Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124169

ABSTRACT

Thermoinhibition refers to the inability of seeds to germinate when inhibited by high temperatures, but when environmental conditions return to normal, the seeds are able to germinate rapidly again, which is different from thermodormancy. Meanwhile, with global warming, the effect of the thermoinhibition phenomenon on the yield and quality of crops in agricultural production is becoming common. Lettuce, as a horticultural crop sensitive to high temperature, is particularly susceptible to the effects of thermoinhibition, resulting in yield reduction. Therefore, it is crucial to elucidate the intrinsic mechanism of action of thermoinhibition in lettuce seeds. This review mainly outlines several factors affecting thermoinhibition of lettuce seed germination, including endosperm hardening, alteration of endogenous or exogenous phytohormone concentrations, action of photosensitizing pigments, production and inhibition of metabolites, maternal effects, genetic expression, and other physical and chemical factors. Finally, we also discuss the challenges and potential of lettuce seed germination thermoinhibition research. The purpose of this study is to provide theoretical support for future research on lettuce seed germination thermoinhibition, and with the aim of revealing the mechanisms and effects behind lettuce seed thermoinhibition. This will enable the identification of more methods to alleviate seed thermoinhibition or the development of superior heat-tolerant lettuce seeds.

2.
Brain Commun ; 6(4): fcae231, 2024.
Article in English | MEDLINE | ID: mdl-39056027

ABSTRACT

Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.

3.
Trends Parasitol ; 40(7): 619-632, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824066

ABSTRACT

Vector-borne diseases (VBDs) impose devastating effects on human health and a heavy financial burden. Malaria, Lyme disease, and dengue fever are just a few examples of VBDs that cause severe illnesses. The current strategies to control VBDs consist mainly of environmental modification and chemical use, and to a small extent, genetic approaches. The genetic approaches, including transgenesis/genome modification and gene-drive technologies, provide the basis for developing new tools for VBD prevention by suppressing vector populations or reducing their capacity to transmit pathogens. The regulatory elements such as promoters are required for a robust sex-, tissue-, and stage-specific transgene expression. As discussed in this review, information on the regulatory elements is available for mosquito vectors but is scant for other vectors.


Subject(s)
Promoter Regions, Genetic , Vector Borne Diseases , Animals , Vector Borne Diseases/prevention & control , Vector Borne Diseases/transmission , Humans , Arthropod Vectors/genetics
4.
Synth Syst Biotechnol ; 9(4): 618-626, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38784195

ABSTRACT

The utilization of industrial biomanufacturing has emerged as a viable and sustainable alternative to fossil-based resources for producing functional chemicals. Moreover, advancements in synthetic biology have created new opportunities for the development of innovative cell factories. Notably, Yarrowia lipolytica, an oleaginous yeast that is generally regarded as safe, possesses several advantageous characteristics, including the ability to utilize inexpensive renewable carbon sources, well-established genetic backgrounds, and mature genetic manipulation methods. Consequently, there is increasing interest in manipulating the metabolism of this yeast to enhance its potential as a biomanufacturing platform. Here, we reviewed the latest developments in genetic expression strategies and manipulation tools related to Y. lipolytica, particularly focusing on gene expression, chromosomal operation, CRISPR-based tool, and dynamic biosensors. The purpose of this review is to serve as a valuable reference for those interested in the development of a Y. lipolytica microbial factory.

