Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; 35(36): e2301020, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37452606

ABSTRACT

Organic photodetectors, as an emerging wearable photoplethysmographic (PPG) technology, offer exciting opportunities for next-generation photonic healthcare electronics. However, the mutual restraints among photoresponse, structure complexity, and fabrication cost have intrinsically limited the development of organic photodetectors for ubiquitous health monitoring in daily activities. Here, an effective route to dramatically boost the performance of organic photodetectors with a solution-processed integration circuit for health monitoring application is reported. Through creating an ideal metal-semiconductor junction interface that minimizes the trap states within the device, solution-printed organic field-effect transistors (OFETs) are achieved with an ultrahigh signal amplification efficiency of 37.1 S A-1 , approaching the theoretical thermionic limit. Consequently, monolithic integration of the OFET with an organic photoconductor enables the remarkable amplification of photoresponse signal-to-noise ratio by more than four orders of magnitude from 5.5 to 4.6 × 105 , which is able to meet the demand for accurately extracting physiological information from the PPG waveforms. This work offers an effective and versatile approach to greatly enhance the photodetector performance, promising to revolutionize health monitoring technologies.

2.
Adv Mater ; 34(7): e2101339, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34978104

ABSTRACT

Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all-stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element. Here, solderless stretchable interconnections based on mechanically interlocking microbridges are developed to realize the assembly of individual stretchable devices onto soft patternable circuits toward multifunctional all-stretchable platforms. This stretchable interconnection can effectively bridge interlayer conductivity with tight adhesion through both conductive microbridges and selectively distributed adhesive polymer. Consequently, enhanced stretchability up to a strain of 35% (R/R0  ≤ 5) is shown, compared with conventional solder-assisted connections which lose electrical conduction at a strain of less than 5% (R/R0  ≈ 30). As a proof of concept, a self-powered all-stretchable data-acquisition platform is fabricated by surface mounting a stretchable strain sensor and a supercapacitor onto a soft circuit through solderless interconnections. This solderless interconnecting strategy for surface-mountable devices can be utilized as a valuable technology for the integration of stretchable devices to achieve all-soft multifunctional systems.

3.
ACS Appl Mater Interfaces ; 11(39): 35577-35586, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31484477

ABSTRACT

Flexible electronic materials combined with micro-3D fabrication present new opportunities for wearable biosensors and medical devices. This Research Article introduces a novel carbon-nanotube-coated force sensor, successfully combining the advantages of flexible conductive nanomaterials and the versatility of two photon polymerization technologies for creating functional 3D microstructures. The device employs carbon-nanotube-coated microsprings with varying configurations and geometries for  real-time force sensing. To demonstrate its practical value, the device has first been embodied as a patch sensor for transcutaneous monitoring of human arterial pulses, followed by the development of a multiple-point force-sensitive catheter for real-time noninvasive intraluminal intervention. The results illustrate the potential of leveraging advanced nanomaterials and micro-3D-printing for developing new medical devices.


Subject(s)
Microscopy, Scanning Probe , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Printing, Three-Dimensional
4.
Adv Healthc Mater ; 7(10): e1701298, 2018 05.
Article in English | MEDLINE | ID: mdl-29388350

ABSTRACT

In the past 10 years, the development of nanogenerators (NG) has enabled different systems to operate without external power supply. NG have the ability to harvest the mechanical energies in different forms. Human body motions and activities can also serve as the energy source to drive NG and enable self-powered healthcare system. In this review, a summary of several major actual applications of NG in the biomedical fields is made including the circulatory system, the neural system, cell modulation, microbe disinfection, and biodegradable electronics. Nevertheless, there are still many challenges for NG to be actually adopted in clinical applications, including the miniaturization, duration, encapsulation, and output performance. It is also very important to further combine the NG development more precisely with the medical principles. In future, NG can serve as highly promising complementary or even alternative power suppliers to traditional batteries for the healthcare electronics.


Subject(s)
Electric Power Supplies , Movement , Nanotechnology , Wearable Electronic Devices , Humans
SELECTION OF CITATIONS
SEARCH DETAIL