Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Extracell Biol ; 3(7): e155, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38947879

ABSTRACT

Extracellular vesicle (EV) secretion is mediated by purinergic receptor P2X7 (P2RX7), an ATP-gated cation channel highly expressed in microglia. We have previously shown that administration of GSK1482160, a P2RX7 selective inhibitor, suppresses EV secretion from murine microglia and prevents tauopathy development, leading to the recovery of the hippocampal function in PS19 mice, expressing P301S tau mutant. It is yet unknown, however, whether the effect of GSK1482160 on EV secretion from glial cells is specifically regulated through P2RX7. Here we tested GSK1482160 on primary microglia and astrocytes isolated from C57BL/6 (WT) and P2rx7-/- mice and evaluated their EV secretion and phagocytotic activity of aggregated human tau (hTau) under ATP stimulation. GSK1482160 treatment and deletion of P2rx7 significantly reduced secretion of small and large EVs in microglia and astrocytes in both ATP stimulated or unstimulated condition as determined by nanoparticle tracking analysis, CD9 ELISA and immunoblotting of Tsg101 and Flotilin 1 using isolated EVs. GSK1482160 treatment had no effect on EV secretion from P2rx7 -/- microglia while we observed significant reduction in the secretion of small EVs from P2rx7 -/- astrocytes, suggesting its specific targeting of P2RX7 in EV secretion except small EV secretion from astrocytes. Finally, deletion of P2rx7 suppressed IL-1ß secretion and phagocytosed misfolded tau from both microglia and astrocytes. Together, these findings show that GSK1482160 suppresses EV secretion from microglia and astrocytes in P2RX7-dependment manner, and P2RX7 critically regulates secretion of IL-1ß and misfolded hTau, demonstrating as the viable target of suppressing EV-mediated neuroinflammation and tau propagation.

2.
Cells ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38534331

ABSTRACT

High blood levels of low-density lipoprotein (LDL)-cholesterol (LDL-C) are associated with atherosclerosis, mainly by promoting foam cell accumulation in vessels. As cholesterol is an essential component of cell plasma membranes and a regulator of several signaling pathways, LDL-C excess may have wider cardiovascular toxicity. We examined, in untreated hypercholesterolemia (HC) patients, selected regardless of the cause of LDL-C accumulation, and in healthy participants (HP), the expression of the adenosine A2A receptor (A2AR), an anti-inflammatory and vasodilatory protein with cholesterol-dependent modulation, and Flotillin-1, protein marker of cholesterol-enriched plasma membrane domains. Blood cardiovascular risk and inflammatory biomarkers were measured. A2AR and Flotillin-1 expression in peripheral blood mononuclear cells (PBMC) was lower in patients compared to HP and negatively correlated to LDL-C blood levels. No other differences were observed between the two groups apart from transferrin and ferritin concentrations. A2AR and Flotillin-1 proteins levels were positively correlated in the whole study population. Incubation of HP PBMCs with LDL-C caused a similar reduction in A2AR and Flotillin-1 expression. We suggest that LDL-C affects A2AR expression by impacting cholesterol-enriched membrane microdomains. Our results provide new insights into the molecular mechanisms underlying cholesterol toxicity, and may have important clinical implication for assessment and treatment of cardiovascular risk in HC.


Subject(s)
Cardiovascular Diseases , Hypercholesterolemia , Membrane Proteins , Humans , Cholesterol, LDL/metabolism , Receptor, Adenosine A2A/metabolism , Leukocytes, Mononuclear/metabolism , Adenosine , Risk Factors , Cholesterol , Carrier Proteins , Heart Disease Risk Factors , Membrane Microdomains/metabolism
3.
Cancer Biol Ther ; 24(1): 2203332, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37131290

ABSTRACT

Radiation resistance results in the recurrence and metastasis of non-small cell lung cancer (NSCLC) after radiotherapy. A major cause of radiation resistance is subversion of immune surveillance and clearance. Although our previous research has demonstrated that programmed death-ligand 1 (PD-L1) is responsible for radiation resistance in NSCLC, PD-L1 alone was not a reliable predictor of radiotherapy efficacy. For further exploration of the predictors of radiotherapy efficacy, which could add accuracy to the single biomarker - PD-L1, immunoprecipitation followed by mass spectrometry assay was performed to identify proteins that interact with PD-L1, and flotillin-1 (FLOT1) was detected as a candidate. However, the role of FLOT1 in radiation resistance in NSCLC is largely unknown. Here, we defined FLOT1 as a positive regulator of PD-L1 at the cell level, and the expression of PD-L1 was reduced following FLOT1 depletion. Furthermore, we found that the knockdown of FLOT1 impeded radiation-mediated cell migration and epithelial-mesenchymal transition process. Moreover, FLOT1 depletion enhanced radiation-induced DNA damage, thereby increasing the radiation lethality for NSCLC cells and promoting radiation-mediated tumor regression in animal models and patients with NSCLC. Furthermore, FLOT1 depletion-boosted DNA damage activated STING signaling pathway and promoted the production of CCL5 and CXCL10 that can drive CD8+ T lymphocytes chemotaxis, thereby reprogramming tumor immune microenvironment and triggering the antitumor immune response. Indeed, FLOT1 expression correlated with infiltration of immune cells in NSCLC tumor tissue samples. Taken together, our findings reported an unexplored role of FLOT1 in radiotherapy and also provided an evidence base for FLOT1 as a promising biomarker to predict the response to radiotherapy and a potential therapeutic target for enhancing radiotherapy effects.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Signal Transduction , DNA Damage , Tumor Microenvironment
4.
J Cell Mol Med ; 27(3): 392-402, 2023 02.
Article in English | MEDLINE | ID: mdl-36647700

ABSTRACT

Flotillin-1(FLOT1) has long been recognized as a tumour-promoting gene in several types of cancer. However, the expression and function of FLOT1 in glioblastomas (GBM) has not been elucidated. Here, in this study, we find that the expression level of FLOT1 in GBM tissue was much higher than that in normal brain, and the expression was even higher in the more aggressive subtypes and IDH status of glioma. Kaplan-Meier survival revealed that high FLOT1 expression is closely associated with poor outcome in GBM patients. FLOT1 knockdown markedly reduced the proliferation, migration and invasiveness of GBM cells, while FLOT1 overexpression significantly increases GBM cell proliferation, migration and invasiveness. Mechanistically, FLOT1 expression may play a potential role in the microenvironment of GBM. Therefore, FLOT1 promotes GBM proliferation and invasion in vitro and in vivo and may serve as a biomarker of prognosis and therapeutic potential in the fight against GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Prognosis , Tumor Microenvironment/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Cell Movement/genetics
5.
Int J Cancer ; 152(9): 1933-1946, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36691829

ABSTRACT

Ras mutations have been frequently observed in human cancer. Although there is a high degree of similarity between Ras isomers, they display preferential coupling in specific cancer types. The binding of Ras to the plasma membrane is essential for its activation and biological functions. The present study elucidated Ras isoform-specific interactions with the membrane and their role in Ras-mediated biological activities. We investigated the role of a lipid raft protein flotillin-1 (Flot-1) in the activations of Ras. We found that Flot-1 was co-localized with H-Ras, but not with N-Ras, in lipid rafts of MDA-MB-231 human breast cells. The amino-terminal hydrophobic domain (1-38) of Flot-1 interacted with the hypervariable region of H-Ras. The epidermal growth factor-stimulated activation of H-Ras required Flot-1 which was not necessary for that of N-Ras in breast cancer cells. Flot-1 interacted with son of sevenless (SOS)-1, which promotes the conversion of Ras-bound GDP to GTP. Notably, Flot-1 was crucial for the interaction between SOS1 and H-Ras/K-Ras in breast and pancreatic cancer cells. Stable knockdown of Flot-1 reduced the in vivo metastasis in a mouse xenograft model with human breast carcinoma cells. A tissue microarray composed of 61 human pancreatic cancer samples showed higher levels of Flot-1 expression in pancreatic tumor tissues compared to normal tissues, and a correlation between K-Ras and Flot-1. Taken together, our findings suggest that Flot-1 may serve as a membrane platform for the interaction of SOS1 with H-Ras/K-Ras in human cancer cells, presenting Flot-1 as a potential target for Ras-driven cancers.


