the targets were left or right hand by simply pressing the left or the right key, respectively. Results indicated faster reaction times (RTs) for congruent as opposed to incongruent trials for all participants. The mean amplitude of the centro-parietal P300 component was significantly increased for the incongruent compared to congruent condition, indicating increased mental effort. Also, analysis of the latency of the P300 in terms of congruency effect in all participants revealed significant results. These combined results provide behavioral and electrophysiological evidence indicating the embodied nature of numbers. The results are interpreted in light of the general findings related to the P300 component. This research supports the association of number-hand representations and corroborates the idea of embodied numerosity.


Subject(s)
Fingers , Habits , Humans , Reaction Time/physiology , Mathematics , Recognition, Psychology
10.
Acta Psychol (Amst) ; 230: 103765, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36242923

ABSTRACT

The Spatial-Numerical Association of Response Codes (SNARC) effect (i.e., faster left/right sided responses to small/large magnitude numbers, respectively) is considered to be strong evidence for the link between numbers and space. Studies have shown considerable variation in this effect. Among the factors determining individual differences in the SNARC effect is the hand an individual uses to start the finger counting sequence. Left-starters show a stronger and less variable SNARC effect than right-starters. This observation has been used as an argument for the embodied nature of the SNARC effect. For this to be the case, one must assume that the finger counting sequence (especially the starting hand) is stable over time. Subsequent studies challenged the view that the SNARC differs depending on the finger counting starting hand. At the same time, it has been pointed out that the temporal stability of the finger counting starting hand should not be taken for granted. Thus, in this preregistered study, we aimed to replicate the difference in the SNARC between left- and right-starters and explore the relationship between the self-reported temporal stability of the finger counting starting hand and the SNARC effect. In line with the embodied cognition account, left-starters who declare more temporarily stable finger counting habits should reveal a stronger SNARC effect. Results of the preregistered analysis did not show the difference between left- and right-starters. However, further exploratory analysis provided weak evidence that this might be the case. Lastly, we found no evidence for the relationship between finger counting starting hand stability and the SNARC effect. Overall, these results challenge the view on the embodied nature of the SNARC effect.


Subject(s)
Functional Laterality , Space Perception , Humans , Space Perception/physiology , Functional Laterality/physiology , Fingers , Cognition/physiology , Habits , Reaction Time/physiology
11.
Brain Sci ; 12(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35741620

ABSTRACT

Developmental dyscalculia (DD) is a developmental disorder characterized by arithmetic difficulties. Recently, it has been suggested that the neural networks supporting procedure-based calculation (e.g., in subtraction) and left-hemispheric verbal arithmetic fact retrieval (e.g., in multiplication) are partially distinct. Here we compared the neurofunctional correlates of subtraction and multiplication in a 19-year-old student (RM) with DD to 18 age-matched controls. Behaviorally, RM performed significantly worse than controls in multiplication, while subtraction was unaffected. Neurofunctional differences were most pronounced regarding multiplication: RM showed significantly stronger activation than controls not only in left angular gyrus but also in a fronto-parietal network (including left intraparietal sulcus and inferior frontal gyrus) typically activated during procedure-based calculation. Region-of-interest analyses indicated group differences in multiplication only, which, however, did not survive correction for multiple comparisons. Our results are consistent with dissociable and processing-specific, but not operation-specific neurofunctional networks. Procedure-based calculation is not only associated with subtraction but also with (untrained) multiplication facts. Only after rote learning, facts can be retrieved quasi automatically from memory. We suggest that this learning process and the associated shift in activation patterns has not fully occurred in RM, as reflected in her need to resort to procedure-based strategies to solve multiplication facts.

12.
Brain Sci ; 12(5)2022 May 12.
Article in English | MEDLINE | ID: mdl-35625023

ABSTRACT

Most children use their fingers when learning to count and calculate. These sensorimotor experiences were argued to underlie reported behavioral associations of finger gnosis and counting with mathematical skills. On the neural level, associations were assumed to originate from overlapping neural representations of fingers and numbers. This study explored whether finger-based training in children would lead to specific neural activation in the sensorimotor cortex, associated with finger movements, as well as the parietal cortex, associated with number processing, during mental arithmetic. Following finger-based training during the first year of school, trained children showed finger-related arithmetic effects accompanied by activation in the sensorimotor cortex potentially associated with implicit finger movements. This indicates embodied finger-based numerical representations after training. Results for differences in neural activation between trained children and a control group in the IPS were less conclusive. This study provides the first evidence for training-induced sensorimotor plasticity in brain development potentially driven by the explicit use of fingers for initial arithmetic, supporting an embodied perspective on the representation of numbers.

13.
Acta Psychol (Amst) ; 226: 103576, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35390583

ABSTRACT

Facets of fine motor skills (FMS) and finger gnosia have been reported to predict young children's numerical competencies, possibly by affecting early finger counting experiences. Furthermore, neuronal connections between areas involved in finger motor movement, finger gnosia, and numerical processing have been posited. In this study, FMS and finger gnosia were investigated as predictors for preschool children's performance in numerical tasks. Preschool children (N = 153) completed FMS tasks measuring finger agility and finger dexterity as well as a non-motor finger gnosia task. Furthermore, children completed numerical tasks that involved finger use (i.e., finger counting and finger montring), and tasks that did not (i.e., picture-aided calculation and number line estimation). To control for possible confounding influences of domain general skills, we included measures of reasoning and spatial working memory. We found associations between FMS and both finger counting and calculation, but not finger montring. In contrast, finger gnosia was only associated with finger montring, but not finger counting and calculation. Surprisingly, there were no associations between FMS or finger gnosia with number line estimation. Findings highlight that the relationship between finger gnosia, FMS, and numerical skills is specific to task requirements. Possible implications are discussed.


Subject(s)
Fingers , Motor Skills , Child, Preschool , Humans , Mathematics , Motor Skills/physiology , Problem Solving
14.
Front Psychol ; 12: 723492, 2021.
Article in English | MEDLINE | ID: mdl-34650482

ABSTRACT

Number systems differ cross-culturally in characteristics like how high counting extends and which number is used as a productive base. Some of this variability can be linked to the way the hand is used in counting. The linkage shows that devices like the hand used as external representations of number have the potential to influence numerical structure and organization, as well as aspects of numerical language. These matters suggest that cross-cultural variability may be, at least in part, a matter of whether devices are used in counting, which ones are used, and how they are used.

15.
Front Neurorobot ; 15: 619504, 2021.
Article in English | MEDLINE | ID: mdl-33737873

ABSTRACT

Numerical cognition is a fundamental component of human intelligence that has not been fully understood yet. Indeed, it is a subject of research in many disciplines, e.g., neuroscience, education, cognitive and developmental psychology, philosophy of mathematics, linguistics. In Artificial Intelligence, aspects of numerical cognition have been modelled through neural networks to replicate and analytically study children behaviours. However, artificial models need to incorporate realistic sensory-motor information from the body to fully mimic the children's learning behaviours, e.g., the use of fingers to learn and manipulate numbers. To this end, this article presents a database of images, focused on number representation with fingers using both human and robot hands, which can constitute the base for building new realistic models of numerical cognition in humanoid robots, enabling a grounded learning approach in developmental autonomous agents. The article provides a benchmark analysis of the datasets in the database that are used to train, validate, and test five state-of-the art deep neural networks, which are compared for classification accuracy together with an analysis of the computational requirements of each network. The discussion highlights the trade-off between speed and precision in the detection, which is required for realistic applications in robotics.

16.
Cogn Sci ; 44(8): e12880, 2020 08.
Article in English | MEDLINE | ID: mdl-32761651

ABSTRACT

Representations of the fingers are embodied in our cognition and influence performance in enumeration tasks. Among deaf signers, the fingers also serve as a tool for communication in sign language. Previous studies in normal hearing (NH) participants showed effects of embodiment (i.e., embodied numerosity) on tactile enumeration using the fingers of one hand. In this research, we examined the influence of extensive visuo-manual use on tactile enumeration among the deaf. We carried out four enumeration task experiments, using 1-5 stimuli, on a profoundly deaf group (n = 16) and a matching NH group (n = 15): (a) tactile enumeration using one hand, (b) tactile enumeration using two hands, (c) visual enumeration of finger signs, and (d) visual enumeration of dots. In the tactile tasks, we found salient embodied effects in the deaf group compared to the NH group. In the visual enumeration of finger signs task, we controlled the meanings of the stimuli presentation type (e.g., finger-counting habit, fingerspelled letters, both or neither). Interestingly, when comparing fingerspelled letters to neutrals (i.e., not letters or numerical finger-counting signs), an inhibition pattern was observed among the deaf. The findings uncover the influence of rich visuo-manual experiences and language on embodied representations. In addition, we propose that these influences can partially account for the lag in mathematical competencies in the deaf compared to NH peers. Lastly, we further discuss how our findings support a contemporary model for mental numerical representations and finger-counting habits.


Subject(s)
Fingers , Hand , Persons With Hearing Impairments , Cognition , Humans , Mathematics , Sign Language
17.
Front Psychol ; 11: 1143, 2020.
Article in English | MEDLINE | ID: mdl-32581955

ABSTRACT

Understanding number magnitude is an important prerequisite for children's mathematical development. One early experience that contributes to this understanding is the common practice of finger counting. Recent research suggested that through repeated finger counting, children internalize their fingers as representations of number magnitude. Furthermore, finger counting habits have been proposed to predict concurrent and future mathematical performance. However, little is known about how finger-based number representations are formed and by which processes they could influence mathematical development. Regarding the emergence of finger-based number representations, it is likely that they result from repeated practice of finger counting. Accordingly, children need sufficient fine motor skills (FMS) to successfully count on their fingers. However, the role that different types of FMS (such as dexterity and graphomotor skills) might play in the development of finger-based number representations is still unknown. In the current study, we investigated (a) whether children's FMS (dexterity and graphomotor skills) are associated with their emerging finger-based number representations (ordinal and cardinal), (b) whether FMS explain variance in children's finger-based number representations beyond the influence of general cognitive skills, and (c) whether the association between FMS and numerical skills is mediated by finger-based representations. We tested associations between preschool children's (N = 80) FMS (dexterity and graphomotor skills), finger-based number representations, and numerical skills. Furthermore, visuo-spatial working memory and nonverbal intelligence were controlled for. Dexterity was related to children's finger-based number representations as well as numerical skills after controlling for chronological age, but not after also controlling for cognitive skills. Moreover, the relationship between dexterity and numerical skills was mediated by finger-based number representations. No such associations were observed for graphomotor skills. These results suggest that dexterity plays a role in children's development of finger-based number representations, which in turn contribute to their numerical skills. Possible explanations are discussed.

18.
Front Psychol ; 11: 1012, 2020.
Article in English | MEDLINE | ID: mdl-32528379

ABSTRACT

The well-documented association between fingers and numbers is not only based on the observation that most children use their fingers for counting and initial calculation, but also on extensive behavioral and neuro-functional evidence. In this article, we critically review developmental studies evaluating the association between finger sensorimotor skills (i.e., finger gnosis and fine motor skills) and numerical abilities. In sum, reviewed studies were found to provide evidential value and indicated that both finger gnosis and fine motor skills predict measures of counting, number system knowledge, number magnitude processing, and calculation ability. Therefore, specific and unique contributions of both finger gnosis and fine motor skills to the development of numerical skills seem to be substantiated. Through critical consideration of the reviewed evidence, we suggest that the association of finger gnosis and fine motor skills with numerical abilities may emerge from a combination of functional and redeployment mechanisms, in which the early use of finger-based numerical strategies during childhood might be the developmental process by which number representations become intertwined with the finger sensorimotor system, which carries an innate predisposition for said association to unfold. Further research is nonetheless necessary to clarify the causal mechanisms underlying this association.

19.
PeerJ ; 8: e9155, 2020.
Article in English | MEDLINE | ID: mdl-32435547

ABSTRACT

The Spatial Numerical Association of Response Code (SNARC) is the preferential association between smaller/larger magnitudes and left/right side, respectively. Some evidence suggest a link between SNARC and a left-to-right finger counting habit. We asked 268 participants to show how they use the hands to count from 1 to 10. By means of this ecological task, 80% of the sample use first the right hand (to count from 1 to 5) and the majority of them use a palm-up posture. In Experiment 2 (N = 46) right-starters were asked to categorize 1-to-5 magnitudes as even or odd, using the left and right hand. Stimuli were presented both as Arabic numbers and by means of left and right hand photographs in palm-up and palm-down posture. Results confirmed the expected SNARC effect in the Arabic condition. With hand images we found that right hand responses were better for larger than for smaller magnitudes (SNARC, mainly for left hand palm-up stimuli), showing that the SNARC can be generalized to different codes. Finally, the interactions between magnitudes and left/right hand images in palm-up and palm-down posture suggest that embodied cognition can influence numerical processing.

20.
Cogn Process ; 21(1): 95-103, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31701377

ABSTRACT

There is a well-documented association between fingers and numbers, which was claimed to stem from the use of finger-based strategies for counting and calculating during childhood. Recently, it has been argued that this may lead to a concomitant activation of finger-based alongside other numerical representations when encountering single-digit numbers. Indeed, the occurrence of such a co-activation is supported by observed influences of finger counting habits on different numerical tasks, including single-digit arithmetic problem solving. In this study, we pursued the question whether the influence of finger-based representations on arithmetic generalizes to multi-digit arithmetic by investigating the association between the recognition of canonical and non-canonical finger patterns and multi-digit arithmetic in adults. Results indicated that canonical finger-based numerical representations were significantly associated with addition performance only, whereas non-canonical finger-based representations were associated significantly with all four arithmetic operations. We argue that, because non-canonical patterns do not benefit from the iconicity of canonical patterns, their magnitude may need to be constructed through magnitude manipulation which may in turn increase associations with mental arithmetic. In sum, our findings provide converging evidence for a functional association between finger-based representations and arithmetic performance.


Subject(s)
Fingers/physiology , Mathematics , Psychomotor Performance/physiology , Adolescent , Adult , Cognition , Female , Humans , Male , Mental Recall , Middle Aged , Problem Solving , Reaction Time , Recognition, Psychology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL