Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters











Publication year range
1.
Adipocyte ; 13(1): 2374062, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38953241

ABSTRACT

Obesity is associated with a low-grade chronic inflammatory process characterized by higher circulating TNFα levels, thus contributing to insulin resistance. This study evaluated the effect of silybin, the main bioactive component of silymarin, which has anti-inflammatory properties, on TNFα levels and its impact on glucose uptake in the adipocyte cell line 3T3-L1 challenged with two different inflammatory stimuli, TNFα or lipopolysaccharide (LPS). Silybin's pre-treatment effect was evaluated in adipocytes pre-incubated with silybin (30 or 80 µM) before challenging with the inflammatory stimuli (TNFα or LPS). For the post-treatment effect, the adipocytes were first challenged with the inflammatory stimuli and then post-treated with silybin. After treatments, TNFα production, glucose uptake, and GLUT4 protein expression were determined. Both inflammatory stimuli increased TNFα secretion, diminished GLUT4 expression, and significantly decreased glucose uptake. Silybin 30 µM only reduced TNFα secretion after the LPS challenge. Silybin 80 µM as post-treatment or pre-treatment decreased TNFα levels, improving glucose uptake. However, glucose uptake enhancement induced by silybin did not depend on GLUT4 protein expression. These results show that silybin importantly reduced TNFα levels and upregulates glucose uptake, independently of GLUT4 protein expression.


Subject(s)
3T3-L1 Cells , Adipocytes , Glucose , Lipopolysaccharides , Silybin , Tumor Necrosis Factor-alpha , Animals , Silybin/pharmacology , Mice , Tumor Necrosis Factor-alpha/metabolism , Glucose/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Lipopolysaccharides/pharmacology , Glucose Transporter Type 4/metabolism , Silymarin/pharmacology
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167261, 2024 08.
Article in English | MEDLINE | ID: mdl-38777099

ABSTRACT

PURA, also known as Pur-alpha, is an evolutionarily conserved DNA/RNA-binding protein crucial for various cellular processes, including DNA replication, transcriptional regulation, and translational control. Comprising three PUR domains, it engages with nucleic acids and has a role in protein-protein interactions. The manifestation of PURA syndrome, arising from mutations in the PURA gene, presents neurologically with developmental delay, hypotonia, and seizures. In our prior work from 2018, we highlighted the unique case of a PURA patient displaying hypoglycorrhachia, suggesting a potential association with GLUT1 dysfunction in this syndrome. In this current study, we expand the patient cohort with PURA mutations exhibiting hypoglycorrhachia and aim to unravel the molecular basis of this phenomenon. We established an in vitro model in HeLa cells to modulate PURA expression and investigated GLUT1 function and expression. Our findings indicate that PURA levels directly impact glucose uptake through the functioning of GLUT1, without influencing significantly GLUT1 expression. Moreover, our study reveals evidence for a possible physical interaction between PURA and GLUT1, demonstrated by colocalization and co-immunoprecipitation of both proteins. Computational analyses, employing molecular dynamics, further corroborates these findings, demonstrating that PURA:GLUT1 interactions are plausible, and that the stability of the complex is altered when PURA is truncated and/or mutated. In conclusion, our results suggest that PURA plays a pivotal role in driving the function of GLUT1 for glucose uptake, potentially forming a regulatory complex. Additional investigations are warranted to elucidate the precise mechanisms governing this complex and its significance in ensuring proper GLUT1 function.


Subject(s)
Glucose Transporter Type 1 , Female , Humans , Male , Brain/metabolism , Glucose/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , HeLa Cells , Mutation , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
3.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38794136

ABSTRACT

BACKGROUND: Aging and obesity are associated with insulin resistance (IR) and low-grade inflammation. Molecularly, IR is characterized by a reduction in glucose uptake and insulin signaling (IRS-1/Akt/AS160 pathway), while inflammation may result from upregulated NF-κB pathway after low Tyr-IκBα phosphorylation. Upregulated phosphatase activity of PTP1B is associated with impaired insulin signaling and increased inflammation. Plasma levels of palmitic acid (PA) are elevated in obesity, triggering inflammation and disruption of insulin signaling. Traditional medicine in Northern Chile uses oral infusions of Lampaya medicinalis Phil. (Verbenaceae) to treat inflammatory conditions. Significant amounts of flavonoids are found in the hydroethanolic extract of Lampaya (HEL), which may account for its biological activity. The aim of this work was to study the effect of HEL and PA on insulin signaling and glucose uptake as well as inflammatory marker expression in human adipocytes. METHODS: We studied HEL effects on PA-induced impairment on insulin signaling, glucose uptake and inflammatory marker content in human SW872 adipocytes. HEL cytotoxicity was assessed in adipocytes at different concentrations (0.01 to 10 g/mL). Adipocytes were incubated or not with PA (0.4 mM, 24 h) with or without HEL (2 h pre-incubation), and then stimulated with insulin (10 min, 100 mM) or a vehicle. Phospho-IRS-1, phospho-Akt, phospho-AS160, phospho-NF-κB and phospho-IκBα, as well as protein levels of PTP1B, were assessed using Western blotting, and glucose uptake was evaluated using the 2-NBDG analogue. RESULTS: At the assessed HEL concentrations, no cytotoxic effects were observed. PA decreased insulin-stimulated phospho-Akt and glucose uptake, while co-treatment with HEL increased such markers. PA decreased phospho-IRS-1 and phospho-Tyr-IκBα. On the other hand, incubation with HEL+PA decreased phospho-AS160 and phospho-NF-κB compared with cells treated with PA alone. CONCLUSION: Our results suggest a beneficial effect of HEL by improving PA-induced impairment on molecular markers of insulin signaling, glucose uptake and inflammation in adipocytes. Further studies are necessary to elucidate whether lampaya may constitute a preventive strategy for people whose circulating PA levels contribute to IR and inflammation during aging and obesity.

4.
Pharmacology ; 108(6): 521-529, 2023.
Article in English | MEDLINE | ID: mdl-37673038

ABSTRACT

INTRODUCTION: Obesity during pregnancy can contribute to hypertensive complications through changes in glucose utilization. We investigated the impact of vascular glucose uptake, GLUT4 density, and endothelium on agonist-induced vasoconstriction in the aortas of overweight pregnant rats. METHODS: Isolated aortic rings with or without endothelium from pregnant or nonpregnant rats fed a standard (SD) or hypercaloric diet (HD) were contracted with phenylephrine or serotonin (10-9 to 10-4M) using standard (11 mm) or without (0 mm) glucose Krebs solution. GLUT4 density in the aortas was measured using the en face method. RESULTS: Aortas from overweight pregnant animals (PHD) showed increased Phe-induced vasoconstriction (p < 0.05 vs. pregnant standard diet [PSD]), which was endothelium-independent. The contraction decreased significantly in the absence of glucose. In contrast, vessels from pregnant SD rats maintained their contraction in glucose-free Krebs solution. 5-HT increases PHD aortic contraction only in the absence of glucose. The fetal aortas from PHD mothers showed blunted vasoconstriction. Overweight significantly reduced GLUT4 expression in maternal and fetal aortas (p < 0.05 vs. PSD). CONCLUSIONS: Aortic contractility is independent of glucose uptake during healthy pregnancy. In contrast, overweight pregnancy increases contractility. This increase depends directly on smooth muscle glucose uptake and inversely on GLUT-4 density. The increased contraction observed in the vasculature of overweight mothers was inverted in the fetal aortas.


Subject(s)
Overweight , Pregnancy , Vasoconstriction , Animals , Female , Pregnancy/metabolism , Rats , Aorta , Blood Glucose/metabolism , Endothelium, Vascular , Overweight/metabolism , Phenylephrine/pharmacology , Phenylephrine/metabolism , Serotonin/pharmacology , Serotonin/metabolism
5.
Biol Res ; 56(1): 48, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37608294

ABSTRACT

BACKGROUND: To elucidate the role of Mucin1 (MUC1) in the trophoblast function (glucose uptake and apoptosis) of gestational diabetes mellitus (GDM) women through the Wnt/ß-catenin pathway. METHODS: Glucose uptake was analyzed by plasma GLUT1 and GLUT4 levels with ELISA and measured by the expression of GLUT4 and INSR with immunofluorescence and Western blotting. Apoptosis was measured by the expression of Bcl-2 and Caspase3 by Western blotting and flow cytometry. Wnt/ß-catenin signaling measured by Western blotting. In vitro studies were performed using HTR-8/SVneo cells that were cultured and treated with high glucose (HG), sh-MUC1 and FH535 (inhibitor of Wnt/ß-catenin signaling). RESULTS: MUC1 was highly expressed in the placental trophoblasts of GDM, and the Wnt/ß-catenin pathway was activated, along with dysfunction of glucose uptake and apoptosis. MUC1 knockdown resulted in increased invasiveness and decreased apoptosis in trophoblast cells. The initial linkage between MUC1, the Wnt/ß-catenin pathway, and glucose uptake was confirmed by using an HG-exposed HTR-8/SVneo cell model with MUC1 knockdown. MUC1 knockdown inhibited the Wnt/ß-catenin signaling pathway and reversed glucose uptake dysfunction and apoptosis in HG-induced HTR-8/SVneo cells. Meanwhile, inhibition of Wnt/ß-catenin signaling could also reverse the dysfunction of glucose uptake and apoptosis. CONCLUSIONS: In summary, the increased level of MUC1 in GDM could abnormally activate the Wnt/ß-catenin signaling pathway, leading to trophoblast dysfunction, which may impair glucose uptake and induce apoptosis in placental tissues of GDM women.


Subject(s)
Diabetes, Gestational , Trophoblasts , Pregnancy , Humans , Female , Wnt Signaling Pathway , beta Catenin , Placenta , Glucose
6.
J Ethnopharmacol ; 315: 116619, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37201665

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Extracts of the aerial part of Phyllanthus amarus have been extensively used in several countries to cure diabetes. No data is available on the impact of gastrointestinal digestion of such crude extracts on their antidiabetic activity. AIM OF THE STUDY: The aim of this study was to identify active fractions and compounds of fresh aerial parts of P. amarus extracted by an infusion method that are responsible for antidiabetic effects occurring at the level of glucose homeostasis. MATERIALS AND METHODS: An aqueous extract was obtained by an infusion method and its polyphenolic composition was analysed by reverse phase UPLC-DAD-MS. The influence of in vitro gastrointestinal digestion was evaluated both on the chemical composition and on the antidiabetic effect of P. amarus infusion extract using glucose-6-phosphatase enzyme inhibition and stimulation of glucose uptake. RESULTS: Analysis of the chemical composition of the crude extract revealed the presence of polysaccharides and various families of polyphenols such as phenolic acids, tannins, flavonoids and lignans. After simulated digestion, the total content of polyphenols decreased by about 95%. Caffeoylglucaric acid derivates and lignans exhibited strong stimulation of glucose uptake similar to metformin with an increase of 35.62 ± 6.14% and 34.74 ± 5.33% respectively. Moreover, corilagin, geraniin, the enriched polysaccharides fraction and the bioaccessible fraction showed strong anti-hyperglycemic activity with about 39-62% of glucose-6-phosphatase inhibition. CONCLUSION: Caffeoylglucaric acid isomers, tannin acalyphidin M1 and lignan demethyleneniranthin were reported for the first time in the species. After in vitro gastroinstestinal digestion, the composition of the extract changed. The dialyzed fraction showed strong glucose-6-phosphatase inhibition.


Subject(s)
Diabetes Mellitus , Lignans , Phyllanthus , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phyllanthus/chemistry , Glucose-6-Phosphatase , Lignans/pharmacology , Hypoglycemic Agents/pharmacology , Polyphenols/pharmacology , Glucose , Digestion
7.
Rev Bras Farmacogn ; 33(2): 334-343, 2023.
Article in English | MEDLINE | ID: mdl-36819090

ABSTRACT

Natural product-based therapeutic alternatives have drawn immense interest to deal with growing incidence of metabolic disorders. Rutin (quercetin-3-O-rutinoside) is found in a variety of fruits, vegetables, and plant beverages. In the present study, rutin was isolated from Moringa oleifera Lam., leaves and its anti-lipidemic and anti-adipogenic activity was evaluated through inhibition of key digestive enzymes and in vitro cell culture experiments using 3T3-L1 adipocytes. Rutin treatment substantially reduced α-glucosidase and pancreatic lipase activities with IC50 values of 40 and 35 µg/ml, respectively. MTT assay with 3T3-L1 cells demonstrated the non-toxic effect of rutin up to 160 µg/ml. Oil Red O-stained images of rutin-treated 3T3-L1 cells depicted that rutin considerably reduced lipid content and adipogenesis (79.9%), and enhanced glycerol release in 3T3-L1 cells when compared to untreated cells. Rutin significantly (p < 0.05) enhanced glucose uptake in 3T3-L1 adipocytes and also led to reduced levels of leptin but enhanced levels of adiponectin. Western blot analysis of rutin-treated (40 µg/ml) adipocytes showed phosphorylation of AMPK, upregulated expression of Glut-4 (1.31-fold) and UCP-1 (1.47-fold), but downregulated expression of PPAR-γ by 0.73-fold. At transcriptional level, similar trends were observed in the mRNA expression of the above genes, except AMPK. Our results demonstrate that rutin isolated from M. oleifera significantly alleviates lipid content and adipogenesis, and improves glucose uptake through regulating PPAR-γ and AMPK signaling pathways; thus, rutin can be considered as a potential therapeutic agent against adiposity and glucose intolerance.

8.
Front Endocrinol (Lausanne) ; 13: 1032499, 2022.
Article in English | MEDLINE | ID: mdl-36531508

ABSTRACT

Introduction: During pregnancy, arterial hypertension may impair placental function, which is critical for a healthy baby's growth. Important proteins during placentation are known to be targets for O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation), and abnormal protein O-GlcNAcylation has been linked to pathological conditions such as hypertension. However, it is unclear how protein O-GlcNAcylation affects placental function and fetal growth throughout pregnancy during hypertension. Methods: To investigate this question, female Wistar and spontaneously hypertensive rats (SHR) were mated with male Wistar rats, and after pregnancy confirmation by vaginal smear, rats were divided into groups of 14, 17, and 20 days of pregnancy (DOPs). On the 14th, 17th, and 20th DOP, rats were euthanized, fetal parameters were measured, and placentas were collected for western blot, immunohistochemical, and morphological analyses. Results: SHR presented a higher blood pressure than the Wistar rats (p=0.001). Across all DOPs, SHR showed reduced fetal weight and an increase in small-for-gestational-age fetuses. While near-term placentas were heavier in SHR (p=0.006), placental efficiency decreased at 17 (p=0.01) and 20 DOPs (p<0.0001) in this group. Morphological analysis revealed reduced junctional zone area and labyrinth vasculature changes on SHR placentas in all DOPs. O-GlcNAc protein expression was lower in placentas from SHR compared with Wistar at 14, 17, and 20 DOPs. Decreased expression of O-GlcNAc transferase (p=0.01) and O-GlcNAcase (p=0.002) enzymes was found at 14 DOPs in SHR. Immunohistochemistry showed reduced placental O-GlcNAc content in both the junctional zone and labyrinth of the placentas from SHR. Periodic acid-Schiff analysis showed decreased glycogen cell content in the placentas from SHR at 14, 17, and 20 DOPs. Moreover, glucose transporter 1 expression was decreased in placentas from SHR in all DOPs. Conclusions: These findings suggest that decreased protein O-GlcNAcylation caused by insufficient placental nutritional apport contributes to placental dysfunction during hypertensive pregnancy, impairing fetal growth.


Subject(s)
Hypertension , Placenta , Female , Pregnancy , Rats , Male , Animals , Placenta/metabolism , Rats, Wistar , Rats, Inbred SHR , Placentation , Nutrients
9.
J Neuroinflammation ; 19(1): 255, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36221097

ABSTRACT

Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1ß and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.


Subject(s)
Lipopolysaccharides , Metformin , Animals , Cytokines/metabolism , Glucose/metabolism , Glutamates/metabolism , Hippocampus/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Lactates/adverse effects , Lactates/metabolism , Lipopolysaccharides/toxicity , Metformin/pharmacology , Microglia/metabolism , Minocycline/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Oxamic Acid/adverse effects , Oxamic Acid/metabolism , Protein Kinases/metabolism , Rats
10.
Discov Oncol ; 13(1): 60, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35802257

ABSTRACT

Metabolic reprogramming (MR) influences progression of chronic myeloid leukaemia (CML) to blast crisis (BC), but metabolic programs may change transiently in a second dimension (metabolic plasticity, MP), driven by environments as hypoxia, affecting cytotoxic potency (CPot) of drugs targeting mitochondria or mitochondria-related cell stress responses (MRCSR) such as mitophagy and mitochondrial biogenesis. We assessed mitochondrial membrane potential (MMP), mitochondrial mass (MM), apoptosis, glucose uptake (GU), and CPot of arsenic trioxide (ATO), CCCP, valproic acid (VPA), vincristine (VCR), Mdivi1, and dichloroacetic acid (DCA) in CML BC cells K562 (BC-K562) under hypoxia through flow cytometry, and gene expression from GEO database. About 60% of untreated cells were killed after 72 h under hypoxia, but paradoxically, all drugs but ATO rescued cells and increased survival rates to almost 90%. Blocking mitophagy either with VCR or Mdivi1, or increasing mitochondrial biogenesis with VPA enhanced cell-survival with increased MM. DCA increased MM and rescued cells in spite of its role in activating pyruvate dehydrogenase and Krebs cycle. Cells rescued by DCA, VPA and CCCP showed decreased GU. ATO showed equal CPot in hypoxia and normoxia. MP was evidenced by differential expression of genes (DEG) under hypoxia related to Krebs cycle, lipid synthesis, cholesterol homeostasis, mitophagy, and mitochondrial biogenesis (GSE144527). A 25-gene MP-signature of BC-K562 cells under hypoxia identified BC cases among 113 transcriptomes from CML patients (GSE4170). We concluded that hypoxic environment drove a MP change evidenced by DEG that was reflected in a paradoxical pro-survival, instead of cytotoxic, effect of drugs targeting mitochondria and MRCSR.

11.
Biometals ; 35(5): 903-919, 2022 10.
Article in English | MEDLINE | ID: mdl-35778658

ABSTRACT

Diabetes mellitus, a complex and heterogeneous disease associated with hyperglycemia, is a leading cause of mortality and reduces life expectancy. Vanadium complexes have been studied for the treatment of diabetes. The effect of complex [VO(bpy)(mal)]·H2O (complex A) was evaluated in a human hepatocarcinoma (HepG2) cell line and in streptozotocin (STZ)-induced diabetic male Wistar rats conditioned in seven groups with different treatments (n = 10 animals per group). Electron paramagnetic resonance and 51V NMR analyses of complex A in high-glucose Dulbecco's Modified Eagle Medium (DMEM) revealed the oxidation and hydrolysis of the oxidovanadium(IV) complex over a period of 24 h at 37 °C to give low-nuclearity vanadates "V1" (H2VO4-), "V2" (H2V2O72-), and "V4" (V4O124-). In HepG2 cells, complex A exhibited low cytotoxic effects at concentrations 2.5 to 7.5 µmol L-1 (IC50 10.53 µmol L-1) and increased glucose uptake (2-NBDG) up to 93%, an effect similar to insulin. In STZ-induced diabetic rats, complex A at 10 and 30 mg kg-1 administered by oral gavage for 12 days did not affect the animals, suggesting low toxicity or metabolic impairment during the experimental period. Compared to insulin treatment alone, complex A (30 mg kg-1) in association with insulin was found to improve glycemia (30.6 ± 6.3 mmol L-1 vs. 21.1 ± 8.6 mmol L-1, respectively; p = 0.002), resulting in approximately 30% additional reduction in glycemia. The insulin-enhancing effect of complex A was associated with low toxicity and was achieved via oral administration, suggesting the potential of complex A as a promising candidate for the adjuvant treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Humans , Hypoglycemic Agents/adverse effects , Insulin/metabolism , Insulin/pharmacology , Malates , Male , Rats , Rats, Wistar , Streptozocin , Vanadates/chemistry , Vanadium/chemistry , Vanadium/pharmacology
12.
Food Chem Toxicol ; 165: 113083, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35577173

ABSTRACT

Hydrogen sulfide (H2S) has been known for its toxicity. However, recent studies have focused on the mechanisms involved in endogenous production and function. To date, the H2S role in insulin signaling and glucose homeostasis is unclear. This uncertainty is even more evident in skeletal muscle, a physiological niche highly relevant for regulating glycemia in response to insulin. This study aimed to investigate the role of H2S on insulin signaling and glucose uptake in the L6 skeletal muscle cell line. We evaluated the endogenous synthesis with the fluorescent dye, 7-azido-4-methyl coumarin (7-AzMC). Glucose restriction-induced an increase in the endogenous levels of H2S, likely through stimulation of cystathionine γ-lyase activity, as its specific inhibitor, PAG (5 mM) prevented this increase, and mRNA levels of CSE decreased with glucose and amino acid restriction. Exogenous H2S reduced insulin-induced glucose uptake at 0.5 up to 24 h, an effect dissociated from the level of Akt phosphorylation. Our results show that glucose restriction induces endogenous production of H2S via CSE. In addition, H2S disrupts insulin-induced glucose uptake independent of the Akt pathway. These results suggest that H2S antagonism over insulin-induced glucose uptake could help maintain the plasmatic glucose levels in conditions that provoke hypoglycemia, which could serve as an H2S-regulated mechanism for maintaining glucose plasmatic levels through the inhibition of the skeletal muscle insulin-depended glucose uptake.


Subject(s)
Hydrogen Sulfide , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Glucose/metabolism , Hydrogen Sulfide/metabolism , Insulin/metabolism , Muscle Fibers, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/genetics
13.
Mol Cell Endocrinol ; 540: 111518, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34808277

ABSTRACT

Glucose uptake increases in canine luteal cells under insulin treatment. We hypothesize that insulin also increases luteal cell steroidogenesis. Dogs underwent elective ovariohysterectomy from days 10-60 post ovulation and their corpora lutea (CL) and blood samples were collected. Deep RNA sequencing determined differentially expressed genes in CL; those related to insulin signaling and steroidogenesis were validated in vivo by qPCR and their respective proteins by Western blotting and immunofluorescence. Next, luteal cell cultures were stimulated with insulin with or without inhibition of MAPK14, MAP2K1 and PI3K. Studied proteins except P450 aromatase showed the same expression pattern of coding genes in vivo. The expression of HSD3B and CYP19A1 was higher in insulin-treated cells (P < 0.005). Following respective pathway blockades, the culture medium had decreased concentrations of progesterone (P4) and 17b-estradiol (E2) (P < 0.01). Our results indicate that insulin increases HSD3B and CYP19A1 expression via MAPK and PI3K, and contributes to the regulation of P4 and E2 production in canine luteal cells.


Subject(s)
Insulin/pharmacology , Luteal Cells/drug effects , Steroids/biosynthesis , Animals , Cells, Cultured , Corpus Luteum/drug effects , Corpus Luteum/metabolism , Dogs , Estradiol/metabolism , Female , Glucose/metabolism , Luteal Cells/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Progesterone/metabolism , Signal Transduction/drug effects
14.
Food Chem ; 369: 130940, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34474292

ABSTRACT

Berries are rich food sources of potentially health-beneficial (poly)phenols. However, they may undergo chemical modifications during gastrointestinal digestion. The effect of simulated gastrointestinal digestion on the content and composition of secondary metabolites from Gaultheria phillyreifolia and G. poeppigii berries was studied. The influence of the digested extracts on the in vitro metabolism and absorption of carbohydrates was evaluated. After simulated digestion, 31 compounds were detected by UHPLC-DAD-MS. The total content of anthocyanins decreased by 98-100%, flavonols by 44-56%, phenylpropanoids by 49-75% and iridoids by 33-45%, the latter showing the highest stability during digestion. Digested extracts inhibited α-glucosidase (IC50 2.8-24.9 µg/mL) and decreased the glucose uptake in Caco-2 cells by 17-28%. Moreover, a decrease in the mRNA expression of glucose transporters SGLT1 (38-92%), GLUT2 (45-96%), GLUT5 (28-89%) and the enzyme sucrase-isomaltase (82-97%) was observed. These results show the effect of simulated gastrointestinal digestion on the content and composition of Gaultheria berries.


Subject(s)
Gaultheria , Polyphenols , Anthocyanins , Antioxidants , Caco-2 Cells , Digestion , Fruit/chemistry , Glucose , Humans , Iridoids , Plant Extracts , Polyphenols/analysis
15.
Pharmaceutics ; 13(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34959456

ABSTRACT

Intracellular peptides were shown to derive from proteasomal degradation of proteins from mammalian and yeast cells, being suggested to play distinctive roles both inside and outside these cells. Here, the role of intracellular peptides previously identified from skeletal muscle and adipose tissues of C57BL6/N wild type (WT) and neurolysin knockout mice were investigated. In differentiated C2C12 mouse skeletal muscle cells, some of these intracellular peptides like insulin activated the expression of several genes related to muscle contraction and gluconeogenesis. One of these peptides, LASVSTVLTSKYR (Ric4; 600 µg/kg), administrated either intraperitoneally or orally in WT mice, decreased glycemia. Neither insulin (10 nM) nor Ric4 (100 µM) induced glucose uptake in adipose tissue explants obtained from conditional knockout mice depleted of insulin receptor. Ric4 (100 µM) similarly to insulin (100 nM) induced Glut4 translocation to the plasma membrane of C2C12 differentiated cells, and increased GLUT4 mRNA levels in epididymal adipose tissue of WT mice. Ric4 (100 µM) increased both Erk and Akt phosphorylation in C2C12, as well as in epididymal adipose tissue from WT mice; Erk, but not Akt phosphorylation was activated by Ric4 in tibial skeletal muscle from WT mice. Ric4 is rapidly degraded in vitro by WT liver and kidney crude extracts, such a response that is largely reduced by structural modifications such as N-terminal acetylation, C-terminal amidation, and substitution of Leu8 for DLeu8 (Ac-LASVSTV[DLeu]TSKYR-NH2; Ric4-16). Ric4-16, among several Ric4 derivatives, efficiently induced glucose uptake in differentiated C2C12 cells. Among six Ric4-derivatives evaluated in vivo, Ac-LASVSTVLTSKYR-NH2 (Ric4-2; 600 µg/kg) and Ac-LASVSTV[DLeu]TSKYR (Ric4-15; 600 µg/kg) administrated orally efficiently reduced glycemia in a glucose tolerance test in WT mice. The potential clinical application of Ric4 and Ric4-derivatives deserves further attention.

16.
Curr Alzheimer Res ; 18(8): 646-655, 2021.
Article in English | MEDLINE | ID: mdl-34784866

ABSTRACT

PURPOSE: The aim of this study was to investigate the differences in early (EOAD) and late (LOAD) onset of Alzheimer´s disease, as well as glucose uptake, regional cerebral blood flow (R1), amyloid depositions, and functional brain connectivity between normal young (YC) and Old Controls (OC). METHODOLOGY: The study included 22 YC (37 ± 5 y), 22 OC (73 ± 5.9 y), 18 patients with EOAD (63 ± 9.5 y), and 18 with LOAD (70.6 ± 7.1 y). Patients underwent FDG and PIB PET/CT. R1 images were obtained from the compartmental analysis of the dynamic PIB acquisitions. Images were analyzed by a voxel-wise and a VOI-based approach. Functional connectivity was studied from the R1 and glucose uptake images. RESULTS: OC had a significant reduction of R1 and glucose uptake compared to YC, predominantly at the dorsolateral and mesial frontal cortex. EOAD and LOAD vs. OC showed a decreased R1 and glucose uptake at the posterior parietal cortex, precuneus, and posterior cingulum. EOAD vs. LOAD showed a reduction in glucose uptake and R1 at the occipital and parietal cortex and an increased at the mesial frontal and temporal cortex. There was a mild increase in an amyloid deposition at the frontal cortex in LOAD vs. EOAD. YC presented higher connectivity than OC in R1 but lower connectivity considering glucose uptake. Moreover, EOAD and LOAD showed a decreased connectivity compared to controls that were more pronounced in glucose uptake than R1. CONCLUSION: Our results demonstrated differences in amyloid deposition and functional imaging between groups and a differential pattern of functional connectivity in R1 and glucose uptake in each clinical condition. These findings provide new insights into the pathophysiological processes of AD and may have an impact on patient diagnostic evaluation.


Subject(s)
Alzheimer Disease , Aging , Alzheimer Disease/diagnostic imaging , Aniline Compounds , Brain/diagnostic imaging , Cerebrovascular Circulation , Glucose , Humans , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Thiazoles
17.
Am J Physiol Endocrinol Metab ; 321(5): E592-E605, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34541875

ABSTRACT

Deletion of mechanistic target of rapamycin complex 2 (mTORC2) essential component rapamycin insensitive companion of mTOR (Rictor) by a Cre recombinase under control of the broad, nonadipocyte-specific aP2/FABP4 promoter impairs thermoregulation and brown adipose tissue (BAT) glucose uptake on acute cold exposure. We investigated herein whether adipocyte-specific mTORC2 deficiency affects BAT and inguinal white adipose tissue (iWAT) signaling, metabolism, and thermogenesis in cold-acclimated mice. For this, 8-wk-old male mice bearing Rictor deletion and therefore mTORC2 deficiency in adipocytes (adiponectin-Cre) and littermates controls were either kept at thermoneutrality (30 ± 1°C) or cold-acclimated (10 ± 1°C) for 14 days and evaluated for BAT and iWAT signaling, metabolism, and thermogenesis. Cold acclimation inhibited mTORC2 in BAT and iWAT, but its residual activity is still required for the cold-induced increases in BAT adipocyte number, total UCP-1 content and mRNA levels of proliferation markers Ki67 and cyclin 1 D, and de novo lipogenesis enzymes ATP-citrate lyase and acetyl-CoA carboxylase. In iWAT, mTORC2 residual activity is partially required for the cold-induced increases in multilocular adipocytes, mitochondrial mass, and uncoupling protein 1 (UCP-1) content. Conversely, BAT mTORC1 activity and BAT and iWAT glucose uptake were upregulated by cold independently of mTORC2. Noteworthy, the impairment in BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency had no major impact on whole body energy expenditure in cold-acclimated mice due to a compensatory activation of muscle shivering. In conclusion, adipocyte mTORC2 deficiency impairs, through different mechanisms, BAT and iWAT total UCP-1 content and thermogenic capacity in cold-acclimated mice, without affecting glucose uptake and whole body energy expenditure.NEW & NOTEWORTHY BAT and iWAT mTORC2 is inhibited by cold acclimation, but its residual activity is required for cold-induced increases in total UCP-1 content and thermogenic capacity, but not glucose uptake and mTORC1 activity. The impaired BAT and iWAT total UCP-1 content and thermogenic capacity induced by adipocyte mTORC2 deficiency are compensated by activation of muscle shivering in cold-acclimated mice.


Subject(s)
Acclimatization/physiology , Adipocytes/metabolism , Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Energy Metabolism/physiology , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 2/deficiency , Thermogenesis/genetics , Animals , Cold Temperature , Gene Deletion , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Male , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Inbred C57BL , Uncoupling Protein 1
18.
Bioorg Chem ; 114: 105157, 2021 09.
Article in English | MEDLINE | ID: mdl-34328855

ABSTRACT

A new library of hybrid compounds that combine the functional parts of glibenclamide and pioglitazone was designed and developed. Compounds were screened for their antihyperglycemic effects on the glucose tolerance curve. This approach provided a single molecule that optimizes the pharmacological activities of two drugs used for the treatment of diabetes mellitus type 2 (DM2) and that have distinct biological activities, potentially minimizing the adverse effects of the original drugs. From a total of 15 compounds, 7 were evaluated in vivo; the compound 2; 4- [2- (2-phenyl-4-oxo-1,3-thiazolidin-3-yl) ethyl] benzene-1-sulfonamide (PTEBS) was selected to study its mechanism of action on glucose and lipid homeostasis in acute and chronic animal models related to DM2. PTEBS reduced glycemia and increased serum insulin in hyperglycemic rats, and elevated in vitro insulin production from isolated pancreatic islets. This compound increased the glycogen content in hepatic and muscular tissue. Moreover, PTEBS stimulated the uptake of glucose in soleus muscle through a signaling pathway similar to that of insulin, stimulating translocation and protein synthesis of glucose transporter 4 (GLUT4). PTEBS was effective in increasing insulin sensitivity in resistance rats by stimulating increased muscle glucose uptake, among other mechanisms. In addition, this compound reduced total triglycerides in a tolerance test to lipids and reduced advanced glycation end products (AGES), without altering lactate dehydrogenase (LDH) activity. Thus, we suggest that PTEBS may have similar effects to the respective prototypes, which may improve the therapeutic efficacy of these molecules and decrease adverse effects in the long-term.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Glyburide/pharmacology , Hyperglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Pioglitazone/pharmacology , Animals , Dose-Response Relationship, Drug , Glyburide/chemistry , Homeostasis/drug effects , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Insulin Resistance , Molecular Structure , Pioglitazone/chemistry , Rats , Structure-Activity Relationship
19.
Obes Res Clin Pract ; 14(6): 573-579, 2020.
Article in English | MEDLINE | ID: mdl-33208251

ABSTRACT

BACKGROUND: Obesity is strongly associated with insulin resistance (IR). IR at the molecular level may be defined as a diminished activation of insulin signaling-related molecules (IRS-1/Akt/AS160) as well as reduced glucose uptake. Subject with obesity have elevated plasma levels of saturated fatty acids, such as palmitic acid (PA), which triggers insulin signaling disruption in vivo and in vitro. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in folk medicine of Northern Chile to counteract inflammatory diseases. Hydroethanolic extracts of lampaya (HEL) contain considerable amounts of flavonoids that may explain the biological activity of the plant. The aim of this study was to assess whether HEL exposure protects against PA-disrupted insulin signaling and glucose uptake in adipocytes. METHODS: Cytotoxicity of a range of HEL concentrations (0.01-10 µg/mL) was evaluated in 3T3-L1 adipocytes. Cells were exposed or not to 0.1 µg/mL of HEL before adding 0.65 mM PA or vehicle and incubated with 100 nM insulin (or vehicle) for 15 min. Phosphorylation of Tyr-IRS-1, Ser-Akt, Thr-AS160 was evaluated by Western blot. Glucose uptake was assessed using the 2-NBDG analogue. RESULTS: HEL was not cytotoxic at any concentration assessed. PA-induced reduction in insulin-stimulated phosphorylation of IRS-1, Akt and AS160 and glucose uptake were abolished by co-treatment with HEL. CONCLUSION: These findings give new insights about the effect of HEL ameliorating PA- impaired IRS-1/Akt/AS160 pathway and glucose uptake in adipocytes. More studies should focus on lampaya, since might represent a preventive approach in individuals whose circulating PA levels contribute to IR.


Subject(s)
Insulin Resistance , Verbenaceae , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Chile , Glucose , Glucose Transporter Type 4 , Insulin , Mice , Palmitic Acid , Phosphorylation , Plant Extracts , Verbenaceae/metabolism
20.
Front Microbiol ; 11: 1459, 2020.
Article in English | MEDLINE | ID: mdl-32849316

ABSTRACT

Acyl-homoserine lactones (AHLs) are quorum sensing (QS) signaling molecules that mediate cell-to-cell communication in Gram-negative bacteria. Salmonella does not produce AHL, however, it can recognize AHLs produced by other species through SdiA protein modulating important cellular functions. In this work, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on glucose consumption, metabolic profile, and gene expression of Salmonella throughout the cultivation time in Tryptic Soy Broth (TSB) under anaerobic conditions was evaluated. Analysis of the supernatant culture in high-performance liquid chromatography (HPLC) revealed lower glucose uptake after 4 and 6 h of the addition of C12-HSL. Gas chromatography-mass spectrometry (GC-MS) based analysis of the intracellular metabolites revealed C12-HSL perturbation in the abundance levels of metabolites related to the metabolic pathways of glycerolipids, purines, amino acids, and aminoacyl-tRNA biosynthesis. The real-time quantitative PCR (RT-qPCR) indicated that Salmonella increase expression of genes associated with nucleoside degradation and quantification of metabolites supported the induction of pentose phosphate pathway to ensure growth under lower glucose consumption. The obtained data suggest an important role of C12-HSL in the optimization of metabolism at a situation of high population densities.

SELECTION OF CITATIONS
SEARCH DETAIL