5.
Cureus ; 16(4): e57497, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38707175

ABSTRACT

Background Lung metastasis in head and neck cancer (HNC) patients is a critical concern, often indicating an advanced disease stage and a poor prognosis. This study explores the molecular complexities of such metastases, identifying specific genes and pathways that may serve as valuable targets for diagnosis and treatment. The findings underscore the potential for significantly improved patient outcomes through targeted therapeutic strategies. Methodology In this research, we systematically collected raw gene expression data from head and neck squamous cell carcinoma (HNSCC) and lung squamous cell carcinoma (LSCC). By comparing tumorous and normal gene expression profiles from paired patient samples, we identified differentially expressed genes (DEGs). Network analysis helped visualize protein interactions and pinpoint crucial hub genes. Through validation and comparison across several datasets, we identified common DEGs. Additionally, we employed Kaplan-Meier analysis and log-rank testing to examine the relationship between gene expression patterns and patient survival. Result The study identified 145 overlapping DEGs in both HNSCC and LSCC, which are crucial for cancer progression and linked to lung metastasis, offering vital targets for personalized therapy by identifying key genes affecting disease development and patient survival. Pathway analyses linked these to lung metastasis, while protein-protein interaction network construction and hub gene identification highlighted genes crucial for development and patient survival, offering targets for personalized therapy. Conclusion Identifying key genes and pathways in lung metastasis from HNC, this study highlights potential targets for enhanced diagnosis and therapy. It underscores the crucial role of molecular insights in driving forward personalized treatment approaches and improving patient outcomes.

6.
Bioresour Technol ; 401: 130747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677382

ABSTRACT

Sulfur-driven autotrophic denitrification (SdAD) is a promising nitrogen removing process, but its applications were generally constrained by conventional electron donors (i.e., thiosulfate (Na2S2O3)) with high valence and limited bioavailability. Herein, an immobilized electron donor by loading elemental sulfur on the surface of polyurethane foam (PFSF) was developed, and its feasibility for SdAD was investigated. The denitrification efficiency of PFSF was 97.3%, higher than that of Na2S2O3 (91.1%). Functional microorganisms (i.e., Thiobacillus and Sulfurimonas) and their metabolic activities (i.e., nir and nor) were substantially enhanced by PFSF. PFSF resulted in the enrichment of sulfate-reducing bacteria, which can reduce sulfate (SO42-). It attenuated the inhibitory effect of SO42-, whereas the generated product (hydrogen sulfide) also served as an electron donor for SdAD. According to the economic evaluation, PFSF exhibited strong market potential. This study proposes an efficient and low-cost immobilized electron donor for SdAD and provides theoretical support to its practical applications.


Subject(s)
Autotrophic Processes , Denitrification , Nitrogen , Sulfur , Sulfur/metabolism , Sulfur/chemistry , Electrons , Thiobacillus/metabolism , Polyurethanes/chemistry , Sulfates/metabolism , Bacteria/metabolism , Thiosulfates/chemistry , Thiosulfates/pharmacology
7.
Asian J Urol ; 11(2): 169-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38680588

ABSTRACT

Objective: Urolithiasis formation has been attributed to environmental and dietary factors. However, evidence is accumulating that genetic background can contribute to urolithiasis formation. Advancements in the identification of monogenic causes using high-throughput sequencing technologies have shown that urolithiasis has a strong heritable component. Methods: This review describes monogenic factors implicated in a genetic predisposition to urolithiasis. Peer-reviewed journals were evaluated by a PubMed search until July 2023 to summarize disorders associated with monogenic traits, and discuss clinical implications of identification of patients genetically susceptible to urolithiasis formation. Results: Given that more than 80% of urolithiases cases are associated with calcium accumulation, studies have focused mainly on monogenetic contributors to hypercalciuric urolithiases, leading to the identification of receptors, channels, and transporters involved in the regulation of calcium renal tubular reabsorption. Nevertheless, available candidate genes and linkage methods have a low resolution for evaluation of the effects of genetic components versus those of environmental, dietary, and hormonal factors, and genotypes remain undetermined in the majority of urolithiasis formers. Conclusion: The pathophysiology underlying urolithiasis formation is complex and multifactorial, but evidence strongly suggests the existence of numerous monogenic causes of urolithiasis in humans.

8.
Cell Biol Toxicol ; 40(1): 21, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584208

ABSTRACT

Environmental contaminants are ubiquitous in the air we breathe and can potentially cause adverse immunological outcomes such as respiratory sensitization, a type of immune-driven allergic response in the lungs. Wood dust, latex, pet dander, oils, fragrances, paints, and glues have all been implicated as possible respiratory sensitizers. With the increased incidence of exposure to chemical mixtures and the rapid production of novel materials, it is paramount that testing regimes accounting for sensitization are incorporated into development cycles. However, no validated assay exists that is universally accepted to measure a substance's respiratory sensitizing potential. The lungs comprise various cell types and regions where sensitization can occur, with the gas-exchange interface being especially important due to implications for overall lung function. As such, an assay that can mimic the alveolar compartment and assess sensitization would be an important advance for inhalation toxicology. Some such models are under development, but in-depth transcriptomic analyses have yet to be reported. Understanding the transcriptome after sensitizer exposure would greatly advance hazard assessment and sustainability. We tested two known sensitizers (i.e., isophorone diisocyanate and ethylenediamine) and two known non-sensitizers (i.e., chlorobenzene and dimethylformamide). RNA sequencing was performed in our in vitro alveolar model, consisting of a 3D co-culture of epithelial, macrophage, and dendritic cells. Sensitizers were readily distinguishable from non-sensitizers by principal component analysis. However, few differentially regulated genes were common across all pair-wise comparisons (i.e., upregulation of genes SOX9, UACA, CCDC88A, FOSL1, KIF20B). While the model utilized in this study can differentiate the sensitizers from the non-sensitizers tested, further studies will be required to robustly identify critical pathways inducing respiratory sensitization.


Subject(s)
Gene Expression Profiling , Transcriptome , Transcriptome/genetics , Lung , Allergens/toxicity
9.
Water Res ; 251: 121110, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38198972

ABSTRACT

Recovery of resources from domestic sewage and food waste has always been an international-thorny problem. Titanium-based flocculation can achieve high-efficient destabilization, quick concentration and separation of organic matter from sewage to sludge. This study proposed co-fermentation of the titanium-flocculated sludge (Ti-loaded sludge) and food waste towards resource recovery by converting organic matter to value-added volatile fatty acids (VFAs) and inorganic matter to struvite and TiO2 nanoparticles. When Ti-loaded sludge and food waste were co-fermented at a mass ratio of 3:1, the VFAs yield reached 3725.2 mg-COD/L (VFAs/SCOD 91.0%), which was more than 4 times higher than the case of the sludge alone. The 48-day semicontinuous co-fermentation demonstrated stable long-term operation, yielding VFAs at 2529.0 mg-COD/L (VFAs/SCOD 89.8%) and achieving a high CODVFAs/NNH4 of 58.9. Food waste provided sufficient organic substrate, enriching plenty of acid-producing fermentation bacteria (such as Prevotella 7 about 21.0% and Bacteroides about 9.4%). Moreover, metagenomic sequencing analysis evidenced the significant increase of the relative gene abundance corresponding to enzymes in pathways, such as extracellular hydrolysis, substrates metabolism, and VFAs biosynthesis. After fermentation, the precious element P (≥ 99.0%) and extra-added element Ti (≥99.0%) retained in fermented residues, without releasing to VFAs supernatant, which facilitated the direct re-use of VFAs as resource. Through simple and commonly used calcination and acid leaching methodologies, 80.9% of element P and 82.1% of element Ti could be successfully recovered as struvite and TiO2 nanoparticles, respectively. This research provides a strategy for the co-utilization of domestic sludge and food waste, which can realize both reduction of sludge and recovery of resources.


Subject(s)
Refuse Disposal , Water Purification , Fermentation , Sewage/chemistry , Food Loss and Waste , Titanium , Struvite , Food , Fatty Acids, Volatile , Hydrogen-Ion Concentration
10.
Birth Defects Res ; 116(1): e2293, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38146097

ABSTRACT

OBJECTIVES: Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect in the United States. We aimed to identify genetic variations associated with TOF using meta-analysis of publicly available digital samples to spotlight targets for prevention, screening, and treatment strategies. METHODS: We used the Search Tag Analyze Resource for Gene Expression Omnibus (STARGEO) platform to identify 39 TOF and 19 non-TOF right ventricle tissue samples from microarray data and identified upregulated and downregulated genes. Associated gene expression data were analyzed using ingenuity pathway analysis and restricted to genes with a statistically significant (p < .05) difference and an absolute experimental log ratio >0.1 between disease and control samples. RESULTS: Our analysis identified 220 genes whose expression profiles were significantly altered in TOF vs. non-TOF samples. The most striking differences identified in gene expression included genes FBXO32, PTGES, MYL12a, and NR2F2. Some top associated canonical pathways included adrenergic signaling, estrogen receptor signaling, and the role of NFAT in cardiac hypertrophy. In general, genes involved in adaptive, defensive, and reparative cardiovascular responses showed altered expression in TOF vs. non-TOF samples. CONCLUSIONS: We introduced the interpretation of open "big data" using the STARGEO platform to define robust genomic signatures of congenital heart disease pathology of TOF. Overall, our meta-analysis results indicated increased metabolism, inflammation, and altered gene expression in TOF patients. Estrogen receptor signaling and the role of NFAT in cardiac hypertrophy represent unique pathways upregulated in TOF patients and are potential targets for future pharmacologic treatments.


Subject(s)
Heart Defects, Congenital , Tetralogy of Fallot , Humans , United States , Tetralogy of Fallot/genetics , Cardiomegaly , Receptors, Estrogen/genetics , Gene Expression
11.
Bioresour Technol ; 388: 129733, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714494

ABSTRACT

Nowadays, antidepressants are massively consumed worldwide, inevitably bringing about the concern for their latent hazard to the natural environment. This research focused on exploring the effect of sertraline (SET, a typical antidepressant) on hydrogen yields from alkaline anaerobic fermentation of waste activated sludge (WAS). The hydrogen accumulation reached the peak of 14.73 mL/g VSS (volatile suspended solids) at a SET dosage of 50 mg/kg TSS (total suspended solids), i.e., 1.90 times of that in the control fermenter. The data of Illumina high-throughput sequencing demonstrated that SET promoted the expression of genes regulating the membrane transport. Microbial community analysis suggested that some species that could degrade refractory substances were enriched after SET exposure. Finally, metabolic pathways of hydrogen production and consumption were found to be significantly affected with SET addition. This study would deepen the concept of typical antidepressants influencing energy recovery from WAS.


Subject(s)
Sertraline , Sewage , Anaerobiosis , Antidepressive Agents , Fatty Acids, Volatile , Fermentation , Hydrogen/metabolism , Hydrogen-Ion Concentration , Sertraline/toxicity
12.
Cureus ; 15(7): e41377, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37546047

ABSTRACT

Background Stress leads to immune system dysregulation and dyshomeostasis at the gene level. Mind-body practices are known to influence genomic expression, leading to better health and quality of life. Objective To assess the effect of Advanced Meditation Program (AMP) on the mRNA expression of pro-inflammatory and antioxidative genes among those already practicing Sudarshan Kriya Yoga (SKY). Methods A total of 97 healthy volunteers participated in the study, distributed into two groups. The Group I SKY practitioners attended a four-day AMP (50 participants with an average age of 38.8 ± 11.9 consisting of 37 females and 13 males); they are first-time participants of the AMP. Group II SKY practitioners, on the other hand, consisted of 47 participants with an average age of 36.4 ± 9.3 with 43 females and four males. At day 0, day 5, and day 90, the mRNA expression of pro-inflammatory genes, namely interleukin (IL) 1ß, IL6, and the tumor necrosis factor (TNF), and the expression of antioxidative genes, namely superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) was observed. The data were analysed in two phases due to the emergence of coronavirus disease 2019 (COVID-19): (i) pre-COVID-19 and (ii) during COVID-19. Results In the pre-COVID-19 data set, IL1ß, IL6, and TNF were found to have decreased in both groups. There is a significant increase in the expression of SOD and catalase in Group I and a decrease in Group II by day 90. During COVID-19, pro-inflammatory genes increased in Group I and had no significant change in Group II. All three antioxidant genes had decreased expression by day 90 in Group I; SOD decreased in Group II. Interpretation and conclusions Reduced expression of pro-inflammatory genes and increase in the expression of antioxidative genes during the pre-COVID-19 time suggest that the practice of SKY and added AMP may enhance antioxidative defense and may reduce the chance of getting diseases related to inflammation in the body.

13.
Front Plant Sci ; 14: 1194169, 2023.
Article in English | MEDLINE | ID: mdl-37351211

ABSTRACT

Populus euphratica Oliv., a dominant species of arid desert community, grows heteromorphic leaves at different crown positions. Whether heteromorphic leaves are a strategy of plant adaptation to drought stress is rarely reported. This study sequenced the transcriptome of three typical heteromorphic leaves (lanceolate, ovate and broad-ovate leaves) of P. euphratica, and measured their drought stress. We wanted to reveal the molecular mechanisms underlying the formation of heteromorphic leaves. Drought stress was increased significantly from lanceolate to ovate to broad-ovate leaves. Gene ontology (GO) and KEGG enrichment analysis showed that the MADs-box gene regulated the expression of peroxidase (POD) in the phenylpropane biosynthetic pathway. The up-regulated expression of the chalcone synthase (CHS) gene in broad-ovate leaves significantly activated the flavonoid biosynthetic pathway. In the process of leaf shape change, the different expressions of homeodomain leucine zipper (HD-ZIP) among the three heteromorphic leaves had potential interactions on the AUX and ABA pathways. The expression of Sucrose phosphate synthase (SPS) and sucrose synthase (SUS) increased from lanceolate to broad-ovate leaves, resulting in a consistent change in starch and sucrose content. We concluded that these resistance-related pathways are expressed in parallel with leaf formation genes, thereby inducing the formation of heteromorphic leaves. Our work provided a new insights for desert plants to adapt to drought stress.

14.
Sci Total Environ ; 885: 163904, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37142022

ABSTRACT

Coastal ecosystems are currently exposed to pollutants and climate change. Namely, the increasing consumption of antineoplastic drugs and their potential release to aquatic ecosystems are raising concerns. Nevertheless, information regarding the toxicity of these drugs towards non-target species is scarce, especially considering climate change scenarios. Ifosfamide (IF) and cisplatin (CDDP) are among the antineoplastics already detected in aquatic compartments and due to their mode of action (MoA) can negatively affect aquatic organisms. This study evaluates the transcription of 17 selected target genes related to the MoA of IF and CDDP in Mytilus galloprovincialis gills exposed to environmentally relevant and toxicological meaningful concentrations (IF - 10, 100, 500 ng/L; CDDP - 10, 100, 1000 ng/L), under an actual (17 °C) and predicted warming scenario (21 °C). Results showed an upregulation of the cyp4y1 gene when exposed to the highest concentrations of IF, regardless of the temperature. Both drugs upregulated genes related to DNA damage and apoptosis (p53, caspase 8 and gadd45), especially under warmer conditions. Increased temperature also downregulated genes related to stress and immune responses (krs and mydd88). Therefore, the present results showed a gene transcriptional response of mussels to increasing concentrations of antineoplastics and that warmer temperatures modulated those effects.


Subject(s)
Antineoplastic Agents , Mytilus , Water Pollutants, Chemical , Animals , Cisplatin/toxicity , Mytilus/physiology , Ifosfamide/toxicity , Transcriptome , Climate Change , Ecosystem , Water Pollutants, Chemical/analysis
15.
Foods ; 12(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37107486

ABSTRACT

The bioactive components in soybeans have significant physiological functions. However, the intake of soybean trypsin inhibitor (STI) may cause metabolic disorders. To investigate the effect of STI intake on pancreatic injury and its mechanism of action, a five-week animal experiment was conducted, meanwhile, a weekly monitor on the degree of oxidation and antioxidant indexes in the serum and pancreas of the animals was carried out. The results showed that the intake of STI had irreversible damage to the pancreas, according to the analysis of the histological section. Malondialdehyde (MDA) in the pancreatic mitochondria of Group STI increased significantly and reached a maximum (15.7 nmol/mg prot) in the third week. Meanwhile, the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), trypsin (TPS), and somatostatin (SST) were decreased and reached minimum values (10 U/mg prot, 87 U/mg prot, 2.1 U/mg prot, 10 pg/mg prot) compared with the Group Control. The RT-PCR results of the expression of SOD, GSH-Px, TPS, and SST genes were consistent with the above. This study demonstrates that STI causes oxidative structural damage and pancreatic dysfunction by inducing oxidative stress in the pancreas, which could increase with time.

16.
Clin Toxicol (Phila) ; 61(4): 207-211, 2023 04.
Article in English | MEDLINE | ID: mdl-36939119

ABSTRACT

INTRODUCTION/CONTEXT: Poisonings with diethylene glycol are characterized by acute kidney injury and peripheral neuropathy. In animal studies on the toxicities of diethylene glycol and its metabolite diglycolic acid, remarkable differences in susceptibility to acute kidney injury were observed in identically-dosed rats. In those studies, only about 60% showed acute kidney injury, yet all rats with acute kidney injury showed marked diglycolic acid accumulation in tissues, while no diglycolic acid accumulated in rats without injury. Diglycolic acid is taken into renal cells via sodium-dependent dicarboxylate transporters. When sodium-dependent dicarboxylate transporter-1 is inhibited or knocked down in human kidney cells, diglycolic acid uptake and toxicity are reduced. We hypothesize that the variation in sensitivity to tissue diglycolic acid retention and to diethylene glycol/diglycolic acid toxicity is explained by differential expression of sodium-dependent dicarboxylate transporter-1 in rat kidneys. METHODS: Using kidney tissue from previous studies, we performed rt-PCR analysis of sodium-dependent dicarboxylate transporter-1 mRNA. In those studies, Wistar-Han rats were either gavage with diethylene glycol 6 g/kg every 12 h for 7 days or with single doses of diglycolic acid 300 mg/kg. Kidney tissue was harvested after euthanasia and preserved in formalin. Tissue slices were homogenized and RNA was isolated using an RNAstorm FFPE RNA Isolation Kit. The expression of sodium-dependent dicarboxylate transporter-1 mRNA was compared between groups that showed diglycolic acid accumulation and acute renal injury with those that showed no diglycolic acid accumulation or toxicity. RESULTS: Significantly higher expression of sodium-dependent dicarboxylate transporter-1 mRNA was present in the kidneys of rats with acute kidney injury and diglycolic acid accumulation compared to those in rats that had no diglycolic acid in their kidneys and no acute kidney injury. DISCUSSION: The likelihood of acute kidney injury after dosing of rats with diethylene glycol or diglycolic acid is linked with an enhanced ability to take up diglycolic acid into renal cells via the sodium-dependent dicarboxylate transporter-1. The variability in diethylene glycol toxicity in humans, as reported in epidemiological studies, may also be linked with differences in tissue uptake of diglycolic acid. CONCLUSIONS: Animals with acute kidney injury after exposure to diethylene glycol or diglycolic acid had higher sodium-dependent dicarboxylate transporter-1 expression and greater diglycolic acid accumulation in renal tissues than animals without acute kidney injury.


Subject(s)
Acute Kidney Injury , Dicarboxylic Acid Transporters , Humans , Rats , Animals , Rats, Wistar , Dicarboxylic Acid Transporters/metabolism , Kidney/metabolism , Ethylene Glycols
17.
Sci Total Environ ; 858(Pt 3): 160128, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36370789

ABSTRACT

Persulfate (PS)-based technologies have been demonstrated as efficient methods for enhancing the performance of waste activated sludge (WAS) anaerobic fermentation. Except for volatile fatty acids (VFAs), however, some exogenous substances would be also released during this process, which might affect its application as a carbon source for sewage treatment. To fill this knowledge gap, the feasibility of sludge fermentation liquid regulated by Fe/persulfate (PS) (PS-FL) as a carbon source for sewage treatment was investigated in this study. Results indicated that PS-FL exhibits distinct effects on the pollutants removal compared with commercial sodium acetate. It facilitates PO43--P removal but slightly inhibited COD removal & denitrification, and sludge settleability was also decreased. The mechanistic analysis demonstrated that PS-FL could stimulate the enrichment of phosphorus-accumulating bacteria (i.e. Candidatus Accumulibacter) and the enhancement of their metabolic activities (i.e. PKK), thereby enhancing the biological PO43--P removal. Moreover, Fe ions in PS-FL could combine with PO43--P to form a precipitate and thus further contributed to PO43--P removal. Conversely, the sulfate reduction process induced by SO42- in PS-FL inhibits denitrification by reducing the abundance of denitrifying bacteria (i.e. Dechloromonas) and metabolic activities (i.e. narG). Additionally, PS-FL also decreased the abundance of flocculation bacteria (i.e. Flavobacterium) and down-regulated the expression of functional genes responsible for COD removal, by which it exhibited certain negative effects on COD removal and sludge settleability. Overall, this work demonstrated that PS-FL can re-circulation as a carbon source for sewage treatment, which provides a new approach to recovering valuable carbon sources from WAS.


Subject(s)
Environmental Pollutants , Microbiota , Sewage , Carbon
18.
Sci Total Environ ; 859(Pt 1): 160102, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36370796

ABSTRACT

As one of the most widely used phthalate plasticizers, dioctyl phthalate (DOP) has been detected in wastewater and accumulates in sludge through wastewater treatment, which may adversely affect further sludge treatment. However, the role of DOP on sludge anaerobic fermentation and its mechanism are not yet clear. Therefore, this study focused on the effect of DOP on the volatile fatty acids (VFAs) generation via the anaerobic fermentation of sludge. The results demonstrated that the presence of DOP had a considerable contribution to the generation of VFAs, and the maximum production of VFAs reached 4769 mg COD/L at 500 mg/kg DOP, which was 1.57 folds that of the control. Mechanistic investigation showed that DOP mainly enhanced the hydrolysis, acidification and related enzymes activities of sludge. VFAs-producing microorganisms (e.g., Clostridium and Conexibacter) were also enriched under DOP exposure. Importantly, the presence of DOP increased the electron transfer activity by 26 %, consequently facilitating the organics conversion and fermentation process. Notably, the functional gene expressions involved in substrate metabolism and VFAs biosynthesis were enhanced with DOP, resulting in increased VFAs production from sludge. The results obtained in this study offered a new strategy for the control of pollutants and the recycling of valuable products from sludge.


Subject(s)
Diethylhexyl Phthalate , Sewage , Sewage/chemistry , Electron Transport , Hydrogen-Ion Concentration , Fatty Acids, Volatile/metabolism , Fermentation , Anaerobiosis , Bioreactors
19.
Rev. chil. nutr ; 49(5)oct. 2022.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1407844

ABSTRACT

RESUMEN La sucralosa es un edulcorante no calórico de amplio consumo a nivel mundial, es considerado como un aditivo seguro, debido a que es eliminado en periodos cortos de tiempo. Recientemente se evidenció su bioacumulación en tejido adiposo, donde se encuentran inmersos macrófagos, células del sistema inmune involucradas en el desarrollo de la inflamación sistémica de bajo grado. A la fecha, no se cuenta con suficiente información para demostrar si los edulcorantes potencian los procesos inflamatorios alterando la función de células presentes en tejido y/o contribuyen en el desarrollo de patologías metabólicas. Por lo anterior, en nuestro trabajo se evaluó el efecto de la sucralosa en la viabilidad de los macrófagos diferenciados de la línea celular monocítica THP-1, por azul de tripán y ensayos de MTT, así como su efecto en la polarización M1/M2 por PCR según la expresión de IRF4, IRF5, STAT1, STAT6, perfil de expresión de IL-6, IL-12, TNF-α, TGF-β, IL-10 y SOCS3 por qPCR, y la cuantificación de la quimiocina IP-10 por ELISA. Los resultados indicaron que la sucralosa no tiene efectos citotóxicos, pero disminuye el número de células viables metabólicamente activas determinadas por MTT de manera dependiente de la concentración. La sucralosa incrementa la concentración de la quimiocina IP-10 y la expresión génica del factor de transcripción IRF5 y disminuye la expresión de IRF4 y STAT6, favoreciendo la polarización hacia poblaciones M1. La bioacumulación de sucralosa en tejido adiposo, y su interacción con macrófagos, podría inducir su polarización a M1.


ABSTRACT Sucralose is a non-nutritive sweetener widely consumed worldwide; it is considered a safe additive because it is eliminated quickly. Recently its bioaccumulation in adipose tissue was evidenced, where macrophages, cells of the immune system involved in developing low-grade systemic inflammation, are found. To date, there is a paucity of information regarding whether sweeteners potentiate inflammatory processes by altering the function of cells present in tissue and/or contribute to the development of metabolic pathologies. We evaluate the effect of sucralose on the viability of differentiated macrophages of the monocytic cell line THP-1, by trypan blue and MTT assays, respectively, as well as its effect on M1/ M2 by PCR according to the expression of IRF4, IRF5, STAT1, STAT6, expression profile of IL6, IL-12, TNF-α, TGF-β, IL-10 and SOCS3 by qPCR, and the quantification of the chemokine IP-10 by ELISE. The results indicated that sucralose has no cytotoxic effects but decreases the number of metabolically active viable cells determined by MTT of macrophages in a concentration-dependent manner. Sucralose increased the concentration of the chemokine IP-10 and the gene expression of the transcription factors IRF5 and decreased the expression of IRF4 and STAT 6 gene expression, favoring polarization towards M1 populations. The bioaccumulation of sucralose in adipose tissue, and its interaction with macrophages, could induce its polarization to M1.

20.
Environ Pollut ; 313: 120187, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36116571

ABSTRACT

Sulfur-containing organic pollutants in wastewater could threaten human health due to their high malodor and toxicity, and their conversion processes are more complex than inorganic sulfur compounds. Membrane aerated biofilm reactor (MABR), as a novel and environmentally-friendly biofilm-based technology, is able to remove inorganic sulfur in synthetic wastewater. However, it is unknown how sulfur-containing organic pollutants in actual wastewater are transformed in MABR system. This work demonstrated the feasibility of MABR to eliminate sulfur-containing organic pollutants in actual wastewater, and the removal efficiency could be reached at approximately 100%. Meanwhile, over 70% of sulfur-containing organic contaminants were transformed to SO42- during the long-term operation. Further analysis indicated that the functional bacteria that participated in sulfur transformation and carbohydrates degradation (e.g., Chujaibacter, Microscillaceaesp., and Thiobacillus) were evidently enriched when treating actual wastewater. Moreover, the critical metabolic pathways (e.g., sulfur metabolism, glycolysis metabolism, and pyruvate metabolism), and the corresponding genetic expressions (e.g., nrrA, tauA, tauC, sorA, and SUOX) were evidently up-regulated during long-term operation, which was beneficial for the transformation of sulfur-containing organic pollutants in actual wastewater by MABR. This work would expand the application of MABR for treating the actual sulfur-containing organic wastewater and provide an in-depth understanding of the organic sulfur transformation in MABR.


Subject(s)
Environmental Pollutants , Wastewater , Bacteria/metabolism , Biofilms , Bioreactors/microbiology , Carbohydrates , Environmental Pollutants/metabolism , Humans , Nitrogen/metabolism , Pyruvates/metabolism , Sulfur , Sulfur Compounds/metabolism , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL