Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.314
Filter
1.
JMIR Public Health Surveill ; 10: e59237, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39250185

ABSTRACT

Background: Hand, foot, and mouth disease (HFMD) is a notable infectious disease predominantly affecting infants and children worldwide. Previous studies on HFMD have primarily focused on natural patterns, such as seasonality, but research on the influence of important social time points is lacking. Several studies have indicated correlations between birthdays and certain disease outcomes. Objective: This study aimed to explore the association between birthdays and HFMD. Methods: Surveillance data on HFMD from 2008 to 2022 in Yunnan Province, China, were collected. We defined the period from 6 days before the birthday to the exact birthday as the "birthday week." The effect of the birthday week was measured by the proportion of cases occurring during this period, termed the "birthday week proportion." We conducted subgroup analyses to present the birthday week proportions across sexes, age groups, months of birth, and reporting years. Additionally, we used a modified Poisson regression model to identify conditional subgroups more likely to contract HFMD during the birthday week. Results: Among the 973,410 cases in total, 116,976 (12.02%) occurred during the birthday week, which is 6.27 times the average weekly proportion (7/365, 1.92%). While the birthday week proportions were similar between male and female individuals (68,849/564,725, 12.19% vs 48,127/408,685, 11.78%; χ21=153.25, P<.001), significant differences were observed among different age groups (χ23=47,145, P<.001) and months of birth (χ211=16,942, P<.001). Compared to other age groups, infants aged 0-1 year had the highest birthday week proportion (30,539/90,709, 33.67%), which is 17.57 times the average weekly proportion. Compared to other months, patients born from April to July and from October to December, the peak months of the HFMD epidemic, had higher birthday week proportions. Additionally, a decreasing trend in birthday week proportions from 2008 to 2022 was observed, dropping from 33.74% (3914/11,600) to 2.77% (2254/81,372; Cochran-Armitage trend test: Z=-102.53, P<.001). The results of the modified Poisson regression model further supported the subgroup analyses findings. Compared with children aged >7 years, infants aged 0-1 year were more likely to contract HFMD during the birthday week (relative risk 1.182, 95% CI 1.177-1.185; P<.001). Those born during peak epidemic months exhibited a higher propensity for contracting HFMD during their birthday week. Compared with January, the highest relative risk was observed in May (1.087, 95% CI 1.084-1.090; P<.001). Conclusions: This study identified a novel "birthday week effect" of HFMD, particularly notable for infants approaching their first birthday and those born during peak epidemic months. Improvements in surveillance quality may explain the declining trend of the birthday week effect over the years. Higher exposure risk during the birthday period and potential biological mechanisms might also account for this phenomenon. Raising public awareness of the heightened risk during the birthday week could benefit HFMD prevention and control.


Subject(s)
Hand, Foot and Mouth Disease , Hand, Foot and Mouth Disease/epidemiology , China/epidemiology , Humans , Female , Male , Infant , Child, Preschool , Child , Adolescent , Infant, Newborn , Anniversaries and Special Events , Data Analysis
2.
Beyoglu Eye J ; 9(3): 165-171, 2024.
Article in English | MEDLINE | ID: mdl-39239626

ABSTRACT

In a case of unilateral acute idiopathic maculopathy (UAIM) following hand, foot, and mouth disease, we aim to discuss the decreased perfusion of choriocapillaris secondary to systemic inflammation as shown by optical coherence tomography angiography (OCTA) and to assess the prognostic significance of bacillary layer detachment (BALAD). A 33-year-old male presented with a decrease of vision in the right eye (OD) for 5 days preceding viral prodromal symptoms and vesicular lesions on bilateral palms and soles along with vesicles and ulcers on the oral mucosa. The best-corrected visual acuity was finger counting at 1 meter distance in OD and 20/20 in his left eye (OS). Dilated fundus examination revealed a circular white-grey dome-shaped elevated lesion at the macula indicative of serous retinal detachment in OD. Spectral-domain optical coherence tomography demonstrated BALAD associated with adjacent subretinal and intraretinal fluid along with pigment epithelium detachment and disruption of ellipsoid and interdigitation zones. OCTA showed decreased choriocapillaris perfusion. All the investigations were normal in OS. The resolution of BALAD occurred during the first 2 days, which was followed by gradual improvement of choriocapillaris flow that lasted 2 months. UAIM is associated with hand, foot, and mouth disease. OCTA demonstrates both qualitative and quantitative data by detecting alterations in the choriocapillaris flow, which could be monitored during the disease course.

