Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.659
Filter
1.
Int J Biol Macromol ; 277(Pt 2): 134326, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089555

ABSTRACT

FlbA of Aspergillus niger (indirectly) regulates 36 transcription factor (TF) genes. As a result, it promotes sporulation and represses vegetative growth, protein secretion and lysis. In this study, the functions of part of the FlbA-regulated TF genes were studied by using CRISPRoff. This system was recently introduced as an epigenetic tool for modulating gene expression in A. niger. A plasmid encompassing an optimized CRISPRoff system as well as a library of sgRNA genes that target the promoters of the 36 FlbA-regulated TF genes was introduced in A. niger. Out of 24 transformants that exhibited a sporulation phenotype, 12 and 18 strains also showed a biomass and secretion phenotype, respectively. The transforming sgRNAs, and thus the genes responsible for the phenotypes, were identified from five of the transformants. The results show that the genes dofA, dofB, dofC, dofD, and socA are involved in sporulation and extracellular enzyme activity, while dofA and socA also play roles in biomass formation. Overall, this study shows that the multiplexed CRISPRoff system can be effectively used for functional analysis of genes in a fungus.

2.
Environ Sci Technol ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116417

ABSTRACT

Endophytic fungus Serendipita indica can bolster plant growth and confer protection against various biotic and abiotic stresses. However, S. indica-reshaped rhizosphere microecology interactions and root-soil interface processes in situ at the submicrometer scale remain poorly understood. We combined amplicon sequencing and high-resolution nano X-ray fluorescence (nano-XRF) imaging of the root-soil interface to reveal cadmium (Cd) rhizosphere processes. S. indica can successfully colonize the roots of Sedum alfredii Hance, which induces a remarkable increase in shoot biomass by 211.32% and Cd accumulation by 235.72%. Nano-XRF images showed that S. indica colonization altered the Cd distribution in the rhizosphere and facilitated the proximity of more Cd and sulfur (S) to enter the roots and transport to the shoot. Furthermore, the rhizosphere-enriched microbiota demonstrated a more stable network structure after the S. indica inoculation. Keystone species were strongly associated with growth promotion and Cd absorption. For example, Comamonadaceae are closely related to the organic acid cycle and S bioavailability, which could facilitate Cd and S accumulation in plants. Meanwhile, Sphingomonadaceae could release auxin and boost plant biomass. In summary, we construct a mutualism system for beneficial fungi and hyperaccumulation plants, which facilitates high-efficient remediation of Cd-contaminated soils by restructuring the rhizosphere microbiota.

3.
Environ Res ; : 119752, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117053

ABSTRACT

The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has caused substantial declines in Bd-susceptible amphibian species worldwide. However, some populations of Bd-susceptible frogs have managed to survive at existing metal-polluted sites, giving rise to the hypothesis that frogs might persist in the presence of Bd if Bd is inhibited by metals at concentrations that frogs can tolerate. We tested this hypothesis by measuring the survival of Bd zoospores, the life stage that infects amphibians, and calculated the LC50 after exposure to environmentally-relevant elevated concentrations of copper (Cu), zinc (Zn), and their combination (Cu+Zn) in two repeated 4-day acute exposure runs. We also measured the chronic sensitivity of Bd to these metals over three generations by measuring the number of colonies and live zoospores and calculating EC50 concentrations after 42 days of exposure. We then compared acute and chronic sensitivity of Bd with amphibian sensitivities by constructing species sensitivity distributions (SSDs) using LC50 and EC50 data obtained from the literature. Acute sensitivity data showed that Bd zoospore survival decreased with increasing metal concentrations and exposure durations relative to the control, with the highest LC50 values for Cu and Zn being 2.5 µg/L and 250 µg/L, respectively. Chronic exposures to metals resulted in decreased numbers of Bd colonies and live zoospores after 42 days, with EC50 values of 0.75 µg/L and 1.19 µg/L for Cu and Zn, respectively. Bd zoospore survival was 10 and 8 times more sensitive to Cu and Zn, respectively in acute, and 2 and 5 times more sensitive to Cu and Zn in chronic exposure experiments than the most sensitive amphibian species recorded. Our findings are consistent with the hypothesis that metals in existing metal-polluted sites may have a greater impact on Bd relative to amphibians' performance, potentially enabling Bd-susceptible amphibians to persist with Bd at these sites.

4.
Protoplasma ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112644

ABSTRACT

Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.

5.
Sci Rep ; 14(1): 18139, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103398

ABSTRACT

In Southeast Asia (SEA) fastidious fungi of the Ceratobasidium genus are associated with proliferation of sprouts and vascular necrosis in cacao and cassava, crops that were introduced from the tropical Americas to this region. Here, we report the isolation and in vitro culture of a Ceratobasidium sp. isolated from cassava with symptoms of witches' broom disease (CWBD), a devastating disease of this crop in SEA. The genome characterization using a hybrid assembly strategy identifies the fungus as an isolate of the species C. theobromae, the causal agent of vascular streak dieback of cacao in SEA. Both fungi have a genome size > 31 Mb (G+C content 49%), share > 98% nucleotide identity of the Internal Transcribed Spacer (ITS) and > 94% in genes used for species-level identification. Using RNAscope® we traced the pathogen and confirmed its irregular distribution in the xylem and epidermis along the cassava stem, which explains the obtention of healthy planting material from symptom-free parts of a diseased plant. These results are essential for understanding the epidemiology of CWBD, as a basis for disease management including measures to prevent further spread and minimize the risk of introducing C. theobromae via long-distance movement of cassava materials to Africa and the Americas.


Subject(s)
Genome, Fungal , Manihot , Plant Diseases , Manihot/microbiology , Plant Diseases/microbiology , Asia, Southeastern , Phylogeny , Basidiomycota/genetics , Basidiomycota/isolation & purification
6.
BMC Genomics ; 25(1): 764, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107741

ABSTRACT

BACKGROUND: Chemoreception is crucial for insect fitness, underlying for instance food-, host-, and mate finding. Chemicals in the environment are detected by receptors from three divergent gene families: odorant receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs). However, how the chemoreceptor gene families evolve in parallel with ecological specializations remains poorly understood, especially in the order Coleoptera. Hence, we sequenced the genome and annotated the chemoreceptor genes of the specialised ambrosia beetle Trypodendron lineatum (Coleoptera, Curculionidae, Scolytinae) and compared its chemoreceptor gene repertoires with those of other scolytines with different ecological adaptations, as well as a polyphagous cerambycid species. RESULTS: We identified 67 ORs, 38 GRs, and 44 IRs in T. lineatum ('Tlin'). Across gene families, T. lineatum has fewer chemoreceptors compared to related scolytines, the coffee berry borer Hypothenemus hampei and the mountain pine beetle Dendroctonus ponderosae, and clearly fewer receptors than the polyphagous cerambycid Anoplophora glabripennis. The comparatively low number of chemoreceptors is largely explained by the scarcity of large receptor lineage radiations, especially among the bitter taste GRs and the 'divergent' IRs, and the absence of alternatively spliced GR genes. Only one non-fructose sugar receptor was found, suggesting several sugar receptors have been lost. Also, we found no orthologue in the 'GR215 clade', which is widely conserved across Coleoptera. Two TlinORs are orthologous to ORs that are functionally conserved across curculionids, responding to 2-phenylethanol (2-PE) and green leaf volatiles (GLVs), respectively. CONCLUSIONS: Trypodendron lineatum reproduces inside the xylem of decaying conifers where it feeds on its obligate fungal mutualist Phialophoropsis ferruginea. Like previous studies, our results suggest that stenophagy correlates with small chemoreceptor numbers in wood-boring beetles; indeed, the few GRs may be due to its restricted fungal diet. The presence of TlinORs orthologous to those detecting 2-PE and GLVs in other species suggests these compounds are important for T. lineatum. Future functional studies should test this prediction, and chemoreceptor annotations should be conducted on additional ambrosia beetle species to investigate whether few chemoreceptors is a general trait in this specialized group of beetles.


Subject(s)
Receptors, Odorant , Animals , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Coleoptera/genetics , Phylogeny , Insect Proteins/genetics , Insect Proteins/metabolism
7.
Bioresour Technol ; 408: 131218, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39106905

ABSTRACT

The phytopromotional root endophytic fungus Piriformospora indica was introduced into the wetland plant Canna indica L. to explore its impact on nitrogen (N) removal in constructed wetlands (CWs) to treat normal and saline (0.9 % NaCl) wastewater. P. indica colonization increased total nitrogen, NH4+-N, and NO3--N removal efficiencies under normal and saline conditions, with NO3--N removal rates significantly increasing by 17.5 % under saline conditions (P<0.05). N removal by plant uptake improved by 26.1 % and 27.7 % under normal and saline conditions due to P. indica-mediated growth-promoting effects. Salt-tolerant denitrifiers and nitrifiers guaranteed the dominant role of microbial degradation in N removal under saline conditions. P. indica inoculation considerably improved the contribution of Nocardioides and Nitrosomnas to dissimilatory/assimilatory nitrate reduction and nitrification genes, respectively. These findings elucidate the mechanisms and potential applications of P. indica-mediated phytoremediation in practical wastewater treatment under varying salty conditions.

8.
Mol Biol Evol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107250

ABSTRACT

Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.

9.
J Agric Food Chem ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109629

ABSTRACT

Siderophores are small molecule iron chelators. The entomopathogenic fungus Beauveria bassiana produces a plethora of siderophores under iron-limiting conditions. In this study, a siderophore biosynthesis pathway, akin to the general pathway observed in filamentous fungi, was revealed in B. bassiana. Among the siderophore biosynthesis genes (SID), BbSidA was required for the production of most siderophores, and the SidC and SidD biosynthesis gene clusters were indispensable for the production of ferricrocin and fusarinine C, respectively. Biosynthesis genes play various roles in siderophore production, vegetative growth, stress resistance, development, and virulence, in which BbSidA plays the most important role. Accordingly, B. bassiana employs a cocktail of siderophores for iron metabolism, which is essential for fungal physiology and host interactions. This study provides the initial network for the genetic modification of siderophore biosynthesis, which not only aims to improve the efficacy of biocontrol agents but also ensures the efficient production of siderophores.

10.
Dis Aquat Organ ; 159: 15-27, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087616

ABSTRACT

The chytrid Batrachochytrium dendrobatidis (Bd) is a widespread fungus causing amphibian declines across the globe. Although data on Bd occurrence in Eastern Europe are scarce, a recent species distribution model (SDM) for Bd reported that western and north-western parts of Ukraine are highly suitable to the pathogen. We verified the SDM-predicted range of Bd in Ukraine by sampling amphibians across the country and screening for Bd using qPCR. A total of 446 amphibian samples (tissue and skin swabs) from 11 species were collected from 36 localities. We obtained qPCR-positive results for 33 samples including waterfrogs (Pelophylax esculentus complex) and fire- and yellow-bellied toads (Bombina spp.) from 8 localities. We found that Bd-positive localities had significantly higher predicted Bd habitat suitability than sites that were pathogen-free. Amplification and sequencing of the internal transcribed spacer (ITS) region of samples with the highest Bd load revealed matches with ITS haplotypes of the globally distributed BdGPL strain, and a single case of the BdASIA-2/BdBRAZIL haplotype. We found that Bd was non-randomly distributed across Ukraine, with infections present in the western and north-central forested peripheries of the country with a relatively cool, moist climate. On the other hand, our results suggest that Bd is absent or present in low abundance in the more continental central, southern and eastern regions of Ukraine, corroborating the model-predicted distribution of chytrid fungus. These areas could potentially serve as climatic refugia for Bd-susceptible amphibian hosts.


Subject(s)
Batrachochytrium , Mycoses , Ukraine/epidemiology , Animals , Mycoses/veterinary , Mycoses/epidemiology , Mycoses/microbiology , Batrachochytrium/genetics , Batrachochytrium/isolation & purification , Amphibians/microbiology , Models, Biological , Chytridiomycota/isolation & purification , Chytridiomycota/genetics
11.
Braz J Microbiol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020098

ABSTRACT

Different bioproducts can be obtained by changing operative condition of biotechnological process, and this bioprocess aspect is a significant approach to be adopted on industrial scale leading to the creation of new natural aroma. Thus, this study aimed to investigate the culture conditions and optimization of the biotransformation of limonene into limonene-1,2-diol using Pestalotiopsis mangiferae LaBMicrA-505 obtained from the Brazilian Amazon. The study started with the investigation of the establishment of culture, followed by optimization of the conditions for biotransformation of R-(+)-limonene to limonene-1,2-diol, using shake flasks. The fresh biomass of P. mangiferae LaBMicrA-505 obtained in liquid media supplemented with yeast-malt extract under with 72 h (stationary phase) performed better diol productivity when compared to other biomasses. Finally, in the modeling of contour plots and surface responses of a central composite design, the use of 4 g l- 1 biomass, 2% of the substrate at 24 °C, 120 rpm, and pH of 6.0 could maximize the production of limonene-1,2-diol, accumulated up to 98.34 ± 1.53% after 96 h of reaction. This study contributed to identified operational condition for the R-(+)-limonene bioconversion scale-up. The endophytic fungus P. mangiferae LaBMicrA-505 proved to be a potent biocatalyst to biotechnologically produce limonene-1,2-diol, an aroma compounds with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures.

13.
Heliyon ; 10(13): e33664, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040413

ABSTRACT

Glucose, a key component of traditional Japanese fermented foods, is derived from rice starch via saccharification by hydrolytic enzymes produced by Aspergillus oryzae. The δ 13C value of glucose reflects that of its rice source. However, the influence of saccharification parameters (glucose concentration, degradation temperature, and reaction time) on glucose δ 13C values is unclear. Here, we investigated the influence of saccharification on the δ 13C value of glucose. Our experiments showed a significant difference in the δ 1³C value of glucose (-27.0 ± 0.1 ‰) obtained from saccharification compared to the ingredient rice (-27.1 ± 0.1 ‰) and remaining solid residue (-27.1 ± 0.1 ‰); however, it did not differ significantly from those of rice koji (-27.0 ± 0.1 ‰) and steamed rice (-27.1 ± 0.1 ‰), despite all values being within 0.1 ‰. Notably, glucose concentration, degradation temperature, and reaction time did not significantly affect glucose δ 13C values. These findings demonstrate the remarkable preservation of glucose δ 13C values. The δ 13C values remain aligned with the original δ 13C value of the rice, even with up to 60 % degradation during A. oryzae saccharification. This persistence of the δ 13C value throughout the process offers a potential tool for authenticating the origin of rice-fermented beverages based on the δ 13C value of their glucose component.

14.
J Int Soc Prev Community Dent ; 14(3): 192-200, 2024.
Article in English | MEDLINE | ID: mdl-39055297

ABSTRACT

Aim: Natural medicine used as an alternative and/or complementary treatment to counteract diseases is of great importance in public health. Therefore, the purpose of the present study was to assess the in vitro antifungal activity of Morinda citrifolia methanolic extract of peel, pulp, and seed against Candida albicans. Materials and Methods: The present study was experimental in vitro and cross-sectional. Eight replicates were prepared in Sabouraud dextrose agar with five wells each, where 0.12% chlorhexidine, distilled water, and methanolic extract of seed, peel, and pulp of Morinda citrifolia fruit were placed at concentrations of 10,690, 8,270, and 6,430 mg/mL, respectively, to evaluate sensitivity according to Duraffourd's scale. In addition, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were determined by dilution and agar seeding method. Statistical analysis was performed by analysis of variance (ANOVA) and Tukey's post hoc test, considering a significance level of P < 0.05. Results: The inhibition halos of Morinda citrifolia methanolic extract of seed, peel, and pulp against Candida albicans measured on average 15.94, 11.94, and 11.56 mm, respectively. The MIC of seed, peel, and pulp extract were 1366.25, 2067.5, and 1607.5 mg/mL respectively, whereas the MFC for seed, peel, and pulp extract were 2672.50, 2067.5, and 3215 mg/mL, respectively. Moreover, seed extract presented significantly higher antifungal activity than peel and pulp (P < 0.001). Conclusions: Morinda citrifolia methanolic extract of peel, pulp, and seed showed fungistatic and fungicidal effect against Candida albicans, being this very sensitive to seed extract with a MIC of 1366.25 mg/mL and a MFC of 2672.5 mg/mL, which allows recommending the development of effective pharmacological formulations for the control of candidiasis.

15.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3548-3551, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041126

ABSTRACT

An OSMAC strategy was used to study secondary metabolites and anti-inflammatory activities of the endophytic fungus Penicillium herquei JX4 hosted in Ceriops tagal. The PDB ferment of fungus P. herquei JX4 was isolated, purified, and identified by using silica gel column chromatography, gel column chromatography, octadecylsilyl(ODS) column chromatography, and semi-preparative high-performance liquid chromatography. Two new pinophol derivatives, pinophol H(1) and pinophol I(2) were isolated and identified, and they were evaluated in terms of the inhibitory activities against the nitric oxide(NO) production induced by lipopolysaccharide(LPS) in mouse macrophage RAW264.7 cells. The results showed that compound 1 had significant inhibitory activity on NO production, with an IC_(50) value of 8.12 µmol·L~(-1).


Subject(s)
Nitric Oxide , Penicillium , Penicillium/chemistry , Mice , Animals , RAW 264.7 Cells , Macrophages/drug effects , Endophytes/chemistry , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
16.
J Fungi (Basel) ; 10(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39057371

ABSTRACT

The model organism Neurospora crassa has been cultivated in laboratories since the 1920s and its saprotrophic lifestyle has been established for decades. However, beyond their role as saprotrophs, fungi engage in intricate relationships with plants, showcasing diverse connections ranging from mutualistic to pathogenic. Although N. crassa has been extensively investigated under laboratory conditions, its ecological characteristics remain largely unknown. In contrast, Brachypodium distachyon, a sweet grass closely related to significant crops, demonstrates remarkable ecological flexibility and participates in a variety of fungal interactions, encompassing both mutualistic and harmful associations. Through a comprehensive microscopic analysis using electron, fluorescence, and confocal laser scanning microscopy, we discovered a novel endophytic interaction between N. crassa and B. distachyon roots, where fungal hyphae not only thrive in the apoplastic space and vascular bundle but also may colonize plant root cells. This new and so far hidden trait of one of the most important fungal model organisms greatly enhances our view of N. crassa, opening new perspectives concerning the fungus' ecological role. In addition, we present a new tool for studying plant-fungus interspecies communication, combining two well-established model systems, which improves our possibilities of experimental design on the molecular level.

17.
J Fungi (Basel) ; 10(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39057382

ABSTRACT

Anterior nasal septum abscess is not a rare clinical disease entity. In terms of the etiologies of the disease, bacteria are obviously more common than fungi. Fungal culture and pathological examination are essential for diagnosis of a fungal abscess of the anterior nasal septum and the basis of prescription of antifungal agents. We report a 57-year-old male patient who came to our outpatient clinic due to refractory nasal congestion for 3 weeks despite receiving treatments by a local medical doctor. Radical surgery with postoperative adjuvant radiotherapy for the right buccal cancer was carried out 14 years ago. The patient has diabetes mellitus and the blood sugar level has been well controlled by oral hypoglycemic agents over the past several years. Computed tomography revealed an abscess in the anterior septum along with rhinosinusitis. Incision and drainage of the nasal septum abscess and functional endoscopic sinus surgery were carried out. Fungal culture and pathological examination confirmed a fungal abscess in the anterior nasal septum and fungal ball rhinosinusitis. Antibiotics and an antifungal agent were given, and the postoperative course was uneventful. A dialectical argument was made regarding the causal relationship between the fungal abscess of the anterior nasal septum and maxillary fungal ball sinusitis. A literature review of the previous case reports was carried out to elucidate the immune status of patients of this disease. In order to reach a rapid establishment of a fungal abscess of the anterior nasal septum, clinicians should keep this disease in mind and remain vigilant. An immuno-compromised status is more commonly found in patients with fungal abscess of the anterior nasal septum and is another important characteristic of this disease. Prompt diagnosis and effective treatment are equally important in patients with lower immune status of this kind, and the latter is based on the former.

18.
Pathogens ; 13(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057771

ABSTRACT

Plants face many environmental challenges and have evolved different strategies to defend against stress. One strategy is the establishment of mutualistic associations with endophytic microorganisms which contribute to plant defense and promote plant growth. The fungal entomopathogen Metarhizium robertsii is also an endophyte that can provide plant-protective and growth-promoting benefits to the host plant. We conducted a greenhouse experiment in which we imposed stress from deficit and excess soil moisture and feeding by larval black cutworm (BCW), Agrotis ipsilon, to maize plants that were either inoculated or not inoculated with M. robertsii (Mr). We evaluated plant growth and defense indicators to determine the effects of the interaction between Mr, maize, BCW feeding, and water stress. There was a significant effect of water treatment, but no effect of Mr treatment, on plant chlorophyl, height, and dry biomass. There was no effect of water or Mr treatment on damage caused by BCW feeding. There was a significant effect of water treatment, but not Mr treatment, on the expression of bx7 and rip2 genes and on foliar content of abscisic acid (ABA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and gibberellin 19 (GA19), whereas GA53 was modulated by Mr treatment. Foliar content of GA19 and cis-Zeatin (cZ) was modulated by BCW feeding. In a redundancy analysis, plant phenology, plant nutrient content, and foliar DIMBOA and ABA content were most closely associated with water treatments. This study contributes toward understanding the sophisticated stress response signaling and endophytic mutualisms in crops.

19.
Exp Appl Acarol ; 93(2): 485-496, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980594

ABSTRACT

Rhipicephalus microplus poses a significant economic threat due to its role in transmitting Babesia bigemina, B. bovis and Anaplasma marginale. Chemical control methods, commonly employed, encounter challenges like resistance, high costs, and environmental concerns. Emerging as an alternative, entomopathogenic fungi, particularly Beauveria bassiana, present a promising avenue for biological control. Molecular identification using the internal transcribed spacer (ITS1-5.8-ITS4) region ensures accurate species identification. This study investigated two B. bassiana strains, assessing their molecular characterization, impact on R. microplus mortality, and reproductive effects on adult females. The Reproductive Aptitude Index (RAI) is employed to evaluate tick egg viability post-treatment, providing insights into the potential of these fungi for tick control. Results indicate the BbLn2021-1 strain causes 96% mortality, and BbSf2021-1 induces 100% mortality. The commercial strain exhibited 28% mortality, while the control treatment showed 12%. Statistical analysis reveals a significant difference between treatments (p < 0.01). The Reproductive Efficiency Index (REI) underscores BbSf2021-1is superiority, yielding lower egg weights than other treatments. Regarding the RAI, BbLn2021-1 and BbSf2021-1 show no significant differences but differ significantly from the commercial and control (p < 0.01). These findings suggest that strains isolated and characterized from the natural environment could have potential applications in field trials, serving as a biocontrol alternative for R. microplus ticks.


Subject(s)
Beauveria , Pest Control, Biological , Reproduction , Rhipicephalus , Animals , Rhipicephalus/microbiology , Rhipicephalus/physiology , Beauveria/physiology , Female , Ovum/microbiology , Ovum/physiology , Tick Control
20.
IMA Fungus ; 15(1): 19, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049135

ABSTRACT

A Special-purpose Committee on Fungal Names with the Same Epithet was established at the XIX International Botanical Congress (IBC) in Shenzhen, China in 2017, with a mandate to report to the 12th International Mycological Congress (IMC) with recommendations on a preferred course of action with respect to names of pleomorphic fungi sharing the same epithet under the International Code of Nomenclature for algae, fungi, and plants. This report provides a synthesis of the deliberations from the Special-purpose Committee. We discuss the arguments for and against the proposed solution to the problems that have arisen regarding the nomenclature of fungi described in multiple morphs using the same epithet. We also propose a gentler method of addressing the problem using existing procedures.

SELECTION OF CITATIONS
SEARCH DETAIL