Subject(s)
Membrane Proteins , Pancreatic Neoplasms , Humans , Animals , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Microdomains/metabolism , Pancreatic Neoplasms/metabolism
6.
PeerJ ; 10: e13901, 2022.
Article in English | MEDLINE | ID: mdl-35990908

ABSTRACT

Gastric cancer is one of the most common malignancies worldwide and has been identified as the third leading cause of cancer-related mortality. Flotillin-1 is a lipid raft-associated scaffolding protein and plays an important role in the progression and development of several malignant carcinomas. Flotillin-1 is involved in epithelial-mesenchymal transition (EMT) process of several solid tumors to promote metastasis. However, the detailed characteristics and mechanisms of Flotillin-1 in gastric cancer have rarely been investigated. In this study, we found Flotillin-1 upregulated in gastric cancer, and the high expression of Flotillin-1 correlated with a worse prognosis. The migration and invasion ability of gastric cancer cells was upregulated by overexpressing Flotillin-1. Knockdown of Flotillin-1 inhibits gastric cancer cells metastasis. Flotillin-1 is a key regulator of EMT process and promotes gastric cancer cells metastasis through inducing EMT. Flotillin-1 may interact with a deubiquitinase to inhibit the ubiquitination of Snail in gastric cancer cells to promote EMT process. Our study provides a rationale and potential target for the treatment of gastric cancer.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Signal Transduction , Cell Line, Tumor
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(7): 966-975, 2022 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-35869758

ABSTRACT

OBJECTIVE: To explore the role of vasohibin-2 (VASH2) in regulation of proliferation and metastasis of cervical cancer cells. METHODS: We analyzed the differentially expressed genes between cervical cancer cells with flotillin-1 overexpression and knockdown by RNA-seq combined with analysis of public databases. The expression levels of VASH2 were examined in normal cervical epithelial cells (HcerEpic), cervical cancer cell lines (HeLa, C-33A, Ca ski, SiHa and MS751) and fresh cervical cancer tissues with different lymph node metastasis status. We further tested the effects of lentivirus-mediated overexpression and interference of VASH2 on proliferation, migration, invasion and lymphatic vessel formation of the cervical cancer cells and detected the expression levels of key epithelial-mesenchymal transition (EMT) markers and TGF-ß mRNA. RESULTS: RNA-seq and analysis of public databases showed that VASH2 expression was significantly upregulated in cervical cancer cells exogenously overexpressing flotillin-1 (P < 0.05) and downregulated in cells with flotillin-1 knockdown (P < 0.05), and was significantly higher in cervical cancer tissues with lymph node metastasis than in those without lymph node metastasis (P < 0.01). In cervical cancer cell lines Ca Ski, SiHa, and MS751 and cervical cancer tissue specimens with lymph node metastasis, VASH2 expression was also significantly upregulated as compared with HcerEpic cells and cervical cancer tissues without lymph node metastasis (P < 0.05). Exogenous overexpression of VASH2 significantly promoted proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells, whereas these abilities were significantly inhibited in cells with VASH2 knockdown (P < 0.05). The cervical cancer cells overexpressing VASH2 showed significant down- regulation of e-cadherin and up- regulation of N-cadherin, Vimentin and VEGF-C, while the reverse changes were detected in cells with VASH2 knockdown (P < 0.05). TGF-ß mRNA expression was significantly up-regulated in cervical cancer cells overexpressing VASH2 and down-regulated in cells with VASH2 knockdown (P < 0.001). CONCLUSION: Flotillin-1 may participate in TGF-ß signaling pathway-mediated EMT through its down-stream target gene VASH2 to promote the proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells in vitro.


Subject(s)
Epithelial-Mesenchymal Transition , Uterine Cervical Neoplasms , Angiogenic Proteins/genetics , Angiogenic Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , RNA, Messenger , Transforming Growth Factor beta/metabolism , Uterine Cervical Neoplasms/pathology
8.
Cells ; 11(11)2022 05 24.
Article in English | MEDLINE | ID: mdl-35681422

ABSTRACT

Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206+ macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1+ DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.


Subject(s)
Fabry Disease , Transient Receptor Potential Channels , Animals , Disease Models, Animal , Fabry Disease/complications , Fabry Disease/genetics , Humans , Immunity , Interleukins/metabolism , Mice , Mice, Knockout , Pain
9.
Front Plant Sci ; 13: 897594, 2022.
Article in English | MEDLINE | ID: mdl-35620697

ABSTRACT

Plasma membranes are heterogeneous and contain multiple functional nanodomains. Although several signaling proteins have been shown to function by moving into or out of nanodomains, little is known regarding the effects of environmental cues on nanodomain organization. In this study, we investigated the heterogeneity and organization of distinct nanodomains, including those containing Arabidopsis thaliana flotillin-1 (AtFlot1) and hypersensitive induced reaction-1 proteins (AtHIR1), in response to biotic and abiotic stress. Variable-angle total internal reflection fluorescence microscopy coupled with single-particle tracking (SPT) revealed that AtFlot1 and AtHIR1 exhibit different lateral dynamics and inhabit different types of nanodomains. Furthermore, via SPT and fluorescence correlation spectroscopy, we observed lower density and intensity of AtFlot1 fluorescence in the plasma membrane after biotic stress. In contrast, the density and intensity of signal indicating AtHIR1 markedly increased in response to biotic stress. In response to abiotic stress, the density and intensity of both AtFlot1 and AtHIR1 signals decreased significantly. Importantly, SPT coupled with fluorescence recovery after photobleaching revealed that biotic and abiotic stress can regulate the dynamics of AtFlot1; however, only the abiotic stress can regulate AtHIR1 dynamics. Taken together, these findings suggest that a plethora of highly distinct nanodomains coexist in the plasma membrane (PM) and that different nanodomains may perform distinct functions in response to biotic and abiotic stresses. These phenomena may be explained by the spatial clustering of plasma membrane proteins with their associated signaling components within dedicated PM nanodomains.

10.
Eur J Pharmacol ; 916: 174631, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34774850

ABSTRACT

BACKGROUND: Several past studies have reported the overexpression of Flotillin-1 in a variety of cancer types. Cisplatin is a chemotherapeutic drug commonly used for cancer treatment. The present study investigated the role of Flotillin-1 in the progression of GC and assessed whether it assists in the chemical sensitization of GC cells toward cisplatin. METHOD: The expression of Flotillin-1 was detected both in human gastric mucosal cells and GC cells. Next, siRNA and shRNA were used to construct a stable cell line expressing low levels of Flotillin-1. Furthermore, the Cell Counting Kit 8 (CCK-8), flow cytometry, and transwell assays were employed to detect the impact of Flotillin-1 on GC cells. In addition, a nude mouse model of human GC was used to verify the knockdown of Flotillin-1 to increase the sensitivity of GC cells to cisplatin. RESULTS: Flotillin-1 was overexpressed in GC cells when compared to that in human gastric mucosal cells. The results for in vitro and vivo assays revealed that the knockdown of Flotillin-1 could significantly inhibit the proliferation of GC cells and increased the sensitivity of GC cells to cisplatin via the regulation of the protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signaling pathway. CONCLUSION: Flotillin-1 might be used as a molecular marker for GC diagnosis and could be explored as a potential new target for the treatment of GC.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Stomach Neoplasms/genetics , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cisplatin/therapeutic use , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice, Nude , Signal Transduction/drug effects , Signal Transduction/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Up-Regulation
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-941029

ABSTRACT

OBJECTIVE@#To explore the role of vasohibin-2 (VASH2) in regulation of proliferation and metastasis of cervical cancer cells.@*METHODS@#We analyzed the differentially expressed genes between cervical cancer cells with flotillin-1 overexpression and knockdown by RNA-seq combined with analysis of public databases. The expression levels of VASH2 were examined in normal cervical epithelial cells (HcerEpic), cervical cancer cell lines (HeLa, C-33A, Ca ski, SiHa and MS751) and fresh cervical cancer tissues with different lymph node metastasis status. We further tested the effects of lentivirus-mediated overexpression and interference of VASH2 on proliferation, migration, invasion and lymphatic vessel formation of the cervical cancer cells and detected the expression levels of key epithelial-mesenchymal transition (EMT) markers and TGF-β mRNA.@*RESULTS@#RNA-seq and analysis of public databases showed that VASH2 expression was significantly upregulated in cervical cancer cells exogenously overexpressing flotillin-1 (P < 0.05) and downregulated in cells with flotillin-1 knockdown (P < 0.05), and was significantly higher in cervical cancer tissues with lymph node metastasis than in those without lymph node metastasis (P < 0.01). In cervical cancer cell lines Ca Ski, SiHa, and MS751 and cervical cancer tissue specimens with lymph node metastasis, VASH2 expression was also significantly upregulated as compared with HcerEpic cells and cervical cancer tissues without lymph node metastasis (P < 0.05). Exogenous overexpression of VASH2 significantly promoted proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells, whereas these abilities were significantly inhibited in cells with VASH2 knockdown (P < 0.05). The cervical cancer cells overexpressing VASH2 showed significant down- regulation of e-cadherin and up- regulation of N-cadherin, Vimentin and VEGF-C, while the reverse changes were detected in cells with VASH2 knockdown (P < 0.05). TGF-β mRNA expression was significantly up-regulated in cervical cancer cells overexpressing VASH2 and down-regulated in cells with VASH2 knockdown (P < 0.001).@*CONCLUSION@#Flotillin-1 may participate in TGF-β signaling pathway-mediated EMT through its down-stream target gene VASH2 to promote the proliferation, migration, invasion and lymphatic vessel formation of cervical cancer cells in vitro.


