Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.382
Filter
1.
Article in English | MEDLINE | ID: mdl-39365562

ABSTRACT

2,4,6-Triaminopyrimidine is an interesting and challenging molecule due to the presence of multiple hydrogen-bond donors and acceptors. Its noncovalent interactions with a variety of carboxylic acids provide several supramolecular aggregates with frequently occurring molecular synthons. The present work focuses on the supramolecular interactions of 2,4,6-triaminopyrimidinium 3-(indol-3-yl)propionate-3-(indol-3-yl)propionic acid (1/1), C4H8N5+·C11H10NO2-·C11H11NO2, (I), 2,4,6-triaminopyrimidinium 2-(indol-3-yl)acetate, C4H8N5+·C10H8NO2-, (II), 2,4,6-triaminopyrimidinium 5-bromothiophene-2-carboxylate, C4H8N5+·C5H2BrO2S-, (III), and 2,4,6-triaminopyrimidinium 5-chlorothiophene-2-carboxylate, C4H8N5+·C5H2ClO2S-, (IV). All four salts exhibit robust homomeric and heteromeric R22(8) ring motifs. Salts (I) and (II) develop sextuple [in (I)] and quadruple [in (I) and (II)] hydrogen-bonded arrays through fused-ring motifs. Salt (II) exhibits a rosette-like architecture. Salt (IV) is isostructural and isomorphous with salt (III), exhibiting an identical crystal structure with a different composition and an identical supramolecular architecture. In salts (III) and (IV), a linear hetero-tetrameric motif is formed and, in addition, both salts exhibit halogen-π interactions which enhance the crystal stability. All four salts develop a supramolecular hydrogen-bonded pattern facilitated by several N-H...O and N-H...N hydrogen bonds with multiple furcated donors and acceptors.

2.
Beilstein J Org Chem ; 20: 2401-2407, 2024.
Article in English | MEDLINE | ID: mdl-39355855

ABSTRACT

Diaryliodonium(III) salts have been established as powerful halogen-bond donors in recent years. Herein, a new structural motif for this compound class was developed: iodoloisoxazolium salts, bearing a cyclic five-membered iodolium core fused with an isoxazole ring. A derivative of this class was synthesized and investigated in the solid state by X-ray crystallography. Finally, the potential as halogen-bonding activator was benchmarked in solution in the gold-catalyzed cyclization of a propargyl amide.

3.
ACS Infect Dis ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39357850

ABSTRACT

Since Chagas disease, melioidosis, and Legionnaires' disease are all potentially life-threatening infections, there is an urgent need for new treatment strategies. All causative agents, Trypanosoma cruzi, Burkholderia pseudomallei, and Legionella pneumophila, express a virulence factor, the macrophage infectivity potentiator (MIP) protein, emerging as a promising new therapeutic target. Inhibition of MIP proteins having a peptidyl-prolyl isomerase activity leads to reduced viability, proliferation, and cell invasion. The affinity of a series of pipecolic acid-type MIP inhibitors was evaluated against all MIPs using a fluorescence polarization assay. The analysis of structure-activity relationships led to highly active inhibitors of MIPs of all pathogens, characterized by a one-digit nanomolar affinity for the MIPs and a very effective inhibition of their peptidyl-prolyl isomerase activity. Docking studies, molecular dynamics simulations, and quantum mechanical calculations suggest an extended σ-hole of the meta-halogenated phenyl sulfonamide to be responsible for the high affinity.

