Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
EBioMedicine ; 105: 105223, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38917511

ABSTRACT

BACKGROUND: DNA methylation biomarkers in colorectal cancer (CRC) tissue hold potential as prognostic indicators. However, individual studies have yielded heterogeneous results, and external validation is largely absent. We conducted a comprehensive external validation and meta-analysis of previously suggested gene methylation biomarkers for CRC prognosis. METHODS: We performed a systematic search to identify relevant studies investigating gene methylation biomarkers for CRC prognosis until March 2024. Our external validation cohort with long-term follow-up included 2303 patients with CRC from 22 hospitals in southwest Germany. We used Cox regression analyses to assess associations between previously suggested gene methylation biomarkers and prognosis, adjusting for clinical variables. We calculated pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) using random-effects models. FINDINGS: Of 151 single gene and 29 multiple gene methylation biomarkers identified from 121 studies, 37 single gene and seven multiple gene biomarkers were significantly associated with CRC prognosis after adjustment for clinical variables. Moreover, the directions of these associations with prognosis remained consistent between the original studies and our validation analyses. Seven single biomarkers and two multi-biomarker signatures were significantly associated with CRC prognosis in the meta-analysis, with a relatively strong level of evidence for CDKN2A, WNT5A, MLH1, and EVL. INTERPRETATION: In a comprehensive evaluation of the so far identified gene methylation biomarkers for CRC prognosis, we identified candidates with potential clinical relevance for further investigation. FUNDING: The German Research Council, the Interdisciplinary Research Program of the National Center for Tumor Diseases (NCT), Germany, the German Federal Ministry of Education and Research.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , DNA Methylation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Biomarkers, Tumor/genetics , Prognosis , Gene Expression Regulation, Neoplastic , Female , Male , Proportional Hazards Models , Reproducibility of Results
2.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732551

ABSTRACT

The salivary protein, Gustin/carbonic anhydrase VI, has been described as a trophic factor responsible for the growth of taste buds. We found, in a genetically homogeneous population, that the polymorphism rs2274333 (A/G) of the Gustin gene is crucial for the full functionality of the protein and is associated with taste sensitivity. However, other studies have failed to find this evidence. Here, we verified if Gustin gene methylation can affect the salivary levels of the protein, also concerning the polymorphism rs2274333 and PROP bitter responsiveness. The Gustin gene methylation profiling and the quantification of the Gustin salivary levels were determined in sixty-six volunteers genotyped for the polymorphism rs2274333 (A/G) (Ser90Gly in the protein sequence). The fungiform papillae density was also determined. The results confirm our earlier observations by showing that AA genotypes had a greater density of fungiform taste papillae, whereas the GG genotypes showed a lower density. We also found variations in the protein levels in the three genotype groups and an inverse relationship between Gustin gene methylation and the salivary levels of the protein, mostly evident in AA and ST volunteers, i.e., in volunteers who would be carriers of the functional isoform of the protein. These findings could justify the conflicting data in the literature.


Subject(s)
Carbonic Anhydrases , Saliva , Taste Buds , Adult , Female , Humans , Male , Young Adult , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , DNA Methylation , Genotype , Polymorphism, Single Nucleotide , Saliva/metabolism , Taste/genetics , Taste Buds/metabolism
3.
Cancers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672598

ABSTRACT

Although grading is defined by the highest histological grade observed in a glioma, most high-grade gliomas retain areas with histology reminiscent of their low-grade counterparts. We sought to achieve the following: (i) identify proteins and molecular pathways involved in glioma evolution; and (ii) validate the high mobility group protein B2 (HMGB2) as a key player in tumor progression and as a prognostic/predictive biomarker for diffuse astrocytomas. We performed liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple areas of adult-type astrocytomas and validated our finding in multiplatform-omics studies and high-throughput IHC analysis. LC-MS/MSdetected proteomic signatures characterizing glioma evolution towards higher grades associated with, but not completely dependent, on IDH status. Spatial heterogeneity of diffuse astrocytomas was associated with dysregulation of specific molecular pathways, and HMGB2 was identified as a putative driver of tumor progression, and an early marker of worse overall survival in grades 2 and 3 diffuse gliomas, at least in part regulated by DNA methylation. In grade 4 astrocytomas, HMGB2 expression was strongly associated with proliferative activity and microvascular proliferation. Grounded in proteomic findings, our results showed that HMGB2 expression assessed by IHC detected early signs of tumor progression in grades 2 and 3 astrocytomas, as well as identified GBMs that had a better response to the standard chemoradiation with temozolomide.