Subject(s)
Female , Humans , Angiogenic Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Lymphatic Metastasis , RNA, Messenger , Transforming Growth Factor beta/metabolism , Uterine Cervical Neoplasms/pathology
12.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445708

ABSTRACT

Brain injury/concussion is a growing epidemic throughout the world. Although evidence supports association between traumatic brain injury (TBI) and disturbance in brain glucose metabolism, the underlying molecular mechanisms are not well established. Previously, we reported the release of cellular prion protein (PrPc) from the brain to circulation following TBI. The PrPc level was also found to be decreased in insulin-resistant rat brains. In the present study, we investigated the molecular link between PrPc and brain insulin resistance in a single and repeated mild TBI-induced mouse model. Mild TBI was induced in mice by dropping a weight (~95 g at 1 m high) on the right side of the head. The procedure was performed once and thrice (once daily) for single (SI) and repeated induction (RI), respectively. Micro PET/CT imaging revealed that RI mice showed significant reduction in cortical, hippocampal and cerebellum glucose uptake compared to SI and control. Mice that received RI also showed significant motor and cognitive deficits. In co-immunoprecipitation, the interaction between PrPc, flotillin and Cbl-associated protein (CAP) observed in the control mice brains was disrupted by RI. Lipid raft isolation showed decreased levels of PrPc, flotillin and CAP in the RI mice brains. Based on observation, it is clear that PrPc has an interaction with CAP and the dislodgment of PrPc from cell membranes may lead to brain insulin resistance in a mild TBI mouse model. The present study generated a new insight into the pathogenesis of brain injury, which may result in the development of novel therapy.


Subject(s)
Brain Concussion/physiopathology , Insulin Resistance/physiology , Animals , Brain/metabolism , Brain Concussion/diagnostic imaging , Brain Injuries/complications , Cognition Disorders/etiology , Disease Models, Animal , Glucose/metabolism , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Positron-Emission Tomography/methods , Prion Proteins/metabolism , Prions/metabolism , Signal Transduction/physiology
13.
Front Psychiatry ; 12: 626121, 2021.
Article in English | MEDLINE | ID: mdl-34211409

ABSTRACT

Flotillin proteins are involved in neurodegeneration and T-cell immunity. Here, we report the case of 65-year-old woman who presented with dementia, depressive symptoms, and a patient history involving speech problems. As diagnostics methods we applied magnetic resonance imaging, clinical examination, extensive neuropsychological testing, and cerebrospinal fluid analysis. Neuropsychological testing revealed major cognitive decline in attentional, executive, and memory functions together with impaired activities of daily living. The cerebrospinal fluid showed elevated phosphorylated tau protein 181. We identified serum autoantibodies against the flotillin 1/2 complex. Immunotherapy entailing four cycles of high-dose steroids resulted in less cognitive dysfunction along with reduced depressive symptoms in the second follow-up after starting steroids. In conclusion: probable autoimmune-mediated dementia associated with anti-flotillin 1/2 complex autoantibodies expands the phenotypic spectrum of anti-flotillin 1/2 antibody disease.

14.
Front Cell Dev Biol ; 9: 634160, 2021.
Article in English | MEDLINE | ID: mdl-33634132

ABSTRACT

Transient receptor potential vanilloid subtype 2 (TRPV2) channel is a polymodal receptor regulating neuronal development, cardiac function, immunity and oncogenesis. The activity of TRPV2 is regulated by the molecular interactions in the subplasmalemmel signaling complex. Here by yeast two-hybrid screening of a cDNA library of mouse dorsal root ganglia (DRG) and patch clamp electrophysiology, we identified that flotillin-1, the lipid raft-associated protein, interacts with TRPV2 channel and regulates its function. The interaction between TRPV2 and flotillin-1 was validated through co-immuoprecipitation in situ using endogenous DRG neurons and the recombinant expression model in HEK 293T cells. Fluorescent imaging and bimolecular fluorescence complementation (BiFC) further revealed that flotillin-1 and TRPV2 formed a functional complex on the cell membrane. The presence of flotillin-1 enhanced the whole-cell current density of TRPV2 via increasing its surface expression levels. Using site-specific mapping, we also uncovered that the SPFH (stomatin, prohibitin, flotillin, and HflK/C) domain of flotillin-1 interacted with TRPV2 N-termini and transmembrane domains 1-4, respectively. Our findings therefore demonstrate that flotillin-1 is a key element in TRPV2 signaling complex and modulates its cellular response.

