Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166.518
Filter
1.
Front Immunol ; 15: 1415565, 2024.
Article in English | MEDLINE | ID: mdl-38989285

ABSTRACT

How the microbiome regulates responses of systemic innate immune cells is unclear. In the present study, our purpose was to document a novel mechanism by which the microbiome mediates crosstalk with the systemic innate immune system. We have identified a family of microbiome Bacteroidota-derived lipopeptides-the serine-glycine (S/G) lipids, which are TLR2 ligands, access the systemic circulation, and regulate proinflammatory responses of splenic monocytes. To document the role of these lipids in regulating systemic immunity, we used oral gavage with an antibiotic to decrease the production of these lipids and administered exogenously purified lipids to increase the systemic level of these lipids. We found that decreasing systemic S/G lipids by decreasing microbiome Bacteroidota significantly enhanced splenic monocyte proinflammatory responses. Replenishing systemic levels of S/G lipids via exogenous administration returned splenic monocyte responses to control levels. Transcriptomic analysis demonstrated that S/G lipids regulate monocyte proinflammatory responses at the level of gene expression of a small set of upstream inhibitors of TLR and NF-κB pathways that include Trem2 and Irf4. Consistent with enhancement in proinflammatory cytokine responses, decreasing S/G lipids lowered gene expression of specific pathway inhibitors. Replenishing S/G lipids normalized gene expression of these inhibitors. In conclusion, our results suggest that microbiome-derived S/G lipids normally establish a level of buffered signaling activation necessary for well-regulated innate immune responses in systemic monocytes. By regulating gene expression of inflammatory pathway inhibitors such as Trem2, S/G lipids merit broader investigation into the potential dysfunction of other innate immune cells, such as microglia, in diseases such as Alzheimer's disease.


Subject(s)
Monocytes , Signal Transduction , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Animals , Mice , Microbiota/immunology , Mice, Inbred C57BL , Immunity, Innate , Toll-Like Receptor 2/metabolism , Gene Expression Regulation/drug effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Lipopeptides/pharmacology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , NF-kappa B/metabolism , Inflammation/immunology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Male , Lipids , Spleen/immunology , Spleen/metabolism , Cytokines/metabolism , Female
2.
Cureus ; 16(6): e62083, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989334

ABSTRACT

Ehlers-Danlos syndrome (EDS) is a collection of genetic disorders caused by abnormalities in collagen and typified by hyperflexible joints, hyperextensible skin, and a tendency for easy bruising and tissue injuries. Hypermobile Ehlers-Danlos syndrome (hEDS), the most common subtype, presents a diagnostic challenge due to the lack of specific genetic markers. This case report describes a 13-year-old girl with hEDS, presenting with hypermobility, thoracolumbar scoliosis, constipation, glucosuria, microscopic hematuria, urticaria, and intermittent episodes of bilateral hand and feet swelling. Genetic testing revealed a variant of uncertain significance in the COL9A2 gene. An echocardiogram showed a mildly dilated aortic root. The complexity of her presentation underscores the challenges in diagnosing and managing hEDS with multisystem involvement.

3.
Cureus ; 16(6): e62037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989346

ABSTRACT

Infantile hyaline fibromatosis syndrome (HFS) is an ultra-rare genetic condition characterized by the deposition of hyaline material in the skin, muscle, and viscera. Potential complications include debilitating joint contractures, coarse facial features, recurrent infections, failure to thrive, and death. Here, we present the case of a six-month-old infant with a history of painful extremity contractures, global developmental delay, neck hemangioma, and feeding intolerance presenting to our institution with abdominal distension. The multi-systemic, rapidly progressing, severe nature of her symptoms prompted consultation with inpatient pediatric genetics. Per their recommendation, rapid whole-genome sequencing (rWGS) was done with Fabric GEM®-assisted artificial intelligence (Fabric Genomics, Oakland, California, United States) at Rady Children's Hospital Institute for Genomic Medicine (San Diego, California, United States), revealing homozygous pathogenic variant c.652T>C; P.Cys218Arg in the ANTXR2 gene consistent with HFS. This case was significant not only for its rarity, but also its early manifestation of symptoms, wide range of affected body systems, and severity of symptoms, which together present a fascinating diagnostic dilemma for future clinicians that should be taken into consideration. It also highlights the increasing utility of AI-assisted rWGS as a diagnostic tool for medically complex patients with unknown multisystemic hereditary conditions.

4.
Environ Sci Technol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989650

ABSTRACT

Anaerobic digestion (AD) is commonly used in food waste treatment. Prokaryotic microbial communities in AD of food waste have been comprehensively studied. The role of viruses, known to affect microbial dynamics and metabolism, remains largely unexplored. This study employed metagenomic analysis and recovered 967 high-quality viral bins within food waste and digestate derived from 8 full-scale biogas plants. The diversity of viral communities was higher in digestate. In silico predictions linked 20.8% of viruses to microbial host populations, highlighting possible virus predators of key functional microbes. Lineage-specific virus-host ratio varied, indicating that viral infection dynamics might differentially affect microbial responses to the varying process parameters. Evidence for virus-mediated gene transfer was identified, emphasizing the potential role of viruses in controlling the microbiome. AD altered the specific process parameters, potentially promoting a shift in viral lifestyle from lysogenic to lytic. Viruses encoding auxiliary metabolic genes (AMGs) were involved in microbial carbon and nutrient cycling, and most AMGs were transcriptionally expressed in digestate, meaning that viruses with active functional states were likely actively involved in AD. These findings provided a comprehensive profile of viral and bacterial communities and expanded knowledge of the interactions between viruses and hosts in food waste and digestate.

5.
Fetal Pediatr Pathol ; : 1-15, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989811

ABSTRACT

INTRODUCTION: To investigate the genetic contribution of 24 GWAS-associated polymorphic gene variants on the development of children's B-lineage acute lymphoblastic leukemia (B-ALL) in an ethnically homogeneous population of Kazakhs. METHODS: A study of 205 children with B-ALL and 204 healthy children was conducted. Genotyping of polymorphic loci was carried out using the TaqMan method. RESULTS: Significant associations (p < 0.05) with the risk of childhood B-ALL were found for twelve variants, including rs6457327 of the HLA gene, rs4251961 of the IL1RN gene, and rs1800630 of the TNF gene. Carriage of the minor allele A of the protective rs1801157 polymorphism A of the CXCL12 gene reduces the risk of B-ALL in the Kazakh population by 40%. DISCUSSION: The results reveal significant associations of polymorphic genetic variants, which can serve as a basis for the development of effective methods for predicting the risk of B-ALL, early diagnosis, and timely treatment.

6.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38989843

ABSTRACT

Cantharidin is a toxic defensive substance secreted by most blister beetles when attacked. It has been used to treat many complex diseases since ancient times and has recently regained popularity as an anticancer agent. However, the detailed mechanism of the cantharidin biosynthesis has not been completely addressed. In this study, we cloned McSTE24 (encoding STE24 endopeptidase) from terpenoid backbone pathway, McCYP305a1 (encoding cytochrome P450, family 305) and McJHEH [encoding subfamily A, polypeptide 1 and juvenile hormone (JH) epoxide hydrolase] associated to JH synthesis/degradation in the blister beetle Mylabris cichorii (Linnaeus, 1758, Coleoptera: Meloidae). Expression pattern analyses across developmental stages in adult males revealed that the expressions of 3 transcripts were closely linked to cantharidin titer exclusively during the peak period of cantharidin synthesis (20-25 days old). In contrast, at other stages, these genes may primarily regulate different biological processes. When RNA interference with double-stranded RNA suppressed the expressions of the 3 genes individually, significant reductions in cantharidin production were observed in males and also in females following McJHEH knockdown, indicating that these 3 genes might primarily contribute to cantharidin biosynthesis in males, but not in females, while females could self-synthesis a small amount of cantharidin. These findings support the previously hypothesized sexual dimorphism in cantharidin biosynthesis during the adult phase. McCYP305a1 collaborates with its upstream gene McSTE24 in cantharidin biosynthesis, while McJHEH independently regulates cantharidin biosynthesis in males.


Subject(s)
Cantharidin , Coleoptera , Insect Proteins , Animals , Cantharidin/metabolism , Coleoptera/genetics , Coleoptera/metabolism , Male , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
7.
Elife ; 132024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989862

ABSTRACT

Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.


Subject(s)
DEAD-box RNA Helicases , Protein Biosynthesis , Proto-Oncogene Proteins , RNA Stability , RNA, Messenger , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA Stability/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Ribosomes/metabolism , HEK293 Cells
8.
Plant Cell Physiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985662

ABSTRACT

To analyze the gene involved in orchid floral development, a HD-Zip II gene PaHAT14, which specifically and highly expressed in perianth during early flower development was identified from Phalaenopsis. Transgenic Arabidopsis plants expressing 35S::PaHAT14 and 35S::PaHAT14+SRDX (fused with the repressor motif SRDX) exhibited similar altered phenotypes, including small leaves, early flowering, and bending petals with increased cuticle production. This suggests that PaHAT14 acts as a repressor. In contrast, transgenic Arabidopsis plants expressing 35S::PaHAT14+VP16 (fused with the activation domain VP16) exhibited curled leaves, late flowering, and folded petals with decreased cuticle production within hardly opened flowers. Additionally, the expression of the ERF gene DEWAX2, which negatively regulates cuticular wax biosynthesis, was down-regulated in 35S::PaHAT14 and 35S::PaHAT14+SRDX transgenic Arabidopsis, while it was up-regulated in 35S::PaHAT14+VP16 transgenic Arabidopsis. Furthermore, transient overexpression of PaHAT14 in Phalaenopsis petal/sepal increased cuticle deposition due to the down-regulation of PaERF105, a Phalaenopsis DEWAX2 orthologue. On the other hand, transient overexpression of PaERF105 decreased cuticle deposition, whereas cuticle deposition increased and the rate of epidermal water loss was reduced in PaERF105 VIGS Phalaenopsis flowers. Moreover, ectopic expression of PaERF105 not only produced phenotypes similar to those in 35S::PaHAT14+VP16 Arabidopsis but also compensated for the altered phenotypes observed in 35S::PaHAT14 and 35S::PaHAT14+SRDX Arabidopsis. These results suggest that PaHAT14 promotes cuticle deposition by negatively regulating downstream gene PaERF105 in orchid flowers.

9.
Genome Biol Evol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985750

ABSTRACT

The photopigment-encoding visual opsin genes that mediate colour perception show great variation in copy number and adaptive function across vertebrates. An open question is how this variation has been shaped by the interaction of lineage-specific structural genomic architecture and ecological selection pressures. We contribute to this issue by investigating the expansion dynamics and expression of the duplicated Short-Wavelength-Sensitive-1 opsin (SWS1) in sea snakes (Elapidae). We generated one new genome, 45 resequencing datasets, 10 retinal transcriptomes, and 81 SWS1 exon sequences for sea snakes, and analysed these alongside 16 existing genomes for sea snakes and their terrestrial relatives. Our analyses revealed multiple independent transitions in SWS1 copy number in the marine Hydrophis clade, with at least three lineages having multiple intact SWS1 genes: the previously studied Hydrophis cyanocinctus and at least two close relatives of this species; H. atriceps-H. fasciatus; and an individual H. curtus. In each lineage, gene copy divergence at a key spectral tuning site resulted in distinct UV and Violet/Blue-sensitive SWS1 subtypes. Both spectral variants were simultaneously expressed in the retinae of H. cyanocinctus and H. atriceps, providing the first evidence that these SWS1 expansions confer novel phenotypes. Finally, chromosome annotation for nine species revealed shared structural features in proximity to SWS1 regardless of copy number. If these features are associated with SWS1 duplication, expanded opsin complements could be more common in snakes than is currently recognised. Alternatively, selection pressures specific to aquatic environments could favour improved chromatic distinction in just some lineages.

10.
J Extracell Vesicles ; 13(7): e12464, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961538

ABSTRACT

MPS IIIC is a lysosomal storage disease caused by mutations in heparan-α-glucosaminide N-acetyltransferase (HGSNAT), for which no treatment is available. Because HGSNAT is a trans-lysosomal-membrane protein, gene therapy for MPS IIIC needs to transduce as many cells as possible for maximal benefits. All cells continuously release extracellular vesicles (EVs) and communicate by exchanging biomolecules via EV trafficking. To address the unmet need, we developed a rAAV-hHGSNATEV vector with an EV-mRNA-packaging signal in the 3'UTR to facilitate bystander effects, and tested it in an in vitro MPS IIIC model. In human MPS IIIC cells, rAAV-hHGSNATEV enhanced HGSNAT mRNA and protein expression, EV-hHGSNAT-mRNA packaging, and cleared GAG storage. Importantly, incubation with EVs led to hHGSNAT protein expression and GAG contents clearance in recipient MPS IIIC cells. Further, rAAV-hHGSNATEV transduction led to the reduction of pathological EVs in MPS IIIC cells to normal levels, suggesting broader therapeutic benefits. These data demonstrate that incorporating the EV-mRNA-packaging signal into a rAAV-hHGSNAT vector enhances EV packaging of hHGSNAT-mRNA, which can be transported to non-transduced cells and translated into functional rHGSNAT protein, facilitating cross-correction of disease pathology. This study supports the therapeutic potential of rAAVEV for MPS IIIC, and broad diseases, without having to transduce every cell.


Subject(s)
Bystander Effect , Dependovirus , Extracellular Vesicles , Genetic Therapy , RNA, Messenger , Humans , Genetic Therapy/methods , Dependovirus/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Extracellular Vesicles/metabolism , Mucopolysaccharidosis III/therapy , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/genetics , Genetic Vectors , Acetyltransferases/metabolism , Acetyltransferases/genetics
11.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963418

ABSTRACT

Tiny animals known as tardigrades use a combination of DNA repair machinery and a novel protein to mend their genome after intense ionizing radiation.


Subject(s)
DNA Repair , Animals , Tardigrada/physiology , Tardigrada/radiation effects , Radiation, Ionizing , DNA Damage/radiation effects
12.
Parasite ; 31: 37, 2024.
Article in English | MEDLINE | ID: mdl-38963405

ABSTRACT

Enterocytozoon bieneusi is an obligate intracellular microsporidian parasite with a worldwide distribution. As a zoonotic pathogen, E. bieneusi can infect a wide range of wildlife hosts through the fecal-oral route. Although the feces of flying squirrels (Trogopterus xanthipes) are considered a traditional Chinese medicine (as "faeces trogopterori"), no literature is available on E. bieneusi infection in flying squirrels to date. In this study, a total of 340 fresh flying squirrel fecal specimens from two captive populations were collected in Pingdingshan city, China, to detect the prevalence of E. bieneusi and assess their zoonotic potential. By nested PCR amplification of the ITS gene, six specimens tested positive, with positive samples from each farm, with an overall low infection rate of 1.8%. The ITS sequences revealed three genotypes, including known genotype D and two novel genotypes, HNFS01 and HNFS02. Genotype HNFS01 was the most prevalent (4/6, 66.7%). Phylogenetic analysis showed that all genotypes clustered into zoonotic Group 1, with the novel genotypes clustering into different subgroups. To our knowledge, this is the first report of E. bieneusi infection in flying squirrels, suggesting that flying squirrels could act as a potential reservoir and zoonotic threat for E. bieneusi transmission to humans in China.


Title: Occurrence et génotypage d'Enterocytozoon bieneusi chez les écureuils volants (Trogopterus xanthipes) de Chine. Abstract: Enterocytozoon bieneusi est un parasite microsporidien intracellulaire obligatoire présent dans le monde entier. En tant qu'agent pathogène zoonotique, E. bieneusi peut infecter un large éventail d'hôtes sauvages par la voie fécale-orale. Bien que les excréments d'écureuils volants (Trogopterus xanthipes) soient considérés comme un ingrédient de médecine traditionnelle chinoise (comme « faeces trogopterori ¼), aucune littérature n'est disponible à ce jour sur l'infection par E. bieneusi chez les écureuils volants. Dans cette étude, un total de 340 spécimens fécaux frais d'écureuils volants provenant de deux populations captives ont été collectés dans la ville de Pingdingshan, en Chine, pour détecter la prévalence d'E. bieneusi et évaluer leur potentiel zoonotique. Par amplification PCR nichée du gène ITS, six échantillons se sont révélés positifs, avec des échantillons positifs dans chaque ferme, et un taux d'infection global faible, à 1,8 %. Les séquences ITS ont révélé trois génotypes, dont le génotype D connu et deux nouveaux génotypes, HNFS01 et HNFS02. Le génotype HNFS01 était le plus répandu (4/6, 66,7 %). L'analyse phylogénétique a montré que tous les génotypes se regroupaient dans le groupe zoonotique 1, les nouveaux génotypes se regroupant en différents sous-groupes. À notre connaissance, il s'agit du premier rapport d'infection par E. bieneusi chez des écureuils volants, ce qui suggère que les écureuils volants pourraient agir comme un réservoir potentiel et une menace zoonotique pour la transmission d'E. bieneusi aux humains en Chine.


Subject(s)
Enterocytozoon , Feces , Genotype , Microsporidiosis , Phylogeny , Sciuridae , Animals , Sciuridae/microbiology , Sciuridae/parasitology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Feces/microbiology , Feces/parasitology , Prevalence , Zoonoses , Polymerase Chain Reaction/veterinary , DNA, Fungal/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , DNA, Ribosomal Spacer/genetics , Animals, Wild/microbiology
13.
Environ Pollut ; 358: 124461, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964643

ABSTRACT

Identifying key molecular pathways and genes involved in the response to urban pollutants is an important step in furthering our understanding of the impact of urbanisation on wildlife. The expansion of urban habitats and the associated human-introduced environmental changes are considered a global threat to the health and persistence of humans and wildlife. The present study experimentally investigates how short-term exposure to three urban-related pollutants -soot, artificial light at night (ALAN) and traffic noise-affects transcriptome-wide gene expression in livers from captive female zebra finches (Taeniopygia guttata). Compared to unexposed controls, 17, 52, and 28 genes were differentially expressed in soot, ALAN and noise-exposed birds, respectively. In soot-exposed birds, the enriched gene ontology (GO) terms were associated with a suppressed immune system such as interferon regulating genes (IRGs) and responses to external stimuli. For ALAN-exposed birds, enriched GO terms were instead based on downregulated genes associated with detoxification, redox, hormonal-, and metabolic processes. Noise exposure resulted in downregulation of genes associated with the GO terms: cellular responses to substances, catabolic and cytokine responses. Among the individually differentially expressed genes (DEGs), soot led to an increased expression of genes related to tumour progression. Likewise, ALAN revealed an upregulation of multiple genes linked to different cancer types. Both sensory pollutants (ALAN and noise) led to increased expression of genes linked to neuronal function. Interestingly, noise caused upregulation of genes associated with serotonin regulation and function (SLC6A4 and HTR7), which previous studies have shown to be under selection in urban birds. These outcomes indicate that short-term exposure to the three urban pollutants perturbate the liver transcriptome, but most often in different ways, which highlights future studies of multiple-stress exposure and their interactive effects, along with their long-term impacts for urban-dwelling wildlife.

14.
Toxicol Res (Camb) ; 13(4): tfae095, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966091

ABSTRACT

Background: Nanotechnology has shown a remarkable progress nevertheless, there is a growing concern about probable neurotoxic and neurodegenerative effects due to NPs exposure. Various toxicological and epidemiological studies reported that the brain is a main target for ultrafine particles. Brain inflammation is considered as a possible mechanism that can participate to neurotoxic and neurodegenerative effects. Whether nanoparticles (NPs) may produce neurotoxicity and promote neurodegenerative is largely unstudied. The present study was done to investigate whether intranasal and intra-peritoneal exposure to cerium oxide nanoparticles (CeO2NPs, nanoceria (NC)) could cause neurotoxicity and neurodegenerative changes in the brain tissue through conducting some behavioral tests, biochemical evaluation, histopathological examinations of brain hippocampus and gene expressions. Method: Fifteen mice were separated into 3 equal groups. In group (I) "control group", mice were received distilled water orally and kept as a control group. Mice in the group (II) "NC I/P group" were injected i.p with cerium oxide nanoparticles at a dose of 40 mg/kg b.wt, twice weekly for 3 weeks. In group (III) "NC I/N group" mice were received nanoceria intranasally (40 mg/kg b.wt), twice weekly for 3 weeks. Results: Exposure to nanceria resulted in oxidative damage in brain tissue, a significant increase in malondialdehyde (MDA) and acetylcholinestrase (AchE) levels, significant decrease in reduced glutathione (GSH) concentration, upregulation in the apoptosis-related genes (c-Jun: c-Jun N-terminal kinases (JNKs), c-Fos: Fos protooncogene, AP-1 transcription factor subunit, c-Myc: c-myelocytomatosis oncogene product or MYC protooncogene, bHLH transcription factor), locomotor and cognitive impairment in mice but the effect was more obvious when nanoceria adminstred intraperitoneally. Conculsion: Nanoceria cause oxidative damage in brain tissue of mice when adminstred nanoceria intraperitoneally more than those received nanoceria intranasal.

15.
Front Plant Sci ; 15: 1412540, 2024.
Article in English | MEDLINE | ID: mdl-38966148

ABSTRACT

Introduction: Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods: In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion: These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.

16.
Explor Target Antitumor Ther ; 5(3): 678-698, 2024.
Article in English | MEDLINE | ID: mdl-38966174

ABSTRACT

Breast cancer (BC) is the most prevalent malignancy affecting women worldwide, including Portugal. While the majority of BC cases are sporadic, hereditary forms account for 5-10% of cases. The most common inherited mutations associated with BC are germline mutations in the BReast CAncer (BRCA) 1/2 gene (gBRCA1/2). They are found in approximately 5-6% of BC patients and are inherited in an autosomal dominant manner, primarily affecting younger women. Pathogenic variants within BRCA1/2 genes elevate the risk of both breast and ovarian cancers and give rise to distinct clinical phenotypes. BRCA proteins play a key role in maintaining genome integrity by facilitating the repair of double-strand breaks through the homologous recombination (HR) pathway. Therefore, any mutation that impairs the function of BRCA proteins can result in the accumulation of DNA damage, genomic instability, and potentially contribute to cancer development and progression. Testing for gBRCA1/2 status is relevant for treatment planning, as it can provide insights into the likely response to therapy involving platinum-based chemotherapy and poly[adenosine diphosphate (ADP)-ribose] polymerase inhibitors (PARPi). The aim of this review was to investigate the impact of HR deficiency in BC, focusing on BRCA mutations and their impact on the modulation of responses to platinum and PARPi therapy, and to share the experience of Unidade Local de Saúde Santa Maria in the management of metastatic BC patients with DNA damage targeted therapy, including those with the Portuguese c.156_157insAlu BRCA2 founder mutation.

17.
Exp Biol Med (Maywood) ; 249: 10161, 2024.
Article in English | MEDLINE | ID: mdl-38966281

ABSTRACT

Osteosarcoma is a form of bone cancer that predominantly impacts osteoblasts, the cells responsible for creating fresh bone tissue. Typical indications include bone pain, inflammation, sensitivity, mobility constraints, and fractures. Utilising imaging techniques such as X-rays, MRI scans, and CT scans can provide insights into the size and location of the tumour. Additionally, a biopsy is employed to confirm the diagnosis. Analysing genes with distinct expression patterns unique to osteosarcoma can be valuable for early detection and the development of effective treatment approaches. In this research, we comprehensively examined the entire transcriptome and pinpointed genes with altered expression profiles specific to osteosarcoma. The study mainly aimed to identify the molecular fingerprint of osteosarcoma. In this study, we processed 90 FFPE samples from PathWest with an almost equal number of osteosarcoma and healthy tissues. RNA was extracted from Paraffin-embedded tissue; RNA was sequenced, the sequencing data was analysed, and gene expression was compared to the healthy samples of the same patients. Differentially expressed genes in osteosarcoma-derived samples were identified, and the functions of those genes were explored. This result was combined with our previous studies based on FFPE and fresh samples to perform a meta-analysis. We identified 1,500 identical differentially expressed genes in PathWest osteosarcoma samples compared to normal tissue samples of the same patients. Meta-analysis with combined fresh tissue samples identified 530 differentially expressed genes. IFITM5, MMP13, PANX3, and MAGEA6 were some of the most overexpressed genes in osteosarcoma samples, while SLC4A1, HBA1, HBB, AQP7 genes were some of the top downregulated genes. Through the meta-analysis, 530 differentially expressed genes were identified to be identical among FFPE (105 FFPE samples) and 36 fresh bone samples. Deconvolution analysis with single-cell RNAseq data confirmed the presence of specific cell clusters in FFPE samples. We propose these 530 DEGs as a molecular fingerprint of osteosarcoma.


Subject(s)
Bone Neoplasms , Gene Expression Profiling , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/pathology , Humans , Gene Expression Profiling/methods , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Paraffin Embedding , Transcriptome/genetics , Gene Expression Regulation, Neoplastic , Tissue Fixation , Formaldehyde
18.
Cureus ; 16(6): e61661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966484

ABSTRACT

Fibrodysplasia ossificans progressiva (FOP) is an exceptionally rare genetic disorder, representing humans' most debilitating form of extraskeletal ossification. It is characterized by progressive postnatal heterotopic ossification of connective tissue and malformations of the big toes. In FOP, ectopic ossification usually begins in the upper paraspinal muscles and then spreads from axial to appendicular regions, cranial to caudal directions, and proximal to distal sites. The mean life expectancy for these patients is typically 40-50 years. Most patients need partial or complete assistance with walking by age 30, and common causes of death include thoracic insufficiency syndrome and pneumonia. We present the case of a patient with an advanced stage of FOP, highlighting its complex and progressive nature. The patient exhibits severe impairment of jaw mobility, swallowing difficulties, speech impediments, and hearing impairment. Additionally, severe kyphoscoliosis, heterotopic ossification of intercostal and paravertebral muscles, and ankylosis of the spine and all major joints of the upper and lower extremities, except the metacarpophalangeal and proximal interphalangeal joints, are evident. We discuss disease presentation, current management options, and rehabilitation challenges. To our knowledge, this is the first reported case of this rare disease from our country.

19.
J Endocr Soc ; 8(8): bvae121, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38966711

ABSTRACT

Obesity, characterized by the accumulation of excess fat, is a complex condition resulting from the combination of genetic and epigenetic factors. Recent studies have found correspondence between DNA methylation and cell differentiation, suggesting a role of the former in cell fate determination. There is a lack of comprehensive understanding concerning the underpinnings of preadipocyte differentiation, specifically when cells are undergoing terminal differentiation (TD). To gain insight into dynamic genome-wide methylation, 3T3 L1 preadipocyte cells were differentiated by a hormone cocktail. The genomic DNA was isolated from undifferentiated cells and 4 hours, 2 days postdifferentiated cells, and 15 days TD cells. We employed whole-genome bisulfite sequencing (WGBS) to ascertain global genomic DNA methylation alterations at single base resolution as preadipocyte cells differentiate. The genome-wide distribution of DNA methylation showed similar overall patterns in pre-, post-, and terminally differentiated adipocytes, according to WGBS analysis. DNA methylation decreases at 4 hours after differentiation initiation, followed by methylation gain as cells approach TD. Studies revealed novel differentially methylated regions (DMRs) associated with adipogenesis. DMR analysis suggested that though DNA methylation is global, noticeable changes are observed at specific sites known as "hotspots." Hotspots are genomic regions rich in transcription factor (TF) binding sites and exhibit methylation-dependent TF binding. Subsequent analysis indicated hotspots as part of DMRs. The gene expression profile of key adipogenic genes in differentiating adipocytes is context-dependent, as we found a direct and inverse relationship between promoter DNA methylation and gene expression.

20.
J Neuromuscul Dis ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38968056

ABSTRACT

Background: Congenital myopathies (CMs) are a diverse group of inherited muscle disorders with broad genotypic and phenotypic heterogeneity. While the literature on CM is available from European countries, comprehensive data from the Indian subcontinent is lacking. Objectives: This study aims to describe the clinical and histopathological characteristics of a cohort of genetically confirmed CMs from India and attempts to do phenotype-genotype correlation. Methods: A retrospective chart review of genetically confirmed CMs was evaluated between January 2016 and December 2020 at the neuromuscular clinic. The clinical, genetic, and follow-up data were recorded in a pre-structured proforma as per the medical records, and the data was analyzed. Results: A total of 31(M: F = 14 : 17) unrelated patients were included. The median age at onset and duration of illness are 2.0(IQR:1-8) years and 6.0(IQR:3-10) years respectively. Clinical features observed were proximodistal weakness (54.8%), facial weakness (64.5%), and myopathic facies (54.8%), followed by ptosis (33.3%), and ophthalmoplegia (19.4%). Muscle histopathology was available in 38.7% of patients, and centronuclear myopathy was the most common histopathology finding. The pathogenic genetic variants were identified in RYR1 (29.0%), DNM2 (19.4%), SELENON (12.9%), KBTBD13 (9.7%), NEB (6.5%), and MYPN (6.5%) genes. Novel mutations were observed in 30.3% of the cohort. Follow-up details were available in 77.4% of children, and the median duration of follow-up and age at last follow-up was 4.5 (Range 0.5-11) years and 13 (Range 3-35) years, respectively. The majority were ambulant with minimal assistance at the last follow-up. Mortality was noted in 8.3% due to respiratory failure in Centronuclear myopathy 1 and congenital myopathy 3 with rigid spines (SELENON). Conclusion: This study highlights the various phenotypes and patterns of genetic mutations in a cohort of pediatric patients with congenital myopathy from India. Centronuclear myopathy was the most common histological classification and the mutations in RYR1 followed by DNM2 gene were the common pathogenic variants identified. The majority were independent in their activities of daily living during the last follow-up, highlighting the fact that the disease has slow progression irrespective of the genotype.

SELECTION OF CITATIONS
SEARCH DETAIL
...