4.
Talanta ; 273: 125872, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38471421

ABSTRACT

Gene methylation-related enzymes (GMREs) are disfunction and aberrantly expressed in a variety of cancers, such as lung, gastric, and pancreatic cancers and have important implications for human health. Therefore,it is critical for early diagnosis and therapy of tumor to develop strategies that allow rapid and sensitive quantitative and qualitative detection of GMREs. With the development of modern analytical techniques and the application of various biosensors, there are numerous methods have been developed for analysis of GMREs. Therefore, this paper provides a systematic review of the strategies for level and activity assay of various GMREs including methyltransferases and demethylase. The detection methods mainly involve immunohistochemistry, colorimetry, fluorescence, chemiluminescence, electrochemistry, etc. Then, this review also addresses the coordinated role of various detection probes, novel nanomaterials, and signal amplification methods. The aim is to highlight potential challenges in the present field, to expand the analytical application of GMREs detection strategies, and to meet the urgent need for future disease diagnosis and intervention.


Subject(s)
DNA Methylation , Humans , RNA/analysis , Enzyme Assays/methods , Biosensing Techniques/methods , DNA/chemistry , DNA/analysis , Methyltransferases/metabolism , Neoplasms/genetics , Neoplasms/diagnosis , RNA Methylation
5.
J Tradit Chin Med ; 44(1): 78-87, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213242

ABSTRACT

OBJECTIVE: To unmask the underlying mechanisms of Yisui granule (, YSG) for the treatment of Myelodysplastic syndromes (MDS). METHODS: Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor potential of YSG and its safety, assess its effect on overall survival (OS), and evaluate whether its mechanism is associated with the demethylation of the secreted frizzled related protein 5 (sFRP5) gene and suppressing Wnt/ß-catenin pathway. Bisulfite amplicon sequencing was applied to detect the level of methylation of the sFRP5 gene; western blotting, immunofluorescence staining, and real-time Polymerase Chain Reaction were performed to detect DNA methyltransferase 1 (DNMT1), sFRP5, and other Wnt/ß-catenin pathway-related mRNA and protein expression. RESULTS: The results showed that high-dosage YSG exerted an anti-tumor effect similar to that of decitabine, improved OS, and reduced long-term adverse effects in the long term. Mechanically, YSG reduced the expression of DNMT1 methyltransferase, decreased the methylation, and increased the expression of the Wnt/ß-catenin pathway antagonist-sFRP5. Furthermore, components of the Wnt/ß-catenin pathway, including Wnt3a, ß-catenin, c-Myc, and cyclinD1, were down-regulated in response to YSG, suggesting that YSG could treat MDS by demethylating the sFRP5 gene and suppressing the Wnt/ß-catenin pathway. CONCLUSIONS: Our findings demonstrated that YSG could be used alone or in combination with decitabine to improve outcomes in the MDS animal model, providing an alternative solution for treating MDS.


Subject(s)
Myelodysplastic Syndromes , Wnt Signaling Pathway , Humans , Animals , Mice , DNA Methylation , Decitabine/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Heterografts , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Disease Models, Animal , Methyltransferases/genetics , Methyltransferases/metabolism
6.
PeerJ ; 12: e16757, 2024.
Article in English | MEDLINE | ID: mdl-38223763

ABSTRACT

The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.


Subject(s)
Chemokines , MARVEL Domain-Containing Proteins , Neoplasms , Humans , Chemokines/genetics , MARVEL Domain-Containing Proteins/genetics , Signal Transduction , Neoplasms/genetics
7.
Heliyon ; 10(1): e23680, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226278

ABSTRACT

Patients with bipolar disorder have a higher risk of suicide than the general population. This study aimed to explore the correlation between suicide and gene methylation, as screened by genome-wide scanning, in children and adolescents with bipolar disorder. A total of 45 children and adolescents with bipolar disorder were divided into a suicidal ideation group (n = 41), a non-suicidal ideation group (n = 4), a low-risk group (n = 12), and a middle-to-high-risk group (n = 33). A pre-experiment was conducted on the suicidal ideation (n = 6) and non-suicidal ideation groups (n = 4). Blood samples were scanned using an Illumina HD 850K microarray, and methylation levels were analysed. Differential methylation sites among the sample groups were screened from the original data, and genes related to suicide were identified. Methylation of the ABI3BP and DPYSL2 genes was detected by pyrophosphate sequencing and statistically analysed. There was a significant difference in age between the low- and middle-risk groups. The results of GO analysis for the suicidal ideation and non-suicidal ideation groups showed that the differential methylation sites were mainly involved in the interferon-γ-mediated signalling pathway, with the main signalling pathways being the inflammatory bowel disease (IBD) pathway and type 1 diabetes mellitus (T1DM) pathway. There were significant differences in the methylation of ABI3BP, HLA-DQB1, HLA-DRB1, AUTS2, SP3, NINJ2, DPYSL2, and other genes between the suicidal and non-suicidal ideation groups. There was also a statistically significant difference in the gene methylation levels between the two groups. However, there was no significant difference in the degree of methylation of the ABI3BP and DPYSL2 genes between the low- and middle-to-high-risk groups. These results suggest that suicidal ideation is correlated with the methylation levels of differentially methylated genes in children with bipolar disorder. However, the severity of suicide risk in paediatric patients with bipolar disorder may not be correlated with the degree of methylation of the ABI3BP and DPYSL2 genes. Therefore, further validation was required.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1017254

ABSTRACT

Objective To investigate the diagnostic efficacy and clinical value of GNB4 and Riplet gene methylation alone and in combination in the diagnosis of primary liver cancer.Methods A total of 313 patients were selected,including 78 patients with primary liver cancer,41 patients with other digestive system tumors,17 patients with non-digestive system tumors,20 patients with postoperative liver cancer,and 157 patients with benign liver disea-ses.The levels of GNB4 and Riplet gene methylation in plasma were detected using quantitative methylation-specific PCR(qMSP).Serum alpha-fetoprotein(AFP)levels were measured by direct chemiluminescence.Results The sensitivity and specificity of AFP in diagnosis were 51.3%and 94.3%,respectively;the sensitivity and specificity of GNB4 gene methylation in diagnosis were 83.3%and 99.4%,respectively;the sensitivity and specificity of Riplet gene methylation in diagnosis were 73.1%and 99.4%,respectively.The sensitivity and specificity of GNB4 and Riplet gene methylation combined diagnosis were 92.3%and 98.7%,respectively;the sensitivity and specificity of AFP,GNB4 and Riplet gene methylation combined diagnosis were 92.3%and 98.7%,respectively;the sensitivity and specificity of combined diagnosis including age and gender were 93.6%and 97.5%,respective-ly.Conclusion The sensitivity and specificity of AFP in the diagnosis of primary liver cancer are limited,while the methylation levels of GNB4 and Riplet genes are higher,and the sensitivity and specificity of their combined de-tection are higher than those of AFP.The sensitivity and specificity of AFP,GNB4 and Riplet gene methylation combined diagnosis are significantly higher than those of AFP,GNB4 and Riplet gene methylation alone.

9.
Brain Sci ; 13(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37891789

ABSTRACT

The etiology of Autism Spectrum Disorders (ASD) is a result of the interaction between genes and the environment. The study of epigenetic factors that affect gene expression, such as DNA methylation, has become an important area of research in ASD. In recent years, there has been an increasing body of evidence pointing to epigenetic mechanisms that influence brain development, as in the case of ASD, when gene methylation dysregulation is present. Our analysis revealed 853 differentially methylated CpG in ASD patients, affecting 509 genes across the genome. Enrichment analysis showed five related diseases, including autistic disorder and mental disorders, which are particularly significant. In this work, we identified 64 genes that were previously reported in the SFARI gene database, classified according to their impact index. Additionally, we identified new genes that have not been previously reported as candidates with differences in the methylation patterns of Mexican children with ASD.

10.
Rejuvenation Res ; 26(6): 221-228, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37786334

ABSTRACT

This study aims to investigate the association between sleep duration and osteoporosis. In addition, sleep-related gene methylation was also detected in this study and we explored its relationship with osteoporosis. The epidemiological investigation section of this study was designed as a retrospective cross-sectional study. We gathered 148 postmenopausal women from two communities and used questionnaires to collect data of sleep duration and other sleep patterns. Biochemical variables were tested, and bone mineral density was measured by dual-energy X-ray absorptiometry. In addition, sleep-related gene (PER2 and PER3) methylation was tested, and the association with osteoporosis was further studied. Twenty-nine of the 148 participants (aged from 65 to 86 years) who suffered from osteoporosis were tested for osteopenia. A significant difference was observed in the association between sleep duration and osteoporosis; the p-value was 0.013. In addition, in our study, we found that short sleep duration (<7 hours) may increase the risk of osteoporosis compared with longer sleep duration. Moreover, sleep-related genes such as PER2 and PER3 and their CpG island methylation were tested, and there was no significant difference between PER2 and PER3 CpG island methylation and osteoporosis. Short sleep duration may increase the risk of osteoporosis. However, the association between sleep-related gene methylation and osteoporosis was not found.


Subject(s)
Osteoporosis , Postmenopause , Humans , Female , Postmenopause/genetics , Sleep Duration , Retrospective Studies , Cross-Sectional Studies , Osteoporosis/genetics , Bone Density/genetics , Sleep/genetics , Absorptiometry, Photon , Methylation , China
11.
Biomedicines ; 11(10)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37893199

ABSTRACT

The relationship between polyamines and healthy longevity has received much attention in recent years. However, conducting research without understanding the properties of polyamines can lead to unexpected pitfalls. The most fundamental consideration in conducting polyamine studies is that bovine serum used for cell culture contains bovine serum amine oxidase. Bovine serum amine oxidase, which is not inactivated by heat treatment, breaks down spermine and spermidine to produce the highly toxic aldehyde acrolein, which causes cell damage and activates autophagy. However, no such enzyme activity has been found in humans. Polyamine catabolism does not produce toxic aldehydes under normal conditions, but inflammation and some pathogens provoke an inducible enzyme, spermine oxidase, which only breaks down spermine to produce acrolein, resulting in cytotoxicity and the activation of autophagy. Therefore, spermine oxidase activation reduces spermine concentration and the ratio of spermine to spermidine, a feature recently reported in patients with age-related diseases. Spermine, which is increased by a long-term, continuous high polyamine diet, suppresses aberrant gene methylation and the pro-inflammatory status that progress with age and are strongly associated with the development of several age-related diseases and senescence. Changes in spermine concentration and the spermine/spermidine ratio should be considered as indicators of human health status.

12.
Gastric Cancer ; 26(5): 667-676, 2023 09.
Article in English | MEDLINE | ID: mdl-37219707

ABSTRACT

BACKGROUND: Gastric cancer risk can be accurately predicted by measuring the methylation level of a single marker gene in gastric mucosa. However, the mechanism is still uncertain. We hypothesized that the methylation level measured reflects methylation alterations in the entire genome (methylation burden), induced by Helicobacter pylori (H. pylori) infection, and thus cancer risk. METHODS: Gastric mucosa of 15 healthy volunteers without H. pylori infection (G1), 98 people with atrophic gastritis (G2), and 133 patients with gastric cancer (G3) after H. pylori eradication were collected. Methylation burden of an individual was obtained by microarray analysis as an inverse of the correlation coefficient between the methylation levels of 265,552 genomic regions in the person's gastric mucosa and those in an entirely healthy mucosa. RESULTS: The methylation burden significantly increased in the order of G1 (n = 4), G2 (n = 18), and G3 (n = 19) and was well correlated with the methylation level of a single marker gene (r = 0.91 for miR124a-3). The average methylation levels of nine driver genes tended to increase according to the risk levels (P = 0.08 between G2 vs G3) and was also correlated with the methylation level of a single marker gene (r = 0.94). Analysis of more samples (14 G1, 97 G2, and 131 G3 samples) yielded significant increases of the average methylation levels between risk groups. CONCLUSIONS: The methylation level of a single marker gene reflects the methylation burden, which includes driver gene methylation, and thus accurately predicts cancer risk.


Subject(s)
Gastritis, Atrophic , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , DNA Methylation , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Gastric Mucosa/metabolism , Gastritis, Atrophic/genetics , Risk Factors , Helicobacter Infections/complications , Helicobacter Infections/genetics
13.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047452

ABSTRACT

Cervical intraepithelial neoplasia grade 2 (CIN2) is an intermediate stage between CIN 1, which is a low-grade lesion, and CIN3, which is the immediate precursor of cervical cancer (CC). Traditionally, CIN2 was regarded as a high-grade lesion and was treated with conization or ablative methods. In recent years, there has been a shift in the management of younger patients, who are now more often being managed conservatively due to frequent spontaneous CIN2 regression and possible adverse effects of treatment on future pregnancies. Because the risk of progression to CC still exists with conservative management, a personalized approach is needed to identify patients with a higher probability of progression. In this regard, research has focused on the role of host and human papillomavirus (HPV) gene methylation. This systematic review summarizes the current knowledge regarding conservative CIN2 management focusing on the main methylation markers and its implementation in conservative CIN2 management, and it describes major ongoing longitudinal studies on the subject. The review showed that DNA methylation is an accurate predictor of disease progression and a valid triage tool for HPV-positive women, with CIN2 performing better than triage cytology. Because virtually all CCs are methylation-positive, methylation-negative women at baseline have an extremely low risk of CC.


Subject(s)
Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Pregnancy , Humans , Female , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Papillomavirus Infections/pathology , Uterine Cervical Dysplasia/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/pathology , DNA Methylation , DNA , Papillomaviridae/genetics
14.
Exp Cell Res ; 425(2): 113540, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36889573

ABSTRACT

Syk is a tumor suppressor gene in some solid tumors. Currently, it remains unknown how Syk gene hypermethylation is controlled by DNA methyltransferase (DNMT) and p53. In colorectal cancer HCT116 cells, we found that protein and mRNA levels of Syk were much higher in WT than in p53-/- cells. Both p53 inhibitor PFT-α and p53 silencing can reduce the protein and mRNA expression of Syk in WT cells, while DNMT inhibitor 5-Aza-2'-dC can increase Syk expression in p53-/- cells. Interestingly, the DNMT expression in p53-/- HCT116 cells was higher than that in WT cells. PFT-α can not only enhance Syk gene methylation but also increase DNMT1 protein and mRNA levels in WT HCT116 cells. In metastatic lung cancer cell lines A549 and PC9, which express WT p53 and gain function of p53, respectively, PFT-α can also downregulate Syk mRNA and protein expression. However, the Syk methylation level was increased by PFT-α in A549 but not in PC9 cells. Likewise, 5-Aza-2'-dC transcriptionally increased Syk gene expression in A549 cells, but not in PC9 cells. In summary methylation of Syk promoter requires DNMT1, and p53 can upregulate Syk expression via downregulation of DNMT1 at the transcriptional level.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Cell Line, Tumor , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Down-Regulation/genetics , Epigenesis, Genetic/genetics , Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism , Tumor Suppressor Protein p53/metabolism , Up-Regulation/genetics , Humans
15.
Clin Epigenetics ; 14(1): 192, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585686

ABSTRACT

BACKGROUND: Fetal overgrowth "programs" an elevated risk of type 2 diabetes in adulthood. Epigenetic alterations may be a mechanism in programming the vulnerability. We sought to characterize genome-wide alterations in placental gene methylations in fetal overgrowth and the associations with metabolic health biomarkers including leptin, adiponectin and fetal growth factors. RESULTS: Comparing genome-wide placental gene DNA methylations in large-for-gestational-age (LGA, an indicator of fetal overgrowth, n = 30) versus optimal-for-gestational-age (OGA, control, n = 30) infants using the Illumina Infinium Human Methylation-EPIC BeadChip, we identified 543 differential methylation positions (DMPs; 397 hypermethylated, 146 hypomethylated) at false discovery rate < 5% and absolute methylation difference > 0.05 after adjusting for placental cell-type heterogeneity, maternal age, pre-pregnancy BMI and HbA1c levels during pregnancy. Twenty-five DMPs annotated to 20 genes (QSOX1, FCHSD2, LOC101928162, ADGRB3, GCNT1, TAP1, MYO16, NAV1, ATP8A2, LBXCOR1, EN2, INCA1, CAMTA2, SORCS2, SLC4A4, RPA3, UMAD1,USP53, OR2L13 and NR3C2) could explain 80% of the birth weight variations. Pathway analyses did not detect any statistically significant pathways after correcting for multiple tests. We validated a newly discovered differentially (hyper-)methylated gene-visual system homeobox 1 (VSX1) in an independent pyrosequencing study sample (LGA 47, OGA 47). Our data confirmed a hypermethylated gene-cadherin 13 (CDH13) reported in a previous epigenome-wide association study. Adiponectin in cord blood was correlated with its gene methylation in the placenta, while leptin and fetal growth factors (insulin, IGF-1, IGF-2) were not. CONCLUSIONS: Fetal overgrowth may be associated with a large number of altered placental gene methylations. Placental VSX1 and CDH13 genes are hypermethylated in fetal overgrowth. Placental ADIPOQ gene methylations and fetal circulating adiponectin levels were correlated, suggesting the contribution of placenta-originated adiponectin to cord blood adiponectin.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Pregnancy , Female , Humans , Adult , Placenta/metabolism , DNA Methylation , Leptin/genetics , Adiponectin , Diabetes, Gestational/genetics , Diabetes Mellitus, Type 2/genetics , Fetal Macrosomia/genetics , Fetal Macrosomia/metabolism , Gestational Age , Fetal Blood/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Fetal Development/genetics , Carrier Proteins/genetics , Membrane Proteins/genetics
16.
Biology (Basel) ; 11(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-36101427

ABSTRACT

Lung adenocarcinoma (LA) is the main pathological type of lung cancer with a very low 5-year survival rate. In the present study, after downloading the mRNA, miRNA, and DNA methylation sequencing data from TCGA, combined with the downloaded clinical data, comparative analysis, prognostic analysis, GO and KEGG analysis, GSEA analysis, methylation analysis, transcriptional regulation and post-transcriptional regulation were performed. We found that both methylation and gene expression of MNDA in LA were down-regulated, while high expression of MNDA was associated with good overall survival in LA. To probe the mechanism, further analysis showed that SPI1 was the main transcription factor of MNDA, but it was also down-regulated in LA. At the same time, the expression of eight target miRNAs of MNDA was significantly up-regulated, and the expression of hsa-miR-33a-5p and hsa-miR-33b-5p were verified to directly target MNDA. In conclusion, the abnormal expression of MNDA in LA is the result of the combined effects of transcriptional and post-transcriptional regulation.

17.
Front Psychiatry ; 13: 972522, 2022.
Article in English | MEDLINE | ID: mdl-36032246

ABSTRACT

Objective: Genome Wide Association study (GWAS) has revealed that the transmembrane protein 132D (TMEM132D) is a gene of sensitive for panic disorder (PD). As the main type of childhood trauma experience, childhood abuse has become a public health issue attracting much attention at home and abroad, and has been proved to be a risk factor for the onset of PD. However, how it affects the occurrence and development of panic disorder has not yet been revealed. We examined the relationship between TMEM132D methylation, childhood abuse and symptoms based on this finding. Materials and methods: Thirty-two patients with PD and 22 healthy controls (HCs) were recruited after age, gender, and the education level were matched. The DNA methylation levels of CpG sites across the genome were examined with genomic DNA samples (PD, N = 32, controls, N = 22) extracted from subjects' elbow venous blood. A mediation model was used to explore the relationship between the methylation degree of different CpG sites and childhood maltreatment and clinical symptoms. Results: We found that the PD group had significantly lower methylation at CpG1, CpG2, CpG3, CpG4, CpG5, CpG6, CpG7, CpG8, CpG11, CpG14, and CpG18 than did the HCs (p < 0.05). The CpG2 (r = 0.5953, p = 0.0117) site in the priming region of TEME132D gene were positively associated with PDSS score. The CpG2 (r = 0.4889, p = 0.046) site in the priming region of TEME132D gene were positively associated with physical abuse. Furthermore, path analyses showed that the methylation of CpG2 of TMEM132D played a fully mediating role in the relationship between physical abuse and PD symptom severity (95. Conclusion: Childhood abuse experiences, especially physical abuse, are significantly related to PD. The methylation of CpG2 of TMEM132D was shown to have a fully mediating effect between panic disorder and physical abuse. The interaction between TMEM132D methylation and physical abuse can predict panic disorder.

18.
Cancer Biomark ; 35(2): 143-153, 2022.
Article in English | MEDLINE | ID: mdl-35912731

ABSTRACT

BACKGROUND: Topical cidofovir and imiquimod can effectively treat approximately 55% of patients with vulval intraepithelial neoplasia (VIN), thus avoiding the need for surgery. Human papillomavirus (HPV) E⁢2 gene methylation predicts response to treatment but a methylation measurement is only obtainable in approximately 50% of patients. OBJECTIVE: This work aimed to determine if the applicability and predictive power of the E⁢2 methylation assay could be improved by combining it with the components of a host and viral DNA methylation panel (S5) that has been found to predict disease progression in patients with cervical intraepithelial neoplasia. METHODS: HPV E2 methylation and S5 classifier score were measured in fresh tissue samples collected pre-treatment from 132 patients with biopsy-proven VIN grade 3 who participated in a multicentre clinical trial and were randomised to treatment with cidofovir or imiquimod. RESULTS: Combining HPV16 E⁢2 and HPV16 L⁢1 methylation provides a biomarker that is both predictive of response to topical treatment and that can produce a clinically applicable result for all patients. Patients with HPV 16 L⁢1^high and HPV 16 E⁢2^high (36/132 (27.3%)) were more likely to respond to treatment with cidofovir (12/15 (80.0%)) than imiquimod (9/21 (42.9%)) (p= 0.026). Patients with HPV 16 L⁢1^low or HPV 16 E⁢2^low (including those with no HPV/unassessable methylation) were more likely to respond to imiquimod: 23/50 (46.0%) vs 31/46 (67.4%) (p= 0.035). CONCLUSIONS: Combined HPV E⁢2 and L⁢1 methylation is a potential predictive marker in treatment for all patients with VIN. These findings justify validation in a prospective trial.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Vulvar Neoplasms , Female , Humans , Imiquimod/therapeutic use , Cidofovir/therapeutic use , Prospective Studies , Aminoquinolines/therapeutic use , Aminoquinolines/adverse effects , Vulvar Neoplasms/drug therapy , Vulvar Neoplasms/genetics , Human papillomavirus 16/genetics , DNA Methylation , Biomarkers , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Papillomavirus Infections/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics
19.
Int J Mol Sci ; 23(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806153

ABSTRACT

Epigenetic changes in DNA methylation contribute to the development of many diseases, including cancer. In glioblastoma multiforme, the most prevalent primary brain cancer and an incurable tumor with a median survival time of 15 months, a single epigenetic modification, the methylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) gene, is a valid biomarker for predicting response to therapy with alkylating agents and also, independently, prognosis. More recently, the progress from single gene to whole-genome analysis of DNA methylation has allowed a better subclassification of glioblastomas. Here, we review the clinically relevant information that can be obtained by studying MGMT gene and whole-genome DNA methylation changes in glioblastomas, also highlighting benefits, including those of liquid biopsy, and pitfalls of the different detection methods. Finally, we discuss how changes in DNA methylation, especially in glioblastomas bearing mutations in the Isocitrate Dehydrogenase (IDH) 1 and 2 genes, can be exploited as targets for tailoring therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/therapy , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/therapy , Humans , Isocitrate Dehydrogenase/genetics , Mutation , O(6)-Methylguanine-DNA Methyltransferase/genetics , Promoter Regions, Genetic , Tumor Suppressor Proteins/genetics
20.
Cancers (Basel) ; 14(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35740633

ABSTRACT

As the seventh most common cancer globally, head and neck cancers (HNC) exert considerable disease burden, with an estimated 277,597 deaths worldwide in 2020 alone. Traditional risk factors for HNC include tobacco, alcohol, and betel nut; more recently, human papillomavirus has emerged as a distinct driver of disease. Currently, limitations of cancer screening and surveillance methods often lead to identifying HNC in more advanced stages, with associated poor outcomes. Liquid biopsies, in particular circulating tumor DNA (ctDNA), offer the potential for enhancing screening, early diagnosis, and surveillance in HNC patients, with potential improvements in HNC patient outcomes. In this review, we examine current methodologies for detecting ctDNA and highlight current research illustrating viral and non-viral ctDNA biomarker utilities in HNC screening, diagnosis, treatment response, and prognosis. We also summarize current challenges and future directions for ctDNA testing in HNC patients.

SELECTION OF CITATIONS
SEARCH DETAIL