4.
J Mol Model ; 30(11): 363, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361054

ABSTRACT

CONTEXT: The strength and nature of the two halogen bonds in the NCI···CH3I···-CN halogen-bonded ternary complex are studied in the gas phase via ab initio calculations. Different indicators of halogen bond strength were employed to examine the interactions including geometries, complexation energies, Natural Bond Order (NBO) Wiberg bond indices, and Atoms in Molecules (AIM)-based charge density topological properties. The results show that the halogen bond is strong and partly covalent in nature when CH3I donates the halogen bond, but weak and noncovalent in nature when CH3I accepts the halogen bond. Significant halogen bond cooperativity emerges in the ternary complex relative to the corresponding heterodimer complexes, NCI···CH3I and CH3I···-CN, respectively. For example, the CCSD(T) complexation energy of the ternary complex (-18.27 kcal/mol) is about twice the sum of the complexation energies of the component dimers (-9.54 kcal/mol). The halonium transfer reaction that converts the ternary complex into an equivalent one was also investigated. The electronic barrier for the halonium transfer was calculated to be 6.70 kcal/mol at the CCSD(T) level. Although the MP2 level underestimates and the MP3 overestimates the barrier, their calculated MP2.5 average barrier (6.44 kcal/mol) is close to that of the more robust CCSD(T) level. Insights on the halonium ion transfer reaction was obtained by examining the reaction energy and force profiles along the intrinsic reaction coordinate, IRC. The corresponding evolution of other properties such as bond lengths, Wiberg bond indices, and Mulliken charges provides specific insight on the extent of structural rearrangements and electronic redistribution throughout the entire IRC space. METHODS: The MP2 method was used for geometry optimizations. Energy calculations were performed using the CCSD(T) method. The aug-cc-pVTZ basis set was employed for all atoms other than iodine for which the aug-cc-pVTZ-PP basis set was used instead.

5.
J Comput Chem ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39350679

ABSTRACT

The fluxional nature of halogen bonds (XBs) in small molecular clusters, supramolecules, and molecular crystals has received considerable attention in recent years. In this work, based on extensive density-functional theory calculations and detailed electrostatic potential (ESP), natural bonding orbital (NBO), non-covalent interactions-reduced density gradient (NCI-RDG), and quantum theory of atoms in molecules (QTAIM) analyses, we unveil the existence of fluxional halogen bonds (FXBs) in a series of linear (IC6F4I)m(OONC6H4NOO)n (m + n = 2-5) complexes of tetrafluorodiiodobenzene with dinitrobenzene which appear to be similar to the previously reported fluxional hydrogen bonds (FHBs) in small water clusters (H2O)n (n = 2-6). The obtained GS ⇌ TS ⇌ GS ' $$ \mathrm{GS}\rightleftharpoons \mathrm{TS}\rightleftharpoons {\mathrm{GS}}^{\hbox{'}} $$ fluxional mechanisms involve one FXB in the systems which fluctuates reversibly between two linear CI···O XBs in the ground states (GS and GS') via a bifurcated CI O2N van der Waals interaction in the transition state (TS). The cohesive energies (Ecoh) of these complexes with up to four XBs exhibit an almost perfect linear relationship with the numbers of XBs in the systems, with the average calculated halogen bond energy of Ecoh/XB = 3.48 kcal·mol-1 in the ground states which appears to be about 55% of the average calculated hydrogen bond energy (Ecoh/HB = 6.28 kcal·mol-1) in small water clusters.

6.
Angew Chem Int Ed Engl ; : e202417427, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351916

ABSTRACT

Halenium ions (X+) are highly reactive electron deficient species that are prevalent transient intermediates in halogenation reactions. The stabilisation of these species is especially challenging, with the most common approach to sequester reactivity through the formation of bis-pyridine (Py) complexes; [(Py)2X]+. Herein, we present the first example of a macrocyclic stabilisation effect for halenium species. Exploiting a series of bis-pyridine macrocycles, we demonstrate the first example of utilising the macrocyclic ligands to stabilise halenium species via the endotopic complexation of a bromenium cation, impressively facilitating the isolation of a bench stable 'Br+ NO3-' species. Solid state X-ray crystallographic structural comparison of macrocyclic Br(I) complexes with Ag(I) and Au(I) analogues provides insightful information concerning similarities and stark contrasts in halenium/metal cation coordination behaviors. Furthermore, the first chemical ligand exchange reactions of Br(I) complexes are reported between acyclic [(Py)2Br]+ species and a bis-pyridine macrocyclic donor ligand which importantly highlights a macrocycle effect for halenium cation stabilisation in the solution phase.

7.
Natl Sci Rev ; 11(9): nwae285, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39309413

ABSTRACT

Biomass burning (BB) is a major source of trace gases and particles in the atmosphere, influencing air quality, radiative balance, and climate. Previous studies have mainly focused on the BB emissions of carbon and nitrogen species with less attention on chlorine. Reactive chlorine chemistry has significant effects on atmospheric chemistry and air quality. However, quantitative information on chlorine emissions from BB, particularly the long-term trend and associated atmospheric impacts, is limited both on regional and global scales. Here, we report a long-term (2001-2018) high-resolution BB emission inventory for the major chlorine-containing compounds (HCl, chloride, and CH3Cl) in Asia based on satellite observations. We estimate an average of 730 Gg yr-1 chlorine emitted from BB activity in Asia, with China contributing the largest share at 24.2% (177 Gg yr-1), followed by Myanmar at 18.7% and India at 18.3%. Distinct seasonal patterns and significant spatial and interannual variability are observed, mainly driven by human-mediated changes in agricultural activity. By incorporating the newly developed chlorine emission inventory into a global chemistry-climate model (CAM-Chem), we find that the BB-chlorine emissions lead to elevated levels of HCl and CH3Cl (monthly average up to 2062 and 1421 parts per trillion by volume (pptv), respectively), subsequently resulting in noticeable changes in oxidants (up to 3.1% in O3 and 17% in OH radicals). The results demonstrate that BB is not only a significant source of air pollutants but also of oxidants, suggesting a larger role of BB emissions in the atmospheric chemistry and oxidation process than previously appreciated. In light of the projected increase in BB activity toward the end of the century and the extensive control of anthropogenic emissions worldwide, the contribution of BB emissions may become fundamental to air quality composition in the future.

8.
Chemistry ; : e202403062, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316035

ABSTRACT

The alkylation of 3-/4-bromo- and -iodopyridine with methyl triflate smoothly affords the corresponding N-methylpyridinium triflate salts. An anion exchange with NaI or [PPh4]Y (Y = Cl, Br, I) yields the corresponding halide salts. Most of them could be structurally characterized and their strong halogen bonds were investigated. While the halogen atom of 4-halogenopyridinium is susceptible to nucleophilic substitution, 3-halogenopyridinium ions are far more stable against nucleophilic attacks. Due to the comparable interaction strength of halogen bonds and hydrogen bonds, the latter of which is widely used in chromatography, the potential of 3-halogenopyridinium moieties for an application in chromatography is obvious and was successfully employed in affinity chromatography of different proteins.

9.
Heliyon ; 10(17): e36771, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39319147

ABSTRACT

The geometry, electronic structure, and adsorption properties of halogen molecule X2(X = F, Cl) on arsenene were investigated using first-principles calculations. The adsorption of molecules was considered at various sites and in various orientations on the pristine arsenene (p-As) surface. Both molecules show chemisorption and the crystal orbital Hamiltonian population (COHP) analysis reveals the formation of strong X-As bonds. In particular, the adsorbed molecules spontaneously dissociate into atomic halogen atoms, with a diffusion barrier of 1.91 (1.72) eV for F2(Cl2). The adsorbed X2 molecules induced distortions in the local geometry due to strong interaction with arsenene. Importantly, the formation of X-As bonding remarkably changed the electronic properties, evidenced by the decrease of the actual band gap due to the emergence of defect states within the band gap. For instance, the F2 adsorbed arsenene system (F2-As) exhibited an average band gap of 1.17 eV, and Cl2 adsorbed arsenene (Cl2-As) showed an average band gap of 0.83 eV. In particular, indirect to direct band gap transition was observed for some adsorption configurations. The reduction in band gap resulted in the enhancement of electrical conductivity. These findings suggest that the electronic properties of arsenene can be tuned by halogen decoration.

10.
J Mol Graph Model ; 133: 108870, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39317003

ABSTRACT

Amide derivative receptors have been designed to investigate the oxoanion complexation ability via hydrogen and halogen bond interactions. Structural, energetic and electronic properties of nitroisophthalamide receptors, i.e., di(benzyl)- (R1), di(hexafluoro)- (R2), di(chloro-,tetrafluoro)- (R3), di(hexachloro)-(R4), di(fluoro-,tetrachloro)-nitroisophthalamide (R5), and their complexes with C2H3O2-, C7H5O2-, NO3-, H2PO4-, and ClO4- oxoanions were computed and obtained using the density functional theory calculations at the B3LYP/6-31G(d,p) theoretical level in gas phase. According to the computed results, all of oxoanions can form the stable complexes with amide receptors R1-R5 via exothermic process in which receptor R1 is found to interact with oxoanions through hydrogen bonds whereas the receptors R2-R5 are found to interact with oxoanion through both of hydrogen and halogen bonds. It is clearly seen that acetate ion displays the strongest complexation interaction with all receptors compared to the other oxoanions. In addition, electronic properties of receptors R1-R5 in both gas and DMSO phases are modified after complexation with oxoanions. Therefore, the designed amide receptors may be potentially used for oxoanion sensing application.

11.
Chemistry ; : e202402995, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39305150

ABSTRACT

The synthesis of α-tertiary amino acids (ATAAs), which are pivotal components in natural metabolism and pharmaceutical innovation, continues to attract significant research interest. Despite substantial advancements, the pursuit of a facile, versatile, and resource-efficient methodology remains an area of active development. In this work, we introduce a visible light-triggered three-component reaction involving readily available nitrosoarenes, N-acyl pyrazoles, and allyl or (bromomethyl)benzenes under mild conditions. This approach enables the straightforward assembly of a wide array of ATAA derivatives (41 examples) in commendably high yields (up to 89%). Mechanistic investigations elucidate that the reaction proceeds through a dehydration condensation between nitrosoarenes and N-acyl pyrazoles to generate ketimine intermediates. This is followed by a light-driven halogen atom transfer (XAT) process and a radical addition, culminating in the formation of the desired products. The approach showcases excellent functional group compatibility and late-stage derivatization potential, offering new insights and avenues for the synthesis of ATAA analogs.

12.
J Hazard Mater ; 479: 135728, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39236535

ABSTRACT

Bisphenols (BPs) are recognized as endocrine disrupting compounds and have garnered increasing attention due to their widespread utilization. However, the varying biological toxicities and underlying mechanisms of BPs with different functional groups remain unknown. In the present study, the toxic effects of four BPs (BPA, BPS, BPAF, and TBBPA) on a photosynthetic microalgae Chromochloris zofingiensis were compared. Results showed that halogen-containing BPs exhibited higher cellular uptake, leading to more severe oxidative stress, lower photosynthetic efficiency, and greater accumulation of starch and lipids. Specifically, TBBPA with bromine groups showed a greater toxicity than BPAF with fluorine groups, possibly due to the incomplete debromination in C. zofingiensis. Transcriptomic analysis revealed that halogen-containing BPs triggered greater number of differentially expressed genes (DEGs), and only 64 common DEGs were found among different BPs, indicating that the effects of BPs with different functional groups varied greatly. Genes involved in endocytosis, peroxisomes, and endoplasmic reticulum protein processing pathways were mostly upregulated across different BPs, while photosynthesis-related genes showed varied expression, possibly due to their distinct functional groups. Additionally, SIN3A, ZFP36L, CHMP, and ATF2 emerged as potential key regulatory genes. Overall, this study thoroughly explained how functional groups impact the toxicity and biodegradation of BPs in C. zofingiensis.


Subject(s)
Biodegradation, Environmental , Phenols , Phenols/toxicity , Phenols/metabolism , Photosynthesis/drug effects , Oxidative Stress/drug effects , Microalgae/drug effects , Microalgae/metabolism , Chlorophyta/metabolism , Chlorophyta/drug effects , Chlorophyta/genetics , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
13.
Chemphyschem ; : e202400607, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222401

ABSTRACT

Throughout the halogen bonding literature, electron withdrawing groups are relied upon heavily for tuning the in- teraction strength between the halogen bond donor and acceptor; however, the interplay of electronic effects associated with various substituents is less of a focus. This work utilizes computational techniques to study the degree of σ- and π- electron donating/accepting character of electron withdrawing groups in a prescribed set of halo-alkyne, halo-benzene, and halo-ethynyl benzene halogen bond donors. We examine how these factors affect the σ-hole magnitude of the donors as well as the binding strength of the corresponding complexes with an ammonia acceptor. Statistical analyses aid the interpretation of how these substituents influence the properties of the halogen bond donors and complexes, and show that the electron withdrawing groups that are both σ- and π-electron accepting form the strongest halogen bond complexes.

14.
Adv Sci (Weinh) ; : e2405103, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229787

ABSTRACT

Engineering of hollow particles with tunable internal structures often requires complicated processes and/or invasive cleavage. Halogen-bond driven 3D confined-assembly of block copolymers has shed light on the engineering of polymer organization along with the fabricating of unique nanostructures. Herein, a family of multilevel hollow-structured particles (e.g., fully porous, multi-chamber, multi-shell, and concentric multi-layer architectures) is reported via halogen-bond regulated 3D confined-assembly of amphiphilic polymer networks. To do so, polystyrene-b-poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO) amphiphilic triblock copolymer is selected, where P2VP blocks act as halogen acceptor. Meanwhile, poly(3-(2,3,5,6-tetrafluoro-4-iodophenoxy) propyl acrylate) (PTFIPA) is employed as halogen donor. Halogen-bond driven donor-acceptor linking between PTFIPA and P2VP block presented in PS-b-P2VP-b-PEO, can lead to the formation of supramolecular polymeric networks, along with the increased P2VP domain and tunable hydrophobic volume. Therefore, an adjustable packing parameter (p) is thus anticipated, which can enable the morphology transformation sequence until an equilibrium state is reached. Moreover, computer simulations are further utilized as the tool to interpret such morphologies transition and identify the precise distribution of each component. Benefiting from the tunable hollow structure and a substantial surface for transporting purpose, these structurally novel particles open perspectives toward promising applications including encapsulation, nanoreactor, and catalyst support.

15.
Angew Chem Int Ed Engl ; : e202413012, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231037

ABSTRACT

Allylic C-H amination has emerged as a powerful tool to construct allylamines, common motifs in molecular therapeutics. Such reaction implies an oxidative path for C-H activation but furnishes reductive amines, inferring mild oxidants' inactivity for C-H oxidation but strong oxidants' detriment to products. Herein we report a heterogeneous catalytic approach that manipulates halogen-vacancies of perovskite photocatalyst and exploits halogenated-solvents (i.e. CH2Cl2, CH2Br2) as mild oxidants for selective C-H allyl amination with 19,376 turnover. CsPbBr3 nanocrystals induce cooperative hydrogen-atom-transfer (HAT, C-H oxidation, and halogen-vacancy CsPbBr3-x formation) and halogen-atom-transfer (XAT, CsPbBr3-x-induced solvent reduction) under a radical chain mechanism. Terminal/internal olefins are amenable to forge aromatic/aliphatic, cyclic/acyclic, secondary/tertiary allylamines (70 examples), including drugs or their derivatives.

16.
IUCrdata ; 9(Pt 8): x240787, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39247078

ABSTRACT

The title compound, C10H8BrN3OS2, a brominated di-thio-carbazate imine deriv-ative, was obtained from the condensation reaction of S-methyl-dithio-carbazate (SMDTC) and 5-bromo-isatin. The essentially planar mol-ecule exhibits a Z configuration, with the di-thio-carbazate and 5-bromo-isatin fragments located on the same sides of the C=N azomethine bond, which allows for the formation of an intra-molecular N-H⋯Ob (b = bromo-isatin) hydrogen bond generating an S(6) ring motif. In the crystal, adjacent mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming dimers characterized by an R 2 2(8) loop motif. In the extended structure, mol-ecules are linked into a three-dimensional network by C-H⋯S and C-H⋯Br hydrogen bonds, C-Br⋯S halogen bonds and aromatic π-π stacking.

17.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 8): 894-909, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39108791

ABSTRACT

The structures of seven gold(III) halide derivatives of general formula LAuX 3 (L = methyl-pyridines or di-methyl-pyridines, X = Cl or Br) are presented: tri-chlorido-(2-methyl-pyridine)-gold(III), [AuCl3(C6H7N)], 1 (as two polymorphs 1a and 1b); tri-bromido-(2-methyl-pyridine)-gold(III), [AuBr3(C6H7N)], 2; tri-bromido-(3-methyl-pyridine)-gold(III), [AuBr3(C6H7N)], 3; tri-bromido-(2,4-di-meth-yl-pyridine)-gold(III), [AuBr3(C7H9N)], 4; tri-chlorido-(3,5-di-methylpyridine)-gold(III), [AuCl3(C7H9N)], 5; tri-bromido-(3,5-di-methyl-pyridine)-gold(III), [AuBr3(C7H9N)], 6, and tri-chlorido-(2,6-di-methyl-pyridine)-gold(III), [AuCl3(C7H9N)], 7. Additionally, the structure of 8, the 1:1 adduct of 2 and 6, [AuBr3(C6H7N)]·[AuBr3(C7H9N)], is included. All the structures crystallize solvent-free, and all have Z' = 1 except for 5 and 7, which display crystallographic twofold rotation symmetry, and 4, which has Z' = 2. 1a and 2 are isotypic. The coordination geometry at the gold(III) atoms is, as expected, square-planar. Four of the crystals (1a, 1b, 2 and 8) were non-merohedral twins, and these structures were refined using the 'HKLF 5' method. The largest inter-planar angles between the pyridine ring and the coordination plane are observed for those structures with a 2-methyl substituent of the pyridine ring. The Au-N bonds are consistently longer trans to Br (average 2.059 Å) than trans to Cl (average 2.036 Å). In the crystal packing, a frequent feature is the offset-stacked and approximately rectangular dimeric moiety (Au-X)2, with anti-parallel Au-X bonds linked by Au⋯X contacts at the vacant positions axial to the coordination plane. The dimers are connected by further secondary inter-actions (Au⋯X or X⋯X contacts, 'weak' C-H⋯X hydrogen bonds) to form chain, double chain ('ladder') or layer structures, and in several cases linked again in the third dimension. Only 1b and 7 contain no offset dimers; these structures instead involve C-H⋯Cl hydrogen bonds combined with Cl⋯Cl contacts (1b) or Cl⋯π contacts (7). The packing patterns of seven further complexes LAuX 3 involving simple pyridines (taken from the Cambridge Structural Database) are compared with those of 1-8.

18.
Beilstein J Org Chem ; 20: 1785-1793, 2024.
Article in English | MEDLINE | ID: mdl-39109295

ABSTRACT

The ability to investigate hypervalent iodine(V) fluorides has been limited primarily by their difficult preparation traditionally using harsh fluorinating reagents such as trifluoromethyl hypofluorite and bromine trifluoride. Here, we report a mild and efficient route using Selectfluor to deliver hypervalent iodine(V) fluorides in good isolated yields (72-90%). Stability studies revealed that bicyclic difluoro(aryl)-λ5-iodane 6 was much more stable in acetonitrile-d 3 than in chloroform-d 1, presumably due to acetonitrile coordinating to the iodine(V) centre and stabilising it via halogen bonding.

19.
Food Chem ; 461: 140938, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39197323

ABSTRACT

At present, the combination of fingerprint recognition methods and environmentally friendly and economical analytical instruments is becoming increasingly important in the food industry. Herein, a dithiothreitol (DTT)-functionalized CsPbBr3-based colorimetric sensor array is developed for qualitatively differentiating multiple food oils. In this sensor array composition, two types of iodides (octadecylammonium iodide (ODAI) and ZnI2) are used as recognition elements, and CsPbBr3 is used as a signal probe for the sensor array. Different food oils oxidize iodides differently, resulting in different amounts of remaining iodides. Halogen ion exchange occurs between the remaining iodides and CsPbBr3, leading to different colors observed under ultraviolet light, enabling a unique fingerprint for each food oil. A total of five food oils exhibit their unique colorimetric array's response patterns and were successfully differentiated by linear discriminant analysis (LDA), realizing 100% classification accuracy.


Subject(s)
Calcium Compounds , Colorimetry , Dithiothreitol , Oxides , Titanium , Titanium/chemistry , Colorimetry/instrumentation , Oxides/chemistry , Calcium Compounds/chemistry , Dithiothreitol/chemistry , Plant Oils/chemistry , Discriminant Analysis
20.
Acta Crystallogr C Struct Chem ; 80(Pt 9): 472-477, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39115536

ABSTRACT

Three 2,4-diarylpyrroles were synthesized starting from 4-nitrobutanones and the crystal structures of two derivatives were analysed. These are 4-(4-methoxyphenyl)-2-(thiophen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromophenyl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without substituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group P-1 with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Interestingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with interstitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins.

SELECTION OF CITATIONS
SEARCH DETAIL