Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 788
Filter
1.
Int J Biol Macromol ; 279(Pt 2): 135234, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218189

ABSTRACT

The mechanisms by which low light accelerates starch macromolecules degradation by auxin and gibberellin (GA) in geophytes during sprouting remain largely unknown. This study investigated these mechanisms in saffron, grown under low light (50 µmol m-2 s-1) and optimal light (200 µmol m-2 s-1) during the sprouting phase. Low light reduced starch concentration in corms by 34.0 % and increased significantly sucrose levels in corms, leaves, and leaf sheaths by 19.2 %, 9.8 %, and 134.5 %, respectively. This was associated with a 33.3 % increase in GA3 level and enhanced auxin signaling. Leaves synthesized IAA under low light, which was transported to the corms to promote GA synthesis, facilitating starch degradation through a 228.7 % increase in amylase activity. Exogenous applications of GA and IAA, as well as the use of their synthesis or transport inhibitors, confirmed the synergistic role of these phytohormones in starch metabolism. The unigenes associated with GA biosynthesis and auxin signaling were upregulated under low light, highlighting the IAA-GA module role in starch degradation. Moreover, increased respiration rate and invertase activity, crucial for ATP biosynthesis and the tricarboxylic acid cycle, were consistent with the upregulation of related unigenes, suggesting that auxin signaling accelerates starch degradation by promoting energy metabolism. Upregulated of auxin signaling (CsSAUR32) and starch metabolism (CsSnRK1) genes under low light suggests that auxin directly regulate starch degradation in saffron corms. This study elucidates that low light modulates auxin and GA interactions to accelerate starch degradation in saffron corms during sprouting, offering insights for optimizing agricultural practices under suboptimal light conditions.

2.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124170

ABSTRACT

Cherry (Prunus avium) fruits are important sources of vitamins, minerals, and nutrients in the human diet; however, they contain a large stone, making them inconvenient to eat 'on the move' and process. The exogenous application of gibberellic acid (GA3) can induce parthenocarpy in a variety of fruits during development. Here, we showed that the application of GA3 to sweet cherry unpollinated pistils acted as a trigger for fruit set and permitted the normal formation of fruit up to a period of twenty-eight days, indicating that gibberellins are involved in the activation of the cell cycle in the ovary wall cells, leading to fruit initiation. However, after this period, fruit development ceased and developing fruit began to be excised from the branch by 35 days post treatment. This work also showed that additional signals are required for the continued development of fully mature parthenocarpic fruit in sweet cherry.

3.
Article in English | MEDLINE | ID: mdl-39092795

ABSTRACT

Summary: Background. Gibberellin Regulated Proteins (GRPs) are small glycoproteins that induce allergy to various types of fruit. This study aimed to evaluate co-sensitization to cypress pollen and other molecules responsible for fruit allergy, such as nsLTP (Pru p 3), PR-10 (Bet v1), and Profilin (Bet v2). Methods. Sixty subjects sensitized to peach GRP (Pru p 7) were consecutively recruited from four Italian centers: 28 males and 32 females (mean age 37.9 years; range 11-79). Specific IgE for Pru p 7, Pru p 3, Bet v 1, Bet v 2, cypress pollen extract (Cup s), and Cup a 1 were determined in all subjects. Results. Sensitization rates to Cup s, Cup a 1, Pru p 3, Bet v 1, and Bet v 2 in the entire studied population were 90.0%, 83.3%, 45.8%, 40.0%, and 30.0%, respectively. In subjects residing in Northern Italy, the respective sensitization rates were 96.4%, 80.0%, 50.0%, 73.3%, and 40.0%, while in those residing in Southern Italy, they were 83.3%, 86.7%, 40.0%, 6.7%, and 20.0%. The only significant difference was observed for PR-10 (p less than 0.0001) Co-sensitization to PR-10 was found to be associated with a reduced risk of anaphylaxis (OR: 0.125). Allergic reactions were most commonly triggered by peach (26/40), followed by orange (12/40), with other foods being less frequently implicated. Conclusions. This study confirms a high association between sensitization to Pru p 7 and cypress pollen and highlights a high percentage of co-sensitization to nsLTP, PR-10, and profilin. PR-10 emerged as a protective factor against anaphylaxis.

4.
Rice (N Y) ; 17(1): 52, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152344

ABSTRACT

Plants NADP-malic enzymes (NADP-MEs) act as a class of oxidative decarboxylase to mediate malic acid metabolism in organisms. Despite NADP-MEs have been demonstrated to play pivotal roles in regulating diverse biological processes, the role of NADP-MEs involving in plant growth and development remains rarely known. Here, we characterized the function of rice cytosolic OsNADP-ME2 in regulating plant height. The results showed that RNAi silencing and knock-out of OsNADP-ME2 in rice results in a dwarf plant structure, associating with significant expression inhibition of genes involving in phytohormone Gibberellin (GA) biosynthesis and signaling transduction, but with up-regulation for the expression of GA signaling suppressor SLR1. The accumulation of major bioactive GA1, GA4 and GA7 are evidently altered in RNAi lines, and exogenous GA treatment compromises the dwarf phenotype of OsNADP-ME2 RNAi lines. RNAi silencing of OsNADP-ME2 also causes the reduction of NADP-ME activity associating with decreased production of pyruvate. Thus, our data revealed a novel function of plant NADP-MEs in modulation of rice plant height through regulating bioactive GAs accumulation and GA signaling, and provided a valuable gene resource for rice plant architecture improvement.

5.
Adv Sci (Weinh) ; : e2400995, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190572

ABSTRACT

In plants, vegetative growth is controlled by synergistic and/or antagonistic effects of many regulatory factors. Here, the authors demonstrate that the ubiquitin ligase seven in absentia1 (SINA1) mammalian BTF2-like transcription factors, Drosophila synapse-associated proteins, and yeast DOS2-like proteins (BSD1) function as a regulatory module to control vegetative growth in tomato via regulation of the production of plant growth hormone gibberellin (GA). SINA1 negatively regulates the protein level of BSD1 through ubiquitin-proteasome-mediated degradation, and the transgenic tomato over-expressing SINA1 (SINA1-OX) resembles the dwarfism phenotype of the BSD1-knockout (BSD1-KO) tomato plant. BSD1 directly activates expression of the BSD1-regulated gene 1 (BRG1) via binding to a novel core BBS (standing for BSD1 binding site) binding motif in the BRG1 promoter. Knockout of BRG1 (BRG1-KO) in tomato also results in a dwarfism phenotype, suggesting BRG1 plays a positive role in vegetative growth as BSD1 does. Significantly, GA contents are attenuated in transgenic SINA1-OX, BSD1-KO, and BRG1-KO plants exhibiting dwarfism phenotype and exogenous application of bioactive GA3 restores their vegetative growth. Moreover, BRG1 is required for the expression of multiple GA biosynthesis genes and BSD1 activates three GA biosynthesis genes promoting GA production. Thus, this study suggests that the SINA1-BSD1 module controls vegetative growth via direct and indirect regulation of GA biosynthesis in tomato.

6.
Mol Plant ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39169630

ABSTRACT

The optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most crucial fiber crop globally, but the knowledge of the genetic basis underlying plant height still needs to be discovered. Here we conducted a genome-wide association study (GWAS) to identify the major locus controlling plant height (PH1) in upland cotton. The locus encodes gibberellin 2-oxidase 1A (GhPH1), with a 1,133 bp-length structural variation (PAVPH1) located approximately 16 kb upstream of it. The presence or absence of PAVPH1 confers a differential expression of GhPH1, consequently leading to changes in plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes a specific 'CATTTG' motif on the GhPH1 promoter and PAVPH1. This binding event down-regulates GhPH1, indicating that PAVPH1 functions as a distant upstream silencer. Intriguingly, we found that the critical repressor of the strigolactone (SL) signaling pathway, DWARF53 (D53), directly interacts with GhGARF and inhibits its binding to targets. Moreover, our study uncovers a previously unrecognized GA-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAVPH1 module, crucial in regulating the plant height of upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height and provide valuable insights for developing semi-dwarf cotton varieties through precise modulation of GhPH1 expression.

7.
Int J Biol Macromol ; 278(Pt 1): 134691, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142483

ABSTRACT

Pathogenesis-related protein 1 (PR-1) is an antimicrobial protein involved in systemic acquired resistance (SAR) in plants, but its regulatory role and interactions with other pathways remain unclear. In this study, we functionally characterize WsPR-1 gene of Withania somnifera in Nicotiana tabacum to elucidate its role in plant defense, growth, and development. Interestingly, transgenic tobacco plants with increased levels of cytokinin (CK) and decreased gibberellins (GAs) exhibited stunted shoot growth, an underdeveloped root system, modified leaf morphology, reduced seed pod production, and delayed leaf senescence. Transcriptional analysis revealed that WsPR-1 overexpression downregulated the GA 20-oxidase (GA20ox) gene involved in GA biosynthesis while upregulating GA 2-oxidase (GA2ox), a GA catabolic enzyme. Moreover, transcript levels of FRUITFULL (FUL) and LEAFY (NFL2) flowering genes exhibited a decrease in WsPR-1 plants, which could explain the delayed flowering and reduced seed pod development in transgenic plants. Confocal microscopy confirmed increased lignin deposition in stem cross-sections of WsPR-1 transgenic plants, supported by gene expression analysis and lignin content quantification. Additionally, our findings also suggest the involvement of Knotted1-like homeobox (KNOX) gene in enhancing cytokinin levels. This study highlights PR-1's regulatory role in plant growth and development, with potential to boost crop yields and enhance resilience.

8.
Sci Rep ; 14(1): 20117, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39209970

ABSTRACT

Gibberellin (GA3) is an important plant hormone involved in many physiological and developmental processes in plants. However, the physiological mechanism of GA3 on the regulation yield and grain shell thickness of Tartary buckwheat is still unclear. In this study, the thick-shelled cultivar "Jinqiao 2" and thin-shelled cultivar "Miku 18" were used to study the effects of different concentrations (0, 50, and 100 mg L-1) of exogenous GA3 and chlorocholine chloride (CCC, GA3 synthesis inhibitor) on the cellulose content, amylase, and sucrose synthase (SS) activity in grain shell and the yield of Tartary buckwheat. The application of exogenous GA3 can improve the cellulose content and the activity of amylase and SS in the grain shell of the two Tartary buckwheat varieties. It can also increase the main stem node number, main stem branch number, grains per plant, and yield. Compared with the control treatment (CK, 0 mg L-1), the 100 mg/L exogenous GA3 treatment increased the number of grains per plant, grain weight per plant, 1000-grain weight, and yield of Jinqiao 2 by 20.1%, 41.9%, 13%, and 34.7%, respectively. These items of Miku 18 were increased by 26%, 15.2%, 10.2%, and 23.8%. The application of CCC reduced the activity of amylase and SS and cellulose content in grain shell. In addition, it decreased the main stem node number, main stem branch number, grains per plant, and yield of Tartary buckwheat. In summary, exogenous GA3 treatment not only improved the yield of Tartary buckwheat but also increased the thickness of grain shell by enhancing the activity of amylase and SS and promoting the synthesis and accumulation of cellulose. The results can provide theoretical references for clarifying the physiological mechanism of the difference in shell thickness between Tartary buckwheat varieties.


Subject(s)
Amylases , Fagopyrum , Gibberellins , Fagopyrum/metabolism , Fagopyrum/drug effects , Fagopyrum/growth & development , Gibberellins/pharmacology , Gibberellins/metabolism , Amylases/metabolism , Cellulose/metabolism , Glucosyltransferases/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Proteins/metabolism
9.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39201381

ABSTRACT

Gibberellins (GAs), enzymes that play a significant role in plant growth and development, and their levels in plants could be regulated by gibberellin-oxidases (GAoxs). As important fruit trees and ornamental plants, the study of the mechanism of plant architecture formation of the Prunus genus is crucial. Here, 85 GAox genes were identified from P. mume, P. armeniaca, P. salicina, and P. persica, and they were classified into six subgroups. Conserved motif and gene structure analysis showed that GAoxs were conserved in the four Prunus species. Collinearity analysis revealed two fragment replication events of PmGAoxs in the P. mume genome. Promoter cis-elements analysis revealed 24 PmGAoxs contained hormone-responsive elements and development regulatory elements. The expression profile indicated that PmGAoxs have tissue expression specificity, and GA levels during the dormancy stage of flower buds were controlled by certain PmGAoxs. After being treated with IAA or GA3, the transcription level of PmGA2ox8 in stems was significantly increased and showed a differential expression level between upright and weeping stems. GUS activity driven by PmGA2ox8 promoter was detected in roots, stems, leaves, and flower organs of Arabidopsis. PmGA2ox8 overexpression in Arabidopsis leads to dwarfing phenotype, increased number of rosette leaves but decreased leaf area, and delayed flowering. Our results showed that GAoxs were conserved in Prunus species, and PmGA2ox8 played an essential role in regulating plant height.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Phylogeny , Plant Proteins , Prunus , Prunus/genetics , Prunus/growth & development , Prunus/enzymology , Prunus/metabolism , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Arabidopsis/genetics , Arabidopsis/growth & development , Multigene Family , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Genome, Plant
10.
Plant Cell ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012965

ABSTRACT

During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically-encoded second generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions and maintaining accumulation in the mature nodule meristem. We show, through mis-expression of GA catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.

11.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000509

ABSTRACT

Dwarfing rootstocks enhance planting density, lower tree height, and reduce both labor in peach production. Cerasus humilis is distinguished by its dwarf stature, rapid growth, and robust fruiting capabilities, presenting substantial potential for further development. In this study, Ruipan 4 was used as the scion and grafted onto Amygdalus persica and Cerasus humilis, respectively. The results indicate that compared to grafting combination R/M (Ruipan 4/Amygdalus persica), grafting combination R/O (Ruipan 4/Cerasus humilis) plants show a significant reduction in height and a significant increase in flower buds. RNA-seq indicates that genes related to gibberellin (GA) and auxin metabolism are involved in the dwarfing process of scions mediated by C. humilis. The expression levels of the GA metabolism-related gene PpGA2ox7 significantly increased in R/O and are strongly correlated with plant height, branch length, and internode length. Furthermore, GA levels were significantly reduced in R/O. The transcription factor PpGATA21 was identified through yeast one-hybrid screening of the PpGA2ox7 promoter. Yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) demonstrate that PpGATA21 can bind to the promoter of PpGA2ox7 and activate its expression. Overall, PpGATA21 activates the expression of the GA-related gene PpGA2ox7, resulting in reduced GA levels and consequent dwarfing of plants mediated by C. humilis. This study provides new insights into the mechanisms of C. humilis and offers a scientific foundation for the dwarfing and high-density cultivation of peach trees.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Prunus persica , Prunus persica/genetics , Prunus persica/growth & development , Prunus persica/metabolism , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic , Trees/genetics , Trees/growth & development , Indoleacetic Acids/metabolism
12.
Plants (Basel) ; 13(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39065452

ABSTRACT

Some citrus orchards in China often experience nitrogen (N) deficiency. For the first time, targeted metabolomics was used to examine N-deficient effects on hormones in sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) leaves and roots. The purpose was to validate the hypothesis that hormones play a role in N deficiency tolerance by regulating root/shoot dry weight ratio (R/S), root system architecture (RSA), and leaf and root senescence. N deficiency-induced decreases in gibberellins and indole-3-acetic acid (IAA) levels and increases in cis(+)-12-oxophytodienoic acid (OPDA) levels, ethylene production, and salicylic acid (SA) biosynthesis might contribute to reduced growth and accelerated senescence in leaves. The increased ethylene formation in N-deficient leaves might be caused by increased 1-aminocyclopropanecarboxylic acid and OPDA and decreased abscisic acid (ABA). N deficiency increased R/S, altered RSA, and delayed root senescence by lowering cytokinins, jasmonic acid, OPDA, and ABA levels and ethylene and SA biosynthesis, increasing 5-deoxystrigol levels, and maintaining IAA and gibberellin homeostasis. The unchanged IAA concentration in N-deficient roots involved increased leaf-to-root IAA transport. The different responses of leaf and root hormones to N deficiency might be involved in the regulation of R/S, RSA, and leaf and root senescence, thus improving N use efficiency, N remobilization efficiency, and the ability to acquire N, and hence conferring N deficiency tolerance.

13.
J Plant Physiol ; 301: 154301, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38968782

ABSTRACT

Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (r = 0.85), which is regulated by transcriptional modulation of HvNCED1 and/or HvCYP707A genes. A strong positive correlation was evident between variation in seed germination and GA level (r = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, HvGA20ox2 and/or HvGA3oxs, and GA catabolism genes, HvGA2ox3 and/or HvGA3ox6. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (r = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.


Subject(s)
Abscisic Acid , Genetic Variation , Gibberellins , Hordeum , Plant Dormancy , Hordeum/genetics , Hordeum/physiology , Gibberellins/metabolism , Abscisic Acid/metabolism , Plant Dormancy/genetics , Gene Expression Regulation, Plant , Germination/genetics , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Genotype , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Plants (Basel) ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38931102

ABSTRACT

We investigated the effect of supplemental CO2, gibberellic acid (GA3), and light on the quality and yield of Humulus lupulus L. strobili (cones). When applied separately, CO2 and light increased the yield by 22% and 43%, respectively, and had a significant effect on the components of cone mass and quality. Exogenous GA3 increased flower set; however, the yield decreased by approximately 33%. Combining CO2, GA3, and light, and any combination thereof, resulted in significant increases in flower set and cone yield enhancement compared to separate applications. A synergistic effect occurred when some factors were combined. For example, the combination of CO2 and light resulted in a yield increase of approximately 122%. The combination of all three resources, CO2, GA3, and light, resulted in an approximate 185% yield increase per plant. Thus, in comparison to the addition of one supplementary resource, a greater increase in yield resulted from the combination of two or more supplemental resources. Flower set stimulation due to GA3 decreased cone alpha- and beta-acid quality attributes, unless combined with CO2 and light as additional carbohydrate-generating resources. Additional research is needed to close the hop yield gap between current hop yields and the achievement of the plant's genetic potential.

15.
Front Plant Sci ; 15: 1348080, 2024.
Article in English | MEDLINE | ID: mdl-38855466

ABSTRACT

Clonal plants are widely distributed in the riparian zone and play a very important role in the maintenance of wetland ecosystem function. Flooding is an environmental stress for plants in the riparian zone, and the response of plants varies according to the depth and duration of flooding. However, there is a lack of research on the growth response of clonal plants during flooding, and the endogenous hormone response mechanism of clonal plants is still unclear. In the present study, Alternanthera philoxeroides, a clonal plant in the riparian zone, was used to investigate the time-dependent stem elongation, the elongation of different part of the immature internodes, and the relationship between growth elongation and the phytohormone gibberellin (GA) under a series of submergence depths (0 m, 2 m, 5 m, and 9 m). The results showed that stem elongation occurred under all treatments, however, compared to 0 m (control), plants grew more under 2 m and 5 m submergence depth, while grew less under 9 m water depth. Additionally, basal part elongation of the immature internode was the predominant factor contributing to the stem growth of A. philoxeroides under different submergence depths. The phytohormone contents in basal part of the mature and immature internodes showed that GA induced the differential elongation of internode. Plant submerged at depth of 2 m had the highest GA accumulation, but plant submerged at depth of 9 m had the lowest GA concentration. These data suggested that GA biosynthesis are essential for stem elongation in A. philoxeroides, and the basal part of the immature internode was the main position of the GA biosynthesis. This study provided new information about the rapid growth and invasion of the clonal plant A. philoxeroides around the world, further clarified the effects of submergence depth and duration on the elongation of the stem, and deepened our understanding of the growth response of terrestrial plants in deeply flooded environments.

16.
BMC Plant Biol ; 24(1): 542, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872107

ABSTRACT

BACKGROUND: Hydrogen gas (H2), a novel and beneficial gaseous molecule, plays a significant role in plant growth and development processes. Hydrogen-rich water (HRW) is regarded as a safe and easily available way to study the physiological effects of H2 on plants. Several recent research has shown that HRW attenuates stress-induced seed germination inhibition; however, the underlying modes of HRW on seed germination remain obscure under non-stress condition. RESULTS: In this current study, we investigated the possible roles of gibberellin (GA) and abscisic acid (ABA) in HRW-regulated seed germination in wax gourd (Benincasa hispida) through pharmacological, physiological, and transcriptome approaches. The results showed that HRW application at an optimal dose (50% HRW) significantly promoted seed germination and shortened the average germination time (AGT). Subsequent results suggested that 50% HRW treatment stimulated GA production by regulating GA biosynthesis genes (BhiGA3ox, BhiGA2ox, and BhiKAO), whereas it had no effect on the content of ABA and the expression of its biosynthesis (BhiNCED6) and catabolism genes (BhiCYP707A2) but decreased the expression of ABA receptor gene (BhiPYL). In addition, inhibition of GA production by paclobutrazol (PAC) could block the HRW-mediated germination. Treatment with ABA could hinder HRW-mediated seed germination and the ABA biosynthesis inhibitor sodium tungstate (ST) could recover the function of HRW. Furthermore, RNA-seq analysis revealed that, in the presence of GA or ABA, an abundance of genes involved in GA, ABA, and ethylene signal sensing and transduction might involve in HRW-regulated germination. CONCLUSIONS: This study portrays insights into the mechanism of HRW-mediated seed germination, suggesting that HRW can regulate the balance between GA and ABA to mediate seed germination through ethylene signals in wax gourd.


Subject(s)
Abscisic Acid , Germination , Gibberellins , Hydrogen , Plant Growth Regulators , Seeds , Signal Transduction , Gibberellins/metabolism , Germination/drug effects , Abscisic Acid/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/genetics , Seeds/physiology , Plant Growth Regulators/metabolism , Hydrogen/metabolism , Gene Expression Regulation, Plant/drug effects
17.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928464

ABSTRACT

Histone acetyltransferases (HATs) modify the amino-terminal tails of the core histone proteins via acetylation, regulating chromatin structure and transcription. GENERAL CONTROL NON-DEREPRESSIBLE 5 (GCN5) is a HAT that specifically acetylates H3K14 residues. GCN5 has been associated with cell division and differentiation, meristem function, root, stem, foliar, and floral development, and plant environmental response. The flowers of gcn5 plants display a reduced stamen length and exhibit male sterility relative to the wild-type plants. We show that these effects may arise from gibberellin (GA)-signaling defects. The signaling pathway of bioactive GAs depends on the proteolysis of their repressors, DELLA proteins. The repressor GA (RGA) DELLA protein represses plant growth, inflorescence, and flower and seed development. Our molecular data indicate that GCN5 is required for the activation and H3K14 acetylation of genes involved in the late stages of GA biosynthesis and catabolism. We studied the genetic interaction of the RGA and GCN5; the RGA can partially suppress GCN5 action during the whole plant life cycle. The reduced elongation of the stamen filament of gcn5-6 mutants is reversed in the rga-t2;gcn5-6 double mutants. RGAs suppress the GCN5 effect on the gene expression and histone acetylation of GA catabolism and GA signaling. Interestingly, the RGA and RGL2 do not suppress ADA2b function, suggesting that ADA2b acts downstream of GA signaling and is distinct from GCN5 activity. In conclusion, we propose that the action of GCN5 on stamen elongation is partially mediated by RGA and GA signaling.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Gibberellins , Histone Acetyltransferases , Signal Transduction , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Gibberellins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Acetylation , Flowers/growth & development , Flowers/genetics , Flowers/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Histones/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics
18.
New Phytol ; 243(3): 997-1016, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849319

ABSTRACT

Jasmonic acid (JA) and gibberellin (GA) coordinately regulate plant developmental programs and environmental cue responses. However, the fine regulatory network of the cross-interaction between JA and GA remains largely elusive. In this study, we demonstrate that MdNAC72 together with MdABI5 positively regulates anthocyanin biosynthesis through an exquisite MdNAC72-MdABI5-MdbHLH3 transcriptional cascade in apple. MdNAC72 interacts with MdABI5 to promote the transcriptional activation of MdABI5 on its target gene MdbHLH3 and directly activates the transcription of MdABI5. The MdNAC72-MdABI5 module regulates the integration of JA and GA signals in anthocyanin biosynthesis by combining with JA repressor MdJAZ2 and GA repressor MdRGL2a. MdJAZ2 disrupts the MdNAC72-MdABI5 interaction and attenuates the transcriptional activation of MdABI5 by MdNAC72. MdRGL2a sequesters MdJAZ2 from the MdJAZ2-MdNAC72 protein complex, leading to the release of MdNAC72. The E3 ubiquitin ligase MdSINA2 is responsive to JA and GA signals and promotes ubiquitination-dependent degradation of MdNAC72. The MdNAC72-MdABI5 interface fine-regulates the integration of JA and GA signals at the transcriptional and posttranslational levels by combining MdJAZ2, MdRGL2a, and MdSINA2. In summary, our findings elucidate the fine regulatory network connecting JA and GA signals with MdNAC72-MdABI5 as the core in apple.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Gibberellins , Malus , Oxylipins , Plant Proteins , Signal Transduction , Ubiquitination , Oxylipins/metabolism , Malus/genetics , Malus/metabolism , Cyclopentanes/metabolism , Ubiquitination/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Proteolysis/drug effects , Anthocyanins/metabolism , Protein Binding/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Models, Biological
19.
Curr Biol ; 34(13): 2893-2906.e3, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38876102

ABSTRACT

Secondary dormancy is an adaptive trait that increases reproductive success by aligning seed germination with permissive conditions for seedling establishment. Aethionema arabicum is an annual plant and member of the Brassicaceae that grows in environments characterized by hot and dry summers. Aethionema arabicum seeds may germinate in early spring when seedling establishment is permissible. We demonstrate that long-day light regimes induce secondary dormancy in the seeds of Aethionema arabicum (CYP accession), repressing germination in summer when seedling establishment is riskier. Characterization of mutants screened for defective secondary dormancy demonstrated that RGL2 mediates repression of genes involved in gibberellin (GA) signaling. Exposure to high temperature alleviates secondary dormancy, restoring germination potential. These data are consistent with the hypothesis that long-day-induced secondary dormancy and its alleviation by high temperatures may be part of an adaptive response limiting germination to conditions permissive for seedling establishment in spring and autumn.


Subject(s)
Brassicaceae , Germination , Plant Dormancy , Seeds , Seeds/growth & development , Seeds/physiology , Brassicaceae/physiology , Photoperiod , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gibberellins/metabolism , Seasons , Seedlings/growth & development , Seedlings/physiology , Adaptation, Physiological
20.
Front Plant Sci ; 15: 1354141, 2024.
Article in English | MEDLINE | ID: mdl-38919815

ABSTRACT

Suaeda glauca Bunge produces dimorphic seeds on the same plant, with brown seeds displaying non-dormant characteristics and black seeds exhibiting intermediate physiological dormancy traits. Previous studies have shown that black seeds have a very low germination rate under natural conditions, but exogenous GA3 effectively enhanced the germination rate of black seeds. However, the physiological and molecular mechanisms underlying the effects of GA3 on S. glauca black seeds are still unclear. In this study, transcriptomic profiles of seeds at different germination stages with and without GA3 treatment were analyzed and compared, and the TTF, H2O2, O2 -, starch, and soluble sugar contents of the corresponding seed samples were determined. The results indicated that exogenous GA3 treatment significantly increased seed vigor, H2O2, and O2 - contents but decreased starch and soluble sugar contents of S. glauca black seeds during seed dormancy release. RNA-seq results showed that a total of 1136 DEGs were identified in three comparison groups and were involved mainly in plant hormone signal transduction, diterpenoid biosynthesis, flavonoid biosynthesis, phenylpropanoid biosynthesis, and carbohydrate metabolism pathway. Among them, the DEGs related to diterpenoid biosynthesis (SgGA3ox1, SgKAO and SgGA2ox8) and ABA signal transduction (SgPP2Cs) could play important roles during seed dormancy release. Most genes involved in phenylpropanoid biosynthesis were activated under GA3 treatment conditions, especially many SgPER genes encoding peroxidase. In addition, exogenous GA3 treatment also significantly enhanced the expression of genes involved in flavonoid synthesis, which might be beneficial to seed dormancy release. In accordance with the decline in starch and soluble sugar contents, 15 genes involved in carbohydrate metabolism were significantly up-regulated during GA3-induced dormancy release, such as SgBAM, SgHXK2, and SgAGLU, etc. In a word, exogenous GA3 effectively increased the germination rate and seed vigor of S. glauca black seeds by mediating the metabolic process or signal transduction of plant hormones, phenylpropanoid and flavonoid biosynthesis, and carbohydrate metabolism processes. Our results provide novel insights into the transcriptional regulation mechanism of exogenous GA3 on the dormancy release of S. glauca black seeds. The candidate genes identified in this study may be further studied and used to enrich our knowledge of seed dormancy and germination.

SELECTION OF CITATIONS
SEARCH DETAIL