3.
Front Cell Infect Microbiol ; 14: 1405689, 2024.
Article in English | MEDLINE | ID: mdl-39239635

ABSTRACT

Introduction: Coxsackievirus A6 (CV-A6) has emerged as the predominant epidemic strain responsible for hand, foot and mouth disease (HFMD). CV-A6 infection can result in severe clinical manifestations, including encephalitis, meningitis, and potentially life-threatening central nervous system disorders. Our previous research findings demonstrated that neonatal mice infected with CV-A6 exhibited limb weakness, paralysis, and ultimately succumbed to death. However, the underlying mechanism of CV-A6-induced nervous system injury remains elusive. Numerous reports have highlighted the pivotal role of miRNAs in various viral infections. Methods: Separately established infection and control groups of mice were used to create miRNA profiles of the brain tissues before and after CV-A6 transfection, followed by experimental verification, prediction, and analysis of the results. Results: At 2 days post-infection (dpi), 4 dpi, and 2dpi vs 4dpi, we identified 175, 198 and 78 significantly differentially expressed miRNAs respectively using qRT-PCR for validation purposes. Subsequently, we predicted target genes of these differentially expressed miRNAs and determined their potential targets through GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Finally, we verified the miRNA-mRNA pairing via double luciferase experiments while confirming functional enrichment of target genes through Western Blotting analyses. Discussion: The results from this study suggest that transcriptional regulation, neuronal necrosis, pro-inflammatory cytokine release, and antiviral immunity are all implicated in the pathogenesis of central nervous system injury in mice infected with CV-A6. Brain injury resulting from CV-A6 infection may involve multiple pathways, including glial cell activation, neuronal necrosis, synaptic destruction, degenerative diseases of the nervous system. It can even encompass destruction of the blood-brain barrier, leading to central nervous system injury. The dysregulated miRNAs and signaling pathways discovered in this study provide valuable insights for further investigations into the pathogenesis of CV-A6.


Subject(s)
Disease Models, Animal , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Brain/virology , Brain/pathology , Brain/metabolism , Coxsackievirus Infections/virology , Coxsackievirus Infections/genetics , Brain Injuries/virology , Brain Injuries/genetics , Gene Expression Profiling , Enterovirus A, Human/genetics , Enterovirus A, Human/pathogenicity , Enterovirus/genetics , Enterovirus/pathogenicity , Hand, Foot and Mouth Disease/virology
4.
Sci Rep ; 14(1): 20398, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223319

ABSTRACT

Hand, foot, and mouth disease (HFMD) is a prevalent acute infectious disease caused by enteroviruses, presenting substantial public health challenges in Shanghai, especially among children. The dynamic nature of HFMD's etiology necessitates an ongoing evaluation of its epidemiological and virological trends to inform effective control strategies. This study aims to investigate the epidemiological patterns and viral evolution of HFMD in Fengxian District, Shanghai, China, with a focus on shifts in predominant viral strains over a 14-year period. We conducted a retrospective analysis of HFMD cases reported to the National Notifiable Disease Reporting System in Fengxian District from January 1, 2009 to December 31, 2022. Epidemiological trends, strain prevalence, and demographic impacts were assessed. A total of 27,272 HFMD cases were documented during the study period, with incidence showing pronounced seasonal fluctuations-peaking in spring and summer and a lesser peak in autumn. The disease incidence demonstrated significant positive correlations with several meteorological variables: daily average temperature (r = 0.30, P < 0.05), relative humidity (r = 0.20, P < 0.05), wind speed (r = 0.17, P < 0.05), and precipitation (r = 0.17, P < 0.05). Geographically, Nanqiao Town, Fengcheng Town, and Xidu Subdistrict reported the highest incidence rates. The demographic analysis revealed a male-to-female ratio of 1.60:1, predominantly affecting children aged 1-3 years. Prior to 2017, Enterovirus 71 (EV71) and Coxsackievirus A16 (CoxA16) were the primary detected strains; post-2017, Coxsackievirus A6 (CoxA6) emerged as the dominant strain. Statistical analysis confirmed significant year-to-year variations in virus detection rates, with decreasing trends for EV71 and other enteroviruses and an increasing trend for CoxA6. The findings indicate a distinct seasonal incidence of HFMD in Fengxian District. This study underscores the need for targeted public health education, enhanced surveillance, and proactive measures in childcare facilities to mitigate disease spread during peak seasons. Moreover, the evolving viral landscape warrants accelerated efforts in vaccine development against new strains to reduce HFMD incidence.


Subject(s)
Hand, Foot and Mouth Disease , Seasons , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/virology , Humans , China/epidemiology , Male , Female , Child, Preschool , Infant , Incidence , Retrospective Studies , Child , Spatio-Temporal Analysis , Enterovirus/isolation & purification , Prevalence , Adolescent
5.
Prev Vet Med ; 230: 106285, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089163

ABSTRACT

Foot-and-mouth disease (FMD) is an ailment that causes serious damage to the productive chain, and its control through vaccination is of utmost importance for its eradication. Brazil initiated the National Foot-and-Mouth Disease Surveillance Program (PNEFA) with the aim of making the country FMD-free by 2026. As part of the program, notifications of vesicular lesions became mandatory for the Official Veterinary Service (OVS), which is responsible for verifying them. Due to its size, border areas with countries that do not have FMD-free status pose a risk to Brazil and require greater attention. This study described the profile of notifications of suspected outbreaks of vesicular syndrome in Brazil and analyzed the performance of the surveillance system. The results showed 7134 registered notifications of suspected vesicular syndrome outbreaks from 2018 to 2022, with 2022 having the highest number (n = 2343 or 32.85 %). The species that generated the most notifications were swine (90.99 %), cattle and buffaloes (7.54 %), goats and sheep (1.44 %), and others (0.03 %). The sources of notification were "Veterinary medicine professionals" (61.82 %), "Owners or employees" (13.66 %), "Third parties" (8.90 %), "OVS" (7.20 %), and "others" (2.66 %). 41.69 % of notifications originated from non-border municipalities, and 58.32 % from border areas. Only the state of Paraná account for 51.73 % of the total notifications. This state also accounted for 66.70 % of the 32.47 % of notifications with a final diagnosis of "absence of clinically compatible signs or susceptible animals", indicating a certain lack of knowledge in the area, leading to unnecessary notifications and system overload. The performance of the OVS was evaluated based on the service response time from notification registration trough Logistic and Negative binomial regressions. A total of 27.83 % of notifications did not meet the Brazilian legally specified time, and the zone related to the state of Parana needs improvements in performance. The presence and peaks of Senecavirus A cases may have influenced an increased number of swine notifications and led to a decrease in OVS response time. The results demonstrate better performance of surveillance in border areas. Given the vast territory of Brazil, it is not expected that 100 % of responses occur within the legal timeframe, however, the performance of the surveillance system proved to be adequate, with 86 % complied to the legislation. The performance indicators could be used as a monitoring tool, along with indicators to demonstrate system overload. Continued education actions are crucial for strengthening PNEFA.


Subject(s)
Cattle Diseases , Disease Outbreaks , Foot-and-Mouth Disease , Brazil/epidemiology , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Disease Outbreaks/veterinary , Disease Outbreaks/prevention & control , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/prevention & control , Swine , Disease Notification/statistics & numerical data , Sheep , Swine Diseases/epidemiology , Swine Diseases/virology , Swine Diseases/prevention & control , Population Surveillance/methods , Sheep Diseases/epidemiology , Sheep Diseases/virology , Sheep Diseases/prevention & control , Goat Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/prevention & control , Goats , Buffaloes , Epidemiological Monitoring/veterinary
6.
Front Immunol ; 15: 1440667, 2024.
Article in English | MEDLINE | ID: mdl-39176090

ABSTRACT

Foot and mouth disease (FMD) is a highly contagious infection caused by FMD-virus (FMDV) that affects livestock worldwide with significant economic impact. The main strategy for the control is vaccination with FMDV chemically inactivated with binary ethylenimine (FMDVi). In FMDV infection and vaccination, B cell response plays a major role by providing neutralizing/protective antibodies in animal models and natural hosts. Extracellular vesicles (EVs) and small EVs (sEVs) such as exosomes are important in cellular communication. EVs secreted by antigen-presenting cells (APC) like dendritic cells (DCs) participate in the activation of B and T cells through the presentation of native antigen membrane-associated to B cells or by transferring MHC-peptide complexes to T cells and even complete antigens from DCs. In this study, we demonstrate for the first time that APC activated with the FMDVi O1 Campos vaccine-antigens secrete EVs expressing viral proteins/peptides that could stimulate FMDV-specific immune response. The secretion of EVs-FMDVi is a time-dependent process and can only be isolated within the first 24 h post-activation. These vesicles express classical EVs markers (CD9, CD81, and CD63), along with immunoregulatory molecules (MHC-II and CD86). With an average size of 155 nm, they belong to the category of EVs. Studies conducted in vitro have demonstrated that EVs-FMDVi express antigens that can stimulate a specific B cell response against FMDV, including both marginal zone B cells (MZB) and follicular B cells (FoB). These vesicles can also indirectly or directly affect T cells, indicating that they express both B and T epitopes. Additionally, lymphocyte expansion induced by EVs-FMDVi is greater in splenocytes that have previously encountered viral antigens in vivo. The present study sheds light on the role of EVs derived from APC in regulating the adaptive immunity against FMDV. This novel insight contributes to our current understanding of the immune mechanisms triggered by APC during the antiviral immune response. Furthermore, these findings may have practical implications for the development of new vaccine platforms, providing a rational basis for the design of more effective vaccines against FMDV and other viral diseases.


Subject(s)
Antigen-Presenting Cells , Antigens, Viral , B-Lymphocytes , Extracellular Vesicles , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Foot-and-Mouth Disease Virus/immunology , Extracellular Vesicles/immunology , B-Lymphocytes/immunology , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, Viral/immunology , Viral Vaccines/immunology , Viral Proteins/immunology , Lymphocyte Activation/immunology , Dendritic Cells/immunology , Antigen Presentation/immunology
7.
Virol J ; 21(1): 187, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148126

ABSTRACT

Enterovirus 71 (EV-71) has strong neurotropism, and it is the main pathogen causing severe hand, foot, and mouth disease (HFMD). In clinical observations, significant differences were observed in the severity and prognosis of HFMD among children who were also infected with EV-71. Genetic differences among individuals could be one of the important causes of differences in susceptibility to EV-71-induced HFMD. As P-selectin glycoprotein ligand-1 (PSGL-1) is an important receptor of EV-71, the correlation between single-nucleotide polymorphisms (SNPs) in PSGL-1 and the susceptibility to severe HFMD following EV-71 infection is worth studying. Given the role of PSGL-1 in immunity, the correlations between PSGL-1 SNPs and the immune status after EV-71 infection are also worth studying. Meanwhile, PSGL-1 variable number of tandem repeats (VNTR) represents a research hotspot in cardiovascular and cerebrovascular diseases, but PSGL-1 VNTR polymorphism has not been investigated in HFMD caused by EV-71 infection. In this study, specific gene fragments were amplified by polymerase chain reaction, and PSGL-1 VNTR sequences were genotyped using an automatic nucleic acid analyzer. The correlations of PSGL-1 VNTR polymorphism with the susceptibility to EV-71-associated severe HFMD and the post-infection immune status were analyzed. The PSGL-1 VNTR A allele was identified as a susceptible SNP for severe HFMD. The risk of severe HFMD was higher for AA + AB genotype carriers than for BB genotype carriers. The counts of peripheral blood lymphocyte subsets were lower in AA + AB genotype carries than in BB genotype carries. In conclusion, PSGL-1 VNTR polymorphism is associated with the susceptibility to EV-71-induced severe HFMD and the immune status after infection. PSGL-1 VNTR might play a certain role in the pathogenesis of severe cases.


Subject(s)
Enterovirus A, Human , Genetic Predisposition to Disease , Hand, Foot and Mouth Disease , Membrane Glycoproteins , Minisatellite Repeats , Humans , Hand, Foot and Mouth Disease/genetics , Hand, Foot and Mouth Disease/immunology , Hand, Foot and Mouth Disease/virology , Membrane Glycoproteins/genetics , Enterovirus A, Human/immunology , Enterovirus A, Human/genetics , Male , Female , Infant , Minisatellite Repeats/genetics , Child, Preschool , Polymorphism, Single Nucleotide , Genotype , Child
8.
J Vet Diagn Invest ; : 10406387241266900, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152699

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. FMD poses an economic threat to the livestock industry in the United States. Due to the potential use of vaccines composed of partially purified structural proteins of the FMD virus (FMDV), it is important to test samples from infected and vaccinated animals with a competitive ELISA that detects antibodies against nonstructural proteins (NSPs) of FMDV. Our study extends the diagnostic validation of the Prionics ELISA (Thermo Fisher) and the VMRD ELISA. We used diverse serum sample sets from bovine, porcine, and other cloven-hoofed animals to evaluate the analytical specificity and sensitivity, diagnostic specificity and sensitivity, and differentiation of infected from vaccinated animals (DIVA) per validation guidelines outlined by the World Organisation for Animal Health (WOAH). The 2 tests were analytically 100% accurate. The VMRD test was diagnostically more sensitive than Prionics, but Prionics was diagnostically more specific than the VMRD test. Both tests could tell if animals were infected or vaccinated. Considering these data, both VMRD and Prionics ELISAs can be used for serodetection of FMDV antibodies at the Foreign Animal Disease Diagnostic Laboratory and within the National Animal Health Laboratory Network laboratories.

9.
JMIR Public Health Surveill ; 10: e58821, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39104051

ABSTRACT

Background: In the past 10 years, the number of hand, foot, and mouth disease (HFMD) cases reported in Guangzhou, China, has averaged about 60,000 per year. It is necessary to conduct an in-depth analysis to understand the epidemiological pattern and related influencing factors of HFMD in this region. Objective: This study aims to describe the epidemiological characteristics and spatiotemporal distribution of HFMD cases in Guangzhou from 2013 to 2022 and explore the relationship between sociodemographic factors and HFMD incidence. Methods: The data of HFMD cases in Guangzhou come from the Infectious Disease Information Management System of the Guangzhou Center for Disease Control and Prevention. Spatial analysis and space-time scan statistics were used to visualize the spatiotemporal distribution of HFMD cases. Multifactor ordinary minimum regression model, geographically weighted regression, and geographically and temporally weighted regression were used to analyze the influencing factors, including population, economy, education, and medical care. Results: From 2013 to 2022, a total of 599,353 HFMD cases were reported in Guangzhou, with an average annual incidence rate of 403.62/100,000. Children aged 5 years and younger accounted for 93.64% (561,218/599,353) of all cases. HFMD cases showed obvious bimodal distribution characteristics, with the peak period from May to July and the secondary peak period from August to October. HFMDs in Guangzhou exhibited a spatial aggregation trend, with the central urban area showing a pattern of low-low aggregation and the peripheral urban area demonstrating high-high aggregation. High-risk areas showed a dynamic trend of shifting from the west to the east of peripheral urban areas, with coverage first increasing and then decreasing. The geographically and temporally weighted regression model results indicated that population density (ß=-0.016) and average annual income of employees (ß=-0.007) were protective factors for HFMD incidence, while the average number of students in each primary school (ß=1.416) and kindergarten (ß=0.412) was a risk factor. Conclusions: HFMD cases in Guangzhou were mainly infants and young children, and there were obvious differences in time and space. HFMD is highly prevalent in summer and autumn, and peripheral urban areas were identified as high-risk areas. Improving the economic level of peripheral urban areas and reducing the number of students in preschool education institutions are key strategies to controlling HFMD.


Subject(s)
Hand, Foot and Mouth Disease , Spatio-Temporal Analysis , Hand, Foot and Mouth Disease/epidemiology , China/epidemiology , Humans , Child, Preschool , Male , Retrospective Studies , Female , Infant , Child , Incidence , Adolescent , Risk Factors , Infant, Newborn
10.
Front Vet Sci ; 11: 1415423, 2024.
Article in English | MEDLINE | ID: mdl-39119353

ABSTRACT

Introduction: Understanding multi-pathogen infections/exposures in livestock is critical to inform prevention and control measures against infectious diseases. We investigated the co-exposure of foot-and-mouth disease virus (FMDV), Brucella spp., Leptospira spp., and Coxiella burnetii in cattle in three zones stratified by land use change and with different wildlife-livestock interactions in Narok county, Kenya. We also assessed potential risk factors associated with the transmission of these pathogens in cattle. Methods: We identified five villages purposively, two each for areas with intensive (zone 1) and moderate wildlife-livestock interactions (zone 2) and one for locations with low wildlife-livestock interactions (zone 3). We sampled 1,170 cattle from 390 herds through a cross-sectional study and tested the serum samples for antibodies against the focal pathogens using enzyme-linked immunosorbent assay (ELISA) kits. A questionnaire was administered to gather epidemiological data on the putative risk factors associated with cattle's exposure to the investigated pathogens. Data were analyzed using the Bayesian hierarchical models with herd number as a random effect to adjust for the within-herd clustering of the various co-exposures among cattle. Results: Overall, 88.0% (95% CI: 85.0-90.5) of the cattle tested positive for at least one of the targeted pathogens, while 41.7% (95% CI: 37.7-45.8) were seropositive to at least two pathogens. FMDV and Brucella spp. had the highest co-exposure at 33.7% (95% CI: 30.9-36.5), followed by FMDV and Leptospira spp. (21.8%, 95% CI: 19.5-24.4), Leptospira spp. and Brucella spp. (8.8%, 95% CI: 7.2-10.6), FMDV and C. burnetii (1.5%, 95% CI: 0.7-2.8), Brucella spp. and C. burnetii (1.0%, 95% CI: 0.3-2.2), and lowest for Leptospira spp. and C. burnetii (0.3%, 95% CI: 0.0-1.2). Cattle with FMDV and Brucella spp., and Brucella spp. and Leptospira spp. co-exposures and those simultaneously exposed to FMDV, Brucella spp. and Leptospira spp. were significantly higher in zone 1 than in zones 2 and 3. However, FMDV and Leptospira spp. co-exposure was higher in zones 1 and 2 than zone 3. Discussion/conclusion: We recommend the establishment of a One Health surveillance system in the study area to reduce the morbidity of the targeted zoonotic pathogens in cattle and the risks of transmission to humans.

11.
Spat Spatiotemporal Epidemiol ; 50: 100673, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39181608

ABSTRACT

Epidemic models serve as a useful analytical tool to study how a disease behaves in a given population. Individual-level models (ILMs) can incorporate individual-level covariate information including spatial information, accounting for heterogeneity within the population. However, the high-level data required to parameterize an ILM may often be available only for a sub-population of a larger population (e.g., a given county, province, or country). As a result, parameter estimates may be affected by edge effects caused by infection originating from outside the observed population. Here, we look at how such edge effects can bias parameter estimates for within the context of spatial ILMs, and suggest a method to improve model fitting in the presence of edge effects when some global measure of epidemic severity is available from the unobserved part of the population. We apply our models to simulated data, as well as data from the UK 2001 foot-and-mouth disease epidemic.


Subject(s)
Foot-and-Mouth Disease , Humans , Foot-and-Mouth Disease/epidemiology , United Kingdom/epidemiology , Spatial Analysis , Epidemiological Models , Epidemics , Communicable Diseases/epidemiology , Computer Simulation , Models, Statistical
12.
Spat Spatiotemporal Epidemiol ; 50: 100664, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39181603

ABSTRACT

Modelling epidemics is crucial for understanding the emergence, transmission, impact and control of diseases. Spatial individual-level models (ILMs) that account for population heterogeneity are a useful tool, accounting for factors such as location, vaccination status and genetic information. Parametric forms for spatial risk functions, or kernels, are often used, but rely on strong assumptions about underlying transmission mechanisms. Here, we propose a class of non-parametric spatial disease transmission model, fitted within a Bayesian Markov chain Monte Carlo (MCMC) framework, allowing for more flexible assumptions when estimating the effect on spatial distance and infection risk. We focus upon two specific forms of non-parametric spatial infection kernel: piecewise constant and piecewise linear. Although these are relatively simple forms, we find them to produce results in line with, or superior to, parametric spatial ILMs. The performance of these models is examined using simulated data, including under circumstances of model misspecification, and then applied to data from the UK 2001 foot-and-mouth disease.


Subject(s)
Bayes Theorem , Foot-and-Mouth Disease , Markov Chains , Monte Carlo Method , Humans , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/transmission , United Kingdom/epidemiology , Spatial Analysis , Epidemiological Models , Computer Simulation , Models, Statistical
13.
Front Microbiol ; 15: 1429288, 2024.
Article in English | MEDLINE | ID: mdl-39188314

ABSTRACT

Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals responsible for economic losses that amount to >$20 billion annually. Rapid recognition of FMD cases provides vital information to guide control programmes. A range of point-of-need amplification technologies have been developed which allow sensitive detection of the causative virus (FMDV) in the field at locations remote from laboratories. Here we describe a novel system to detect FMDV RNA using loop-mediated isothermal amplification (LAMP). This test was evaluated using a panel of FMDV isolates (n = 79) and RNA standards demonstrating capability to amplify viral genome directly from clinical material in the absence of nucleic acid extraction. This extraction-free RT-LAMP assay was transferred to a bespoke closed-system lateral flow test (LFT) that was used in combination with a low-cost hand-held heater. Our results show that the RT-LAMP-LFT assay retains a high level of diagnostic and analytical sensitivity when using direct clinical material, with a limit of detection under 80 copies per reaction. Together, our data support the potential for the use of this assay at the point-of-need to facilitate rapid feedback on the status of suspect cases.

14.
Arch Razi Inst ; 79(1): 201-210, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39192966

ABSTRACT

The most preferred method for the detection of foot-and-mouth disease (FMD) viral antigen and identification of viral serotype is the enzyme-linked immunosorbent assay (ELISA). Diagnostic tests with high sensitivity are necessary both to distinguish infected vaccinated animals and execute disease control programs for the identification of the carrier animals. The current strategies for the detection of FMD virus are mainly based on the capture antibody (sandwich) ELISA test. The usage of laying pullets as an animal bioreactor for the production of specific egg yolk antibodies (IgY) has increased in recent years due to its high yield, affinity, low price, and quick production turnover. The present study aimed to produce a concentrated and purified IgY polyclonal antibody to design a capture antibody ELISA kit against the FMD virus (FMDV) serotype A. At first, laying hens were immunized with inactivated FMDV serotype virus, and then, on days 14, 21, and 28 following vaccination, the eggs and sera were collected. Afterward, the IgY polyclonal antibodies were extracted and purified from the chicken egg yolk using a polyethylene glycol 6000-ethanol precipitation procedure. Extracts were filtered, purified by ion exchange chromatography, and dialyzed. The purified IgY concentration, estimated by Bradford assay, confirmed its presence by SDS-PAGE and Western blot and also its specific immune reaction by Ouchterlony double immunodiffusion and Dot blot tests. Moreover, for achieving the optimum concentration of antigen/antibody (sera) in sandwich ELISA, a checkerboard titration test was set up based on indirect ELISA results. Eventually, 119 previously confirmed samples (including 80 positive and 39 negative) by both real-time polymerase chain reaction (quantitative PCR, qPCR) and a commercial ELISA kit were used for evaluation of the sensitivity and accuracy of our developed Capture antibody ELISA kit. In this manner, the sensitivity and specificity of our designed kit were 100% and 98%, respectively. Accordingly, the present developed capture ELISA kit based on IgY had high sensitivity and specificity for FMD virus detection and it could be used in the future for both commercial detecting and serotyping applications.


Subject(s)
Antibodies, Viral , Chickens , Enzyme-Linked Immunosorbent Assay , Foot-and-Mouth Disease , Immunoglobulins , Poultry Diseases , Animals , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulins/immunology , Immunoglobulins/analysis , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/virology , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/immunology , Poultry Diseases/diagnosis , Poultry Diseases/virology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease Virus/isolation & purification , Sensitivity and Specificity , Egg Yolk/immunology
15.
Antibodies (Basel) ; 13(3)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39189238

ABSTRACT

Foot-and-mouth disease (FMD) is a highly infectious disease of cloven-hoofed animals with a significant economic impact. Early diagnosis and effective prevention and control could reduce the spread of the disease which could possibly minimize economic losses. Epitope characterization based on monoclonal antibodies provide essential information for developing diagnostic assays and vaccine designs. In this study, monoclonal antibodies raised against FMD virus (FMDV) were produced. Sixty-six monoclonal antibodies demonstrated strong reactivity and specificity to FMDV. The purified monoclonal antibodies were further used for bio-panning to select phage expressing specific epitopes from phage-displayed 12 mer-peptide library. The phage peptide sequences were analyzed using multiple sequence alignment and evaluated by peptide ELISA. Two hybridoma clones secreted monoclonal antibodies recognizing linear epitopes on VP2 of FMDV serotype O. The non-neutralizing monoclonal antibody 6F4.D11.B6 recognized the residues 67-78 on antigenic site 2 resinding in VP2, while the neutralizing monoclonal antibody 8D6.B9.C3 recognized a novel linear epitope encompassing residues 115-126 on VP2. This information and the FMDV-specific monoclonal antibodies provide valuable sources for further study and application in diagnosis, therapeutics and vaccine designs to strengthen the disease prevention and control measures.

16.
Infect Genet Evol ; 124: 105664, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216615

ABSTRACT

This study characterised type O foot-and-mouth disease (FMD) viruses recovered from outbreaks that were reported between 2010 and 2019 in the Republic of Korea. We used 96 newly generated whole-genome sequences (WGS) along with 131 already published WGSs from samples collected from countries in East and Southeast Asia. We identified at least eight independent introductions of O/SEA/Mya-98 and O/ME-SA/Ind-2001e FMDV strains into the Republic of Korea during the study period, which were closely related to the sequences of viruses circulating in the East and Southeast Asia neighbourhood with over 97 % nucleotide identity. Spatial-temporal transitions of O/SEA/Mya-98 lineage viruses recovered from the largest outbreak (2014-16) showed that after initial cases were detected within a 15-day period in July 2014, a single introduction of the same virus during December 2014 generated extensive forward virus transmission between farms that lasted until March 2016. We estimated that secondary transmissions were responsible for infection on 44 % FMD affected farms, over a total of 14 generations of infection. We eastimated a median evolutionry rate of 2.51 × 10-5 nt/site/day, which is similar for other FMD epidemic scenarios. These findings suggest that regular incursions of different FMDV lineages into the Republic of Korea have posed a continuous threat from endemic countries of East and Southeast Asia. These data highlight the importance of active cooperation and information exchange on FMD situation within Asian countries and assessment about the likely risk routes of virus movement is highly necessary to prevent further incursion and virus spread of FMDV in the Republic of Korea.

17.
Front Artif Intell ; 7: 1446368, 2024.
Article in English | MEDLINE | ID: mdl-39144542

ABSTRACT

In Uganda, the absence of a unified dataset for constructing machine learning models to predict Foot and Mouth Disease outbreaks hinders preparedness. Although machine learning models exhibit excellent predictive performance for Foot and Mouth Disease outbreaks under stationary conditions, they are susceptible to performance degradation in non-stationary environments. Rainfall and temperature are key factors influencing these outbreaks, and their variability due to climate change can significantly impact predictive performance. This study created a unified Foot and Mouth Disease dataset by integrating disparate sources and pre-processing data using mean imputation, duplicate removal, visualization, and merging techniques. To evaluate performance degradation, seven machine learning models were trained and assessed using metrics including accuracy, area under the receiver operating characteristic curve, recall, precision and F1-score. The dataset showed a significant class imbalance with more non-outbreaks than outbreaks, requiring data augmentation methods. Variability in rainfall and temperature impacted predictive performance, causing notable degradation. Random Forest with borderline SMOTE was the top-performing model in a stationary environment, achieving 92% accuracy, 0.97 area under the receiver operating characteristic curve, 0.94 recall, 0.90 precision, and 0.92 F1-score. However, under varying distributions, all models exhibited significant performance degradation, with random forest accuracy dropping to 46%, area under the receiver operating characteristic curve to 0.58, recall to 0.03, precision to 0.24, and F1-score to 0.06. This study underscores the creation of a unified Foot and Mouth Disease dataset for Uganda and reveals significant performance degradation in seven machine learning models under varying distributions. These findings highlight the need for new methods to address the impact of distribution variability on predictive performance.

18.
J Prim Care Community Health ; 15: 21501319241266506, 2024.
Article in English | MEDLINE | ID: mdl-39133215

ABSTRACT

Hand-foot-and-mouth disease (HFMD), which is typically seen in the younger pediatric population, is uncommon in older adolescent and young adult populations. We report on an atypical outbreak of HFMD among college students at a mid-size university in the mid-Atlantic U.S. The outbreak included 138 qualifying cases of HFMD among students at the institution between August and November 2018. All tested samples were positive for CVA6, a less common cause of HFMD. Signs and symptoms and campus mitigation strategies are described. This case report aims to highlight an atypical outbreak of HFMD for clinicians who care for older adolescent and college-aged patients in primary care and community settings, and may see cases and/or outbreaks of HFMD in these populations.


Subject(s)
Disease Outbreaks , Hand, Foot and Mouth Disease , Students , Humans , Hand, Foot and Mouth Disease/epidemiology , Male , Female , Students/statistics & numerical data , Universities , Young Adult , Adolescent , Adult
19.
Front Vet Sci ; 11: 1299379, 2024.
Article in English | MEDLINE | ID: mdl-39149149

ABSTRACT

Foot and mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals. This disease is one of the most important in animal health due to its significant socio-economic impact, especially in case of an outbreak. One important challenge associated with this disease is the ability of the FMD virus (FMDV) to persist in its hosts through still unresolved underlying mechanisms. The absence of relevant in vitro models is one factor preventing advancement in our understanding of FMDV persistence. While a primary bovine cell model has been established using cells from FMDV primary and persistence site in cattle, it appeared interesting to develop a similar model based on ovine anatomical sites of interest to compare host-pathogen interactions. Thus, epithelial cells derived from the palatine tonsils and the dorsal soft palate were isolated and cultured. Their epithelial nature was confirmed using immunofluorescence. Following monolayer infection with FMDV O/FRA/1/2001 Clone 2.2, the FMDV-sensitivity of these cells was evaluated. Dorsal soft palate (DSP) cells were also expanded in multilayers at the air-liquid interface to mimic a stratified epithelium sensitive to FMDV infection. Our investigation revealed the presence of infectious virus, as well as viral antigens and viral RNA, up to 35 days after infection of the cell multilayers. Further experiment with DSP cells from different individuals needs to be reproduced to confirm the robustness of the new model of persistence in multilayer DSP. The establishment of such primary cells creates new opportunities for FMDV research and analysis in sheep cells.

20.
J Virol ; : e0111424, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194213

ABSTRACT

Zinc finger protein 36 (ZFP36) is a key regulator of inflammatory and cytokine production. However, the interplay between swine zinc-finger protein 36 (sZFP36) and foot-and-mouth disease virus (FMDV) has not yet been reported. Here, we demonstrate that overexpression of sZFP36 restricted FMDV replication, while the knockdown of sZFP36 facilitated FMDV replication. To subvert the antagonism of sZFP36, FMDV decreased sZFP36 protein expression through its non-structural protein 3C protease (3Cpro). Our results also suggested that 3Cpro-mediated sZFP36 degradation was dependent on its protease activity. Further investigation revealed that both N-terminal and C-terminal-sZFP36 could be degraded by FMDV and FMDV 3Cpro. In addition, both N-terminal and C-terminal-sZFP36 decreased FMDV replication. Moreover, sZFP36 promotes the degradation of FMDV structural proteins VP3 and VP4 via the CCCH-type zinc finger and NES domains of sZFP36. Together, our results confirm that sZFP36 is a host restriction factor that negatively regulates FMDV replication.IMPORTANCEFoot-and-mouth disease (FMD) is an infectious disease of animals caused by the pathogen foot-and-mouth disease virus (FMDV). FMD is difficult to prevent and control because there is no cross-protection between its serotypes. Thus, we designed this study to investigate virus-host interactions. We first demonstrate that swine zinc-finger protein 36 (sZFP36) impaired FMDV structural proteins VP3 and VP4 to suppress viral replication. To subvert the antagonism of sZFP36, FMDV and FMDV 3Cpro downregulate sZFP36 expression to facilitate FMDV replication. Taken together, the present study reveals a previously unrecognized antiviral mechanism for ZFP36 and elucidates the role of FMDV in counteracting host antiviral activity.

SELECTION OF CITATIONS
SEARCH DETAIL