15.
Mem. Inst. Oswaldo Cruz ; 115: e190398, 2020. graf
Article in English | LILACS | ID: biblio-1091238

ABSTRACT

BACKGROUND Streptococcus agalactiae capsular type III strains are a leading cause of invasive neonatal infections. Many pathogens have developed mechanisms to escape from host defense response using the host membrane microdomain machinery. Lipid rafts play an important role in a variety of cellular functions and the benefit provided by interaction with lipid rafts can vary from one pathogen to another. OBJECTIVES This study aims to evaluate the involvement of membrane microdomains during infection of human endothelial cell by S. agalactiae. METHODS The effects of cholesterol depletion and PI3K/AKT signaling pathway activation during S. agalactiae-human umbilical vein endothelial cells (HUVEC) interaction were analysed by pre-treatment with methyl-β-cyclodextrin (MβCD) or LY294002 inhibitors, immunofluorescence and immunoblot analysis. The involvement of lipid rafts was analysed by colocalisation of bacteria with flotillin-1 and caveolin-1 using fluorescence confocal microscopy. FINDINGS In this work, we demonstrated the importance of the integrity of lipid rafts microdomains and activation of PI3K/Akt pathway during invasion of S. agalactiae strain to HUVEC cells. Our results suggest the involvement of flotillin-1 and caveolin-1 during the invasion of S. agalactiae strain in HUVEC cells. CONCLUSIONS The collection of our results suggests that lipid microdomain affects the interaction of S. agalactiae type III belonging to the hypervirulent ST-17 with HUVEC cells through PI3K/Akt signaling pathway.


Subject(s)
Humans , Infant, Newborn , Streptococcus agalactiae/pathogenicity , Virulence , Membrane Microdomains/virology , Endothelial Cells/virology , Membrane Lipids , Streptococcus agalactiae/genetics
16.
Ann Transl Med ; 7(18): 469, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31700905

ABSTRACT

BACKGROUND: Moxifloxacin (MXF) possesses anti-inflammatory properties on asthmatic airway smooth muscle cells (ASMCs) beyond their antimicrobial effects, but the mechanisms are still unknown. This study was to investigate effects of MXF on expression of caveolin-1 (Cav-1) and flotillin-1 (FLOT1) in ASMCs in asthmatic rats. METHODS: ASMCs were collected from the airway and cultured in vitro. Cells from normal rats were treated with normal saline (Group N); cells from asthmatic rats were incubated with normal saline (Group A) or MXF (20 mg/L) (Group M); Cav-1 expression was up-regulated by transferring Cav-1 expressing lentivirus (Group L) and FLOT1 expression down-regulated by using siRNA in cells from asthmatic rats (Group S). The expressions of Cav-1, FLOT1 and p65 NF-κB were measured by Western blotting and quantificational real-time polymerase chain reaction (qRT-PCR), and interleukin-8 (IL-8) and eotaxin contents were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Compared with normal control, Cav-1 expression significantly decreased in asthmatic groups (P<0.01); MXF up-regulated Cav-1 expression in asthmatic groups (P<0.01). However, compared with normal control, the expression of FLOT1 and p65 NF-κB dramatically increased in asthmatic groups (P<0.01); MXF down-regulated the expression of FLOT1 and p65 NF-κB in asthmatic groups (P<0.01); meanwhile, the expressions of FLOT1 and p65 NF-κB decreased after up-regulation of Cav-1 expression in asthmatic groups (P=0.01). Compared with asthmatic groups, the IL-8 and eotaxin contents significantly decreased in MXF Groups, Cav-1 up-regulation asthmatic groups and FLOT1 down-regulation asthmatic groups (P<0.01). CONCLUSIONS: MXF can modulate the airway inflammation, upregulate Cav-1 expression, downregulate the expression of FLOT1 and p65 NF-κB in asthmatic rat ASMCs, which may be related to the anti-inflammatory effects of MXF in asthmatic ASMCs.

17.
Oncol Lett ; 18(2): 997-1004, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31423159

ABSTRACT

Flotillin 1 (FLOT1) is increasingly implicated in various types of cancer, and has been reported to influence tumorigenesis and cancer progression, leading to poor prognosis for survival time; however, its expression in colorectal cancer (CRC) and its influence on various clinicopathological parameters of this disease remain unknown. In the present study, FLOT1 expression and its effect on different clinicopathological parameters were assessed immunohistochemically and histologically in 81 CRC and 81 non-tumorous colon tissue samples. The immunohistochemical staining was scored semi-quantitatively. The association of FLOT1 expression with various parameters and its effect on overall survival time was also assessed. FLOT1 was upregulated in the CRC tissue, with increased expression in the right colon tissue samples compared with those of left colon. Increased FLOT1 expression in CRC tissue samples was associated with tumor volume, differentiation, tumor grade and poor overall survival time. In the right colon tissue samples in particular, there was a notable association with tumor volume and grade, indicating its effect on proliferation and tumor stage at this site. A multivariate Cox regression hazard analysis revealed that only tumor grade and differentiation were the independent predictors of overall survival time in patients with CRC. Together, the results of the present study suggest that FLOT1 serves important functions in the proliferation and progression of CRC, contributes to decreased survival time, and may serve as a novel therapeutic target for the treatment of CRC.

18.
Int J Mol Sci ; 20(11)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195708

ABSTRACT

Diets of dairy cows are often based on maize silage (MS), delivering lower amounts of n-3 fatty acids (FA) compared to grass silage-based diets. The fatty acid composition of the cell membrane can affect the cell function. We evaluated the effects of an MS-based diet on bovine red blood cell (RBC) membrane FA composition and dietary effects on controlled ATP release of RBC. In trial 1, German Holstein cows were fed an MS-based total mixed ration for 24 weeks. The FA composition of RBC membranes from repeatedly taken blood samples was analysed in addition to the abundance of the RBC membrane protein flotillin-1, which is involved in, for example, cell signalling. In trial 2, four rumen fistulated MS-fed cows were abomasally infused in a 4 × 4 Latin square model with three successively increasing lipid dosages (coconut oil, linseed-safflower oil mix (EFA; rich in n-3 FA), Lutalin®, providing conjugated linoleic acids (CLA) or the combination of the supplements, EFA + CLA) for six weeks, followed by a three-week washout period. In trial 2, we analysed RBC ATP release, flotillin-1, and the membrane protein abundance of pannexin-1, which is involved in ATP release as the last part of a signalling cascade. In trial 1, the total amount of n-3 FA in RBC membranes decreased and the flotillin-1 abundance increased over time. In trial 2, the RBC n-3 FA amount was higher after the six-week infusion period of EFA or EFA + CLA. Furthermore, depending on the dosage of FA, the ATP release from RBC increased. The abundance of flotillin-1 and pannexin-1 was not affected in trial 2. It is concluded that changes of the membrane FA composition influence the RBC function, leading to altered ATP release from intact bovine RBC.


Subject(s)
Adenosine Triphosphate/metabolism , Dairying , Diet , Erythrocyte Membrane/metabolism , Fatty Acids/pharmacology , Animals , Cattle , Connexins/metabolism , Dietary Supplements , Erythrocyte Membrane/drug effects , Female , Membrane Proteins/metabolism
19.
mBio ; 10(2)2019 03 26.
Article in English | MEDLINE | ID: mdl-30914515

ABSTRACT

Anaplasma phagocytophilum is an obligatory intracellular bacterium that proliferates in membrane-bound inclusions. A. phagocytophilum is dependent on cholesterol and acquire cholesterol from low-density lipoprotein (LDL) endocytosed by mammalian host cells. The mechanism of cholesterol transport to Anaplasma inclusions, however, is not fully understood. Flotillin-1 (FLOT1) and FLOT2 are cholesterol-associated membrane proteins that form a heterodimer and/or oligomer complex. Here, we found that Anaplasma infection was significantly reduced by small interfering RNA (siRNA) knockdown of FLOT1 or FLOT2. Anaplasma inclusions were encircled with small vesicles containing endogenous FLOT1 or FLOT2 or with ectopically expressed FLOT1-mCherry and FLOT2-green fluorescent protein (FLOT2-GFP). FLOT1- and FLOT2-containing vesicles were enriched with unesterified cholesterol, as indicated by labeling with filipin and aminomethyl coumarin acetic acid-conjugated theonellamide. Localization of FLOT2 to Anaplasma inclusions was dependent on cholesterol, as FLOT2-GFP bearing two mutations in the cholesterol recognition/interaction motif could not target the inclusions. The cholesterol-sequestering agent methyl-ß-cyclodextrin abrogated FLOT1 localization to Anaplasma inclusions and cleared infection. FLOT2-GFP also localized to fluorescent 3,3'-dioctadecylindocarbocyanine (DiI)-LDL-containing vesicles, including those surrounding Anaplasma inclusions. FLOT2 siRNA knockdown blocked DiI-LDL trafficking to Anaplasma inclusions and reduced bacteria-associated cholesterol amount, and therefore inhibiting Anaplasma infection. Vesicles containing acid lipase, which hydrolyzes LDL cholesterol esters to free cholesterol, colocalized with FLOT2 and encircled Anaplasma inclusions, while the acid lipase inhibitor orlistat significantly inhibited Anaplasma replication. Together, the data revealed that FLOTs are crucial for Anaplasma replication in host cells, likely by aiding vesicular traffic of LDL-derived free cholesterol to Anaplasma inclusions, and suggest a new way of inhibiting Anaplasma infection.IMPORTANCE Cholesterol is essential for animal cells, but most bacteria do not depend on cholesterol and instead lack cholesterol. However, the intracellular Gram-negative bacterium Anaplasma phagocytophilum that causes human granulocytic anaplasmosis (HGA) is unusual, as it contains significant amount of cholesterol and depends on cholesterol for survival and infection. A. phagocytophilum lacks genes for cholesterol biosynthesis or modification but acquire cholesterol from host cells exclusively from the LDL uptake pathway by a yet-to-be defined mechanism. Here, we uncovered a role of cholesterol-binding proteins FLOT1 and FLOT2 in LDL-derived cholesterol trafficking to Anaplasma inclusions and cholesterol acquisition by Anaplasma species. Importantly, we found that FLOTs localize to A. phagocytophilum-containing inclusions and the compartments containing LDL, and the acid lipase inhibitor orlistat significantly inhibits Anaplasma replication. Our data suggest a fundamental role of FLOTs in intracellular vesicular transport of LDL-derived free cholesterol and may provide insight regarding a new therapeutic target for HGA treatment.


Subject(s)
Anaplasma phagocytophilum/growth & development , Cholesterol, LDL/metabolism , Ehrlichiosis/physiopathology , Host-Pathogen Interactions , Membrane Proteins/metabolism , Cell Line , Humans , Models, Biological
20.
Phytomedicine ; 57: 18-29, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30668319

ABSTRACT

BACKGROUND: Luteolin (3,4,5,7-tetrahydroxy flavone) is a natural flavonoid abundant in fruits and vegetables. Although luteolin has shown pro-apoptotic activity in hepatocellular carcinoma (HCC) cells, the underlying molecular mechanism has not yet been clarified. PURPOSE: The aim of this study is to identify novel miRNAs involved in the action of luteolin in HCC cells and to explore the biological roles of these miRNAs. METHODS: The effect of luteolin on HCC cell growth was assessed using CCK-8 colony formation assay, flow cytometric analysis in vitro, and a xenograft model in vivo. miRNA expression profiles were assessed using next-generation sequencing. Differentially expressed miRNAs were validated by quantitative PCR. Bioinformatics analysis and luciferase reporter assay were utilized to confirm the binding of miR-6809-5p to the 3'-untranslated region (3'-UTR) of flotillin 1 (FLOT1). Furthermore, the effects of ectopic FLOT1 and miR-6809-5 expression on cell proliferation, colony formation, and cell apoptosis were also assessed. Western blotting analysis was used to detect activation of multiple signaling molecules including Erk1/2, p38, JNK, and NF-κB/p65 in the MAPK pathway. RESULTS: It was found that luteolin significantly inhibited HCC growth and caused apoptosis and cell cycle arrest at the G0/G1 phase in Huh7 cells, at the G2/M phase in HepG2 cells in vitro. Tumorigenic studies revealed that luteolin treatment significantly suppressed HCC growth in vivo. miR-6809-5p was upregulated by luteolin. Overexpression of miR-6809-5p suppressed HCC cell growth, while knockdown of miR-6809-5p reversed the anticancer effect of luteolin. With regards to its signaling mechanism, miR-6809-5p directly targets FLOT1in HCC cells. Enforced expression of FLOT1 prevented miR-6809-5p-mediated growth suppression. Downregulation of FLOT1 exerted growth-suppressive effects on HCC cells. Multiple signaling pathways including Erk1/2, p38, JNK, and NF-κB/p65 were inactivated by miR-6809-5p overexpression or FLOT1 downregulation. CONCLUSION: These findings indicated that miR-6809-5p mediates the growth-suppressive activity of luteolin in HCC, which is causally linked to FLOT1 downregulation. Induction of miR-6809-5p may provide therapeutic benefits in the treatment of HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Luteolin/pharmacology , MicroRNAs/genetics , Animals , Apoptosis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Membrane Proteins/genetics , Mice, Nude , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL