Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 900
Filter
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 284: 109989, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089429

ABSTRACT

Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.

2.
Curr Pharm Des ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39108121

ABSTRACT

Chronic venous disease (CVD) significantly impacts global health, presenting a complex challenge in medical management. Despite its prevalence and the burden it places on healthcare systems, CVD remains underdiagnosed and undertreated. This review aims to provide a comprehensive analysis of the bioactive compounds in the Citrus genus, exploring their therapeutic potential in CVD treatment and addressing the gap in current treatment modalities. A narrative review methodology was adopted, focusing on the pharmacological effects of Citrus-derived bioactive compounds, including flavonoids and terpenes. Additionally, the review introduced the DBsimilarity method for analyzing the chemical space and structural similarities among Citrus compounds. The review highlights the Citrus genus as a rich source of pharmacologically active compounds, notably flavonoids and terpenes, which exhibit significant anti-inflammatory, antioxidant, and veno-protective properties. Some of these compounds have been integrated into existing therapies, underscoring their potential for CVD management. The DBsimilarity analysis further identified many clusters of compounds with more than 85% structural similarity. Citrus-derived bioactive compounds offer promising therapeutic potential for managing CVD, showcasing significant anti-inflammatory, antioxidant, and veno-protective effects. The need for further comparative studies, as well as safety and efficacy investigations specific to CVD treatment, is evident. This review underlines the importance of advancing our understanding of these natural compounds and encouraging the development of novel treatments and formulations for effective CVD management. The DBsimilarity method's introduction provides a novel approach to exploring the chemical diversity within the Citrus genus, opening new pathways for pharmacological research.

3.
Int Immunopharmacol ; 140: 112759, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098226

ABSTRACT

Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer characterized by an unfavorable prognosis due to its aggressive biology. Cancer-associated adipocytes (CAAs) play an active role in tumor development, invasion and metastasis, and response to treatment by secreting various cytokines. CAAs secrete CCL2 and ADPN which significantly affect the efficacy of aPD-1 in treating breast cancer. Our recent research has demonstrated that Hesperidin, a natural phenolic compound, significantly inhibits CCL2, elevates ADPN secreted by CAAs in vitro and in vivo, remodels the immune microenvironment, and potentiates the efficacy of aPD-1 in triple-negative breast cancer. We used Oil red staining, Bodipy 493/503 staining and quantitative real-time PCR to verify the formation of CAAs. ELISA was used to detect levels of CCL2, ADPN secreted by CAAs. Changes in the number of immune cells in mouse tumor tissues were detected using flow cytometry and immunofluorescence. Our data suggest that Hesperidin PLGA nanoparticles significantly reduced CCL2 and increased ADPN secreted by CAAs, which concurrently decreased the recruitment of M2 macrophages, Tregs and MDSCs while increased the infiltration of CD8+T cells, M1 macrophages and DCs into tumor, thus significantly potentiated the efficacy of aPD-1 in vivo. This study provides a new combined strategy for the clinical treatment of triple-negative breast cancer by interfering with CCL2, ADPN secreted by CAAs to enhance the efficacy of immunotherapy.

4.
BMC Biotechnol ; 24(1): 52, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095760

ABSTRACT

BACKGROUND: Colorectal cancer is a common disease worldwide with non-specific symptoms such as blood in the stool, bowel movements, weight loss and fatigue. Chemotherapy drugs can cause side effects such as nausea, vomiting and a weakened immune system. The use of antioxidants such as hesperidin could reduce the side effects, but its low bioavailability is a major problem. In this research, we aimed to explore the drug delivery and efficiency of this antioxidant on the HCT116 colorectal cancer cell line by loading hesperidin into PLGA nanoparticles. MATERIALS AND METHODS: Hesperidin loaded PLGA nanoparticles were produced by single emulsion evaporation method. The physicochemical properties of the synthesized hesperidin-loaded nanoparticles were determined using SEM, AFM, FT-IR, DLS and UV-Vis. Subsequently, the effect of the PLGA loaded hesperidin nanoparticles on the HCT116 cell line after 48 h was investigated by MTT assay at three different concentrations of the nanoparticles. RESULT: The study showed that 90% of hesperidin were loaded in PLGA nanoparticles by UV-Vis spectrophotometry and FT-IR spectrum. The nanoparticles were found to be spherical and uniform with a hydrodynamic diameter of 76.2 nm in water. The release rate of the drug was about 93% after 144 h. The lowest percentage of cell viability of cancer cells was observed at a concentration of 10 µg/ml of PLGA nanoparticles loaded with hesperidin. CONCLUSION: The results indicate that PLGA nanoparticles loaded with hesperidin effectively reduce the survival rate of HCT116 colorectal cancer cells. However, further studies are needed to determine the appropriate therapeutic dosage and to conduct animal and clinical studies.


Subject(s)
Colorectal Neoplasms , Hesperidin , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Humans , Hesperidin/chemistry , Hesperidin/pharmacology , Hesperidin/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Colorectal Neoplasms/drug therapy , HCT116 Cells , Nanoparticles/chemistry , Cell Survival/drug effects , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Drug Delivery Systems , Particle Size , Drug Carriers/chemistry , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticle Drug Delivery System/chemistry
5.
Nat Prod Res ; : 1-11, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962953

ABSTRACT

Essential oil content of and phenolic compounds flower-fruit, root, and aerial parts of Heracleum pastinacifolium subsp. incanum were analysed by GC/MS and LC/MS methods, respectively. Antidiabetic, anticholinesterase, and antioxidant activities of flower-fruit, root, aerial parts methanol extracts were evaluated. Apiole (35.0%), myristicine (72.2%), and myristicine (15.1%) were found as major compounds of fruit-flower mixture, root, aerial part essential oils, respectively. Hesperidin was found the highest amount in aerial part and flower-fruit extracts with 8904.2621 ng/mL and 11558.3634 ng/mL values, respectively. Fruit-flower extract showed the highest activity against α-glucosidase (24%). Root extract demonstrating the highest activity (18%) against AChE enzyme. Flowers-fruits mixture methanol extract had a higher % inhibition value on ABTS·+ and DPPH•. Flowers-fruits mixture methanol extract was rich in total phenol, total tannin, and protein content. All the extracts were determined as genetoxically safe according to the results of Ames/Salmonella, Escherichia coli WP2 and Allium cepa assays.

6.
R Soc Open Sci ; 11(7): 240268, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39050722

ABSTRACT

A sensitive, rapid and green synchronous spectrofluorimetric method was developed to simultaneously analyze a binary mixture of diosmin (DSM) and hesperidin (HSP). The RSFI of both medications was measured in methanol at Δλ of 100 nm. The results indicated that specific experimental factors had an impact on these intensities. The optimization and thorough examination of these parameters were conducted. The plots of synchronous fluorescence intensity-concentration for DSM and HSP were found to be linear within the concentration ranges of 0.5-5.0 µg ml-1 and 0.2-3.0 µg ml-1, respectively. The detection limits for DSM and HSP were 0.107 µg ml-1 and 0.048 µg ml-1, respectively. The limits of quantification were 0.323 µg ml-1 and 0.144 µg ml-1 for DSM and HSP, respectively. The method outlined in this study was successfully used to determine the quantities of both drugs present in commercially available mixed tablets. The results obtained using this method were subsequently compared to those of a comparison method. Greenness assessment of the suggested procedure was accomplished by applying the GAPI method. Consequently, the recommended method can be used in the routine quality control analysis of the two cited drugs with minimum harmful effect on the environment as well as the individuals.

7.
J Agric Food Chem ; 72(29): 16276-16286, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38981046

ABSTRACT

As primary flavonoids extracted from citrus fruits, hesperidin has been attracting attention widely for its capacity to act as antioxidants that are able to scavenge free radicals and reactive oxygen species (ROS). Many factors have made oxidative stress a risk factor for the occurrence of intestinal barrier injury, which is a serious health threat to human beings. However, little data are available regarding the underlying mechanism of hesperidin alleviating intestinal injury under oxidative stress. Recently, endoplasmic reticulum (ER) mitochondria contact sites (ERMCSs) have aroused increasing concerns among scholars, which participate in mitochondrial dynamics and Ca2+ transport. In our experiment, 24 piglets were randomly divided into 4 groups. Piglets in the diquat group and hesperidin + diquat group received an intraperitoneal injection of diquat (10 mg/kg), while piglets in the hesperidin group and hesperidin + diquat group received hesperidin (300 mg/kg) with feed. The results indicated that hesperidin alleviated growth restriction and intestinal barrier injury in piglets compared with the diquat group. Hesperidin ameliorated oxidative stress and restored antioxidant capacity under diquat exposure. The mitochondrial dysfunction was markedly alleviated via hesperidin versus diquat group. Meanwhile, hesperidin alleviated ER stress and downregulated the PERK pathway. Furthermore, hesperidin prevented the disorder of ERMCSs by downregulating the level of ERMCS proteins, decreasing the percentage of mitochondria with ERMCSs/total mitochondria and the ratio of ERMCSs length/mitochondrial perimeter. These results suggested hesperidin could alleviate ERMCS disorder and prevent mitochondrial dysfunction, which subsequently decreased ROS production and alleviated intestinal barrier injury of piglets under oxidative stress.


Subject(s)
Endoplasmic Reticulum , Hesperidin , Intestinal Mucosa , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Hesperidin/pharmacology , Swine , Mitochondria/drug effects , Mitochondria/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Reactive Oxygen Species/metabolism , Intestines/drug effects , Intestines/injuries , Male , Humans , Antioxidants/pharmacology , Endoplasmic Reticulum Stress/drug effects
8.
Nutr Rev ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038797

ABSTRACT

CONTEXT: Hesperidin is a naturally occurring bioactive compound that may influence cardiometabolic markers, but the existing evidence is inconclusive. OBJECTIVE: This study aims to further investigate the effects of hesperidin supplementation on cardiometabolic markers in adults. DATA SOURCES: A comprehensive search was conducted up to August 2023, utilizing relevant key words in databases such as PubMed, Scopus, Embase, and the Cochrane Central Register of Controlled Trials, focusing on randomized controlled trials (RCTs). DATA EXTRACTION: RCTs that examined the impact of hesperidin on fasting blood sugar (FBS), insulin, quantitative insulin-sensitivity check index (QUICKI), homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), systolic blood pressure (SBP), diastolic blood pressure (DBP), tumor necrosis factor-alpha (TNF-α), and high-sensitivity C-reactive protein (hs-CRP) were selected independently by 2 authors. The GRADE assessment was used to ascertain the certainty of the evidence. Results were pooled using a random-effects model as weighted mean differences and 95% CIs. DATA ANALYSIS: The results of this study demonstrate that hesperidin supplementation had a significant impact on reducing FBS, TG, TC, LDL-C, SBP, and TNF-α. However, there was no significant effect observed on insulin, HOMA-IR, QUICKI, HDL-C, DBP, and hs-CRP. The study's subgroup analyses also revealed that interventions lasting more than 12 weeks were effective in reducing FBS, TG, TC, and LDL-C. Moreover, hesperidin dosage exceeding 500 mg/day showed significance in reducing FBS, TC, and LDL-C levels. CONCLUSION: In conclusion, this research suggests that hesperidin can be consumed as an effective dietary approach to enhance cardiometabolic markers. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42022325775.

9.
Pharm Dev Technol ; : 1-12, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045751

ABSTRACT

Hesperidin (HSP) is a natural flavonoid glycoside with very low aqueous solubility and a slow dissolution rate, limiting its effectiveness. This study aims to address these issues by creating co-crystals of hesperidin with water-soluble small molecules (co-formers) such as L-arginine, glutathione, glycine, and nicotinamide. Using the solvent drop grinding method, we prepared three different molar ratios of hesperidin to co-formers (1:1, 1:3, and 1:5) and conducted in-vitro solubility and dissolution studies. The results demonstrated that the prepared co-crystals exhibited significantly enhanced solubility and dissolution rates compared to untreated hesperidin. Of particular note, the HSP co-crystals formula (HSP: L-arg 1:5) displayed approximately 4.5 times higher dissolution than pure hesperidin. Further analysis using FTIR, powder x-ray diffraction patterns, and DSC thermograms validated the formation of co-crystals between HSP and L-arginine. Additionally, co-crystallization with L-arginine improved the in vitro anti-inflammatory and antioxidant activities of hesperidin compared to the untreated drug. This study highlights the potential of using water-soluble small molecules (co-formers) through co-crystallization to enhance the solubility, dissolution, and biological activities of poorly water-soluble drugs. Furthermore, in vivo studies are crucial to validate these promising results.

10.
J Conserv Dent Endod ; 27(6): 649-653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989489

ABSTRACT

Introduction: Pulpal and periradicular diseases stem from immune reactions to microbiota, causing inflammation. Limited blood supply hampers dental pulp self-healing. Managing inflammation involves eliminating bacteria and reducing pro-inflammatory mediators especially MMP-9, which has a significant correlation with pulpitis. s. Flavonoids like Hesperidin, Baicalein, Epigallocatechin gallate, Genistein, Icariin, and Quercetin show potential for pulp capping. Aim: This in-silico study compares various Flavonoids for their anti-inflammatory effects on MMP-9, with Chlorhexidine as a control, a known MMP-9 inhibitor. Materials and Methods: Protein and Ligand Preparation: The human MMP-9 catalytic domain (PDB ID: 4XCT) structure was retrieved, and necessary modifications were made. Flavonoids from PubChem database were prepared for docking using AutoDock Vina. A grid for docking was created, and molecular dynamics simulations were conducted using Gromacs-2019.4 with GROMOS96 force field. Trajectory analysis was performed, and MM-PBSA calculation determined binding free energies. Results: Analysis of MMP-9 and ligand interactions revealed Hesperidin's high binding affinity, forming numerous hydrogen bonds with specific amino acids. Molecular dynamics simulations confirmed stability, with RMSD, RMSF, Rg, and SASA indicating consistent complex behaviour over 100 ns. MM-PBSA calculation affirmed favourable energy contributions in MMP-9-Hesperidin interactions. Conclusion: MMP-9 plays a crucial role in prognosis of pulpitis. Incorporating MMP-9 inhibitors into pulp capping agents may enhance therapeutic efficacy. Hesperidin emerges as a potent MMP-9 inhibitor, warranting further in vivo validation against other agents.

11.
Front Vet Sci ; 11: 1424711, 2024.
Article in English | MEDLINE | ID: mdl-38983771

ABSTRACT

The aim of this study was to investigate the effect of hesperidin on the liver and kidney dysfunctions induced by nickel. The mice were divided into six groups: nickel treatment with 80 mg/kg, 160 mg/kg, 320 mg/kg hesperidin groups, 0.5% CMC-Na group, nickel group, and blank control group. Histopathological techniques, biochemistry, immunohistochemistry, and the TUNEL method were used to study the changes in structure, functions, oxidative injuries, and apoptosis of the liver and kidney. The results showed that hesperidin could alleviate the weight loss and histological injuries of the liver and kidney induced by nickel, and increase the levels of lactate dehydrogenase (LDH), alanine aminotransferase (GPT), glutamic oxaloacetic transaminase (GOT) in liver and blood urea nitrogen (BUN), creatinine (Cr) and N-acetylglucosidase (NAG) in kidney. In addition, hesperidin could increase the activities of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) in the liver and kidney, decrease the content of malondialdehyde (MDA) and inhibit cell apoptosis. It is suggested that hesperidin could help inhibit the toxic effect of nickel on the liver and kidney.

12.
Antioxidants (Basel) ; 13(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38929166

ABSTRACT

The biological activities of hesperidin-related compounds, such as hesperetin laurate (HTL), hesperetin (HT), hesperidin (HD), and hesperidin glucoside (HDG), were investigated in vitro. The compounds showed different hydrophobicities, and the octanol-water partition coefficient log P were 7.28 ± 0.06 for HTL, 2.59 ± 0.04 for HT, 2.13 ± 0.03 for HD, and -3.45 ± 0.06 for HDG, respectively. In the DPPH assay and ß-carotene bleaching assay to determine antioxidant capacity, all compounds tested showed antioxidant activity in a concentration-dependent manner, although to varying degrees. HTL and HT showed similarly high activities compared to HD or HDG. HD and HDG did not show a significant difference despite the difference in solubility between the two. Cytotoxicity was high; in the order of hydrophobicity-HTL > HT > HD > HDL in keratinocyte HaCaT cells. All compounds tested showed reducing effects on cellular inflammatory mediators and cytokines induced by UV irradiation. However, HTL and HT effectively reduced nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) levels compared to HD and HDG. The inhibitory effects of hesperidin-related compounds on skin-resident microorganisms were evaluated by measuring minimum inhibitory concentration (MIC). HTL showed the highest inhibitory effects against Staphylococcus aureus, Cutibacterium acnes, Candida albicans, and Malassezia furfur, followed by HT, while HD and HDF showed little effect. In conclusion, the hydrophobicity of hesperidin-related compounds was estimated to be important for biological activity in vitro, as was the presence or absence of the sugar moiety.

13.
Medicina (Kaunas) ; 60(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38929512

ABSTRACT

This review examines hesperidin, a citrus bioflavonoid, as a potential antiviral agent against SARS-CoV-2. The COVID-19 pandemic has demanded an urgent need to search for effective antiviral compounds, including those of natural origin, such as hesperidin. The review provides a comprehensive analysis of the chemical properties, bioavailability and antiviral mechanisms of hesperidin, particularly its potential efficacy against SARS-CoV-2. A review of databases, including PubMedPico, Scopus and Web of Science, was conducted using specific keywords and search criteria in accordance with PRISMA (Re-porting Items for Systematic Reviews and Meta-Analysis) guidelines between 2020 and 2024. Of the 207 articles, 37 were selected for the review. A key aspect is the correlation of in vitro, in silico and clinical studies on the antiviral effects of hesperidin with epidemiological data on citrus consumption in China during 2020-2024. The importance of integrating laboratory findings with actual consumption patterns to better understand the role of hesperidin in mitigating COVID-19 was highlighted, and an attempt was made to analyze epidemiological studies to examine the association between citrus juice consumption as a source of hesperidin and the incidence and severity of COVID-19 using China as an example. The review identifies consistencies and discrepancies between experimental and epidemiological data, highlighting the need to correlate the two fields to better understand the potential of hesperidin as an agent against SARS-CoV-2. Challenges and limitations in interpreting the results and future research perspectives in this area are discussed. The aim of this comprehensive review is to bridge the gap between experimental studies and epidemiological evidence and to contribute to the understanding of their correlation.


Subject(s)
Antiviral Agents , COVID-19 , Citrus , Hesperidin , SARS-CoV-2 , Hesperidin/therapeutic use , Humans , Antiviral Agents/therapeutic use , China/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , SARS-CoV-2/drug effects , COVID-19 Drug Treatment , Severity of Illness Index
14.
Article in English | MEDLINE | ID: mdl-38904770

ABSTRACT

Reproductive deficiency is a major outcome of pesticide exposure sequel to cellular oxidative damage to sex organs. Flavonoid possess potent antioxidant capacities to mitigate pesticide related cellular injury. The present investigation examined the mitigative effect of micronized purified fractions of diosmin and hesperidin on reproductive hormones, sperm parameters, and testicular glycogen in male Wistar rats after sub-chronic Chlorpyriphos (CPF) exposure. Twenty-five male Wistar rats (120-145 g) were randomly allocated five rats per group. Group I (DW) received distilled water (2 ml/kg), Group II (S/oil) received soya oil (2 ml/kg), Group III (DAF) received Daflon at 1000 mg/kg, Group IV (CPF) received Chlorpyriphos (7.74 mg/kg), and Group V (DAF + CPF) received Daflon (1000 mg/kg) followed by CPF (7.74 mg/kg) after 30 min of Daflon. This regimen was administered daily for 60 days. After cervical venesection under light chloroform anesthesia, blood samples were examined for levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. Each rat's testicular tissue was quickly cut, collected, and glycogen evaluated. Sperm concentration, motility, morphology, and viability were measured in the right caudal epididymis. Results revealed that the untreated CPF group had significantly lower FSH, LH, testosterone, testicular glycogen, and sperm concentration. Additionally, CPF group sperm characteristics were abnormal compared to other groups. These reproductive hormones, testicular glycogen, and sperm parameters improved in the Daflon-treated groups. Hence, pre-treatment with flavonoid fractions of diosmin and hesperidin mitigated CPF-induced reproductive toxicity.

15.
J Fluoresc ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916633

ABSTRACT

AML is a highly aggressive malignant clonal disease of hematopoietic origin. Hesperidin as a polyphenol glycoside, Activates the apoptotic pathway and salinomycin as a k + selective ionophore. We examined how hesperidin and salinomycin induce pro-apoptotic effects in KG1a cells. Cells were divided into four groups; 1) control cells (CRTL), 2) cells treated with hesperidin 85 µM, 3) cells treated with 2 µM salinomycin, 4) cells treated with combination of salinomycin and hesperidin. The MTT assay was implemented to determine the IC50 of hesperidin and salinomycin in KG1a cell lines. Propidium iodide staining and flow cytometry were used to analyze the distribution of the cell cycle. The level of ROS was evaluated by fluorescent microscopy and spectrophotometry. Additionally, Akt, XIAP, Bad, and FOXO1 gene expression was analyzed by real-time PCR. Hesperidin/Salinomycin decreased the viability of KG1a leukemic cells more than Hesperidin and Salinomycin separately. Changes in the shape of apoptotic cells and rise in ROS levels were detected after Hesperidin/Salinomycin treatment. Our findings showed that following Hesperidin/Salinomycin treatment, the expression of PI3K/AKT signaling pathway related genes (AKT, PTEN and FOXO1), were in line with the destruction of KG-1a cells. Furthermore, XIAP and BAD mRNA were regulated to trigger apoptosis in cancer cells. The study discovered that hesperidin and salinomycin, could effectively hinder the PI3K/Akt signaling pathway in leukemia cancer cells. Also, the combination of hesperidin and salinomycin has the potential to be a treatment option for acute myeloid leukemia.

16.
J Agric Food Chem ; 72(25): 14349-14363, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869217

ABSTRACT

Deoxynivalenol (DON) is a common agricultural mycotoxin that is chemically stable and not easily removed from cereal foods. When organisms consume food made from contaminated crops, it can be hazardous to their health. Numerous studies in recent years have found that hesperidin (HDN) has hepatoprotective effects on a wide range of toxins. However, few scholars have explored the potential of HDN in attenuating DON-induced liver injury. In this study, we established a low-dose DON exposure model and intervened with three doses of HDN, acting on male C57 BL/6 mice and AML12 cells, which served as in vivo and in vitro models, respectively, to investigate the protective mechanism of HDN against DON exposure-induced liver injury. The results suggested that DON disrupted hepatic autophagic fluxes, thereby impairing liver structure and function, and HDN significantly attenuated these changes. Further studies revealed that HDN alleviated DON-induced excessive autophagy through the mTOR pathway and DON-induced lysosomal dysfunction through the AKT/GSK3ß/TFEB pathway. Overall, our study suggested that HDN could ameliorate DON-induced autophagy flux disorders via the mTOR pathway and the AKT/GSK3ß/TFEB pathway, thereby reducing liver injury.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Glycogen Synthase Kinase 3 beta , Hesperidin , Liver , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Trichothecenes , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Trichothecenes/toxicity , Male , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Mice , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Liver/drug effects , Liver/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Hesperidin/pharmacology , Autophagy/drug effects , Signal Transduction/drug effects , Humans , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Cell Line
17.
Front Vet Sci ; 11: 1376225, 2024.
Article in English | MEDLINE | ID: mdl-38881782

ABSTRACT

Hesperidin, a bioactive flavanone glycoside prevalent in citrus fruits, with remarkable therapeutic properties stands out as a formidable defender against the debilitating reproductive toxicity associated with Cyclophosphamide (CYP) chemotherapy. This study explores the protective potential of hesperidin (HSP@100 mg/kg b.wt PO daily) against CYP-induced (@ 40 mg/kg b.wt IP once in a week) reproductive toxicity in male Wistar rats as several studies were documented on single dose toxicity of CYP. In this experiment, we chose multidosage drug effects, which are more relevant in chemotherapy. Twenty-four rats were divided into four groups: Group 1 (Control), group 2 (CYP-treated), group 3 (HSP-treated), and group 4 (CYP + HSP-treated) for 28 days. The experimental design included assessments of relative testicular weight, semen analysis, testosterone levels, oxidative stress markers, inflammatory cytokines, gross and histopathological changes, and immunohistochemical evaluation. The results revealed that the administration of CYP led to a significant reduction in testicular weight, sperm count, motility, and testosterone levels, accompanied by increased oxidative stress and inflammatory response. Hesperidin co-administration demonstrated a protective effect by restoring these parameters to near-normal levels. Histopathological analysis revealed improved testicular architecture in the group 4 compared with the group 2. Oxidative stress indices indicated that hesperidin attenuated CYP-induced damage by reducing malondialdehyde levels, enhancing superoxide dismutase activity and maintaining glutathione levels. Similarly, inflammatory cytokine analysis demonstrated anti-inflammatory effects of hesperidin by reducing tumor necrosis factor-alpha (TNF-α) and elevating interleukin-10 (IL-10) levels in the group 4. Immunohistochemical evaluation of nuclear factor-kappa B (NF-κB) revealed increased inflammation in the CYP group, while hesperidin significantly reduced NF-κB expression, suggesting its anti-inflammatory properties.

18.
Biomolecules ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927040

ABSTRACT

Metabolic syndrome (MetS) is a cluster of metabolic abnormalities affecting ~25% of adults and is linked to chronic diseases such as cardiovascular disease, cancer, and neurodegenerative diseases. Oxidative stress and inflammation are key drivers of MetS. Hesperidin, a citrus bioflavonoid, has demonstrated antioxidant and anti-inflammatory properties; however, its effects on MetS are not fully established. We aimed to determine the optimal dose of hesperidin required to improve oxidative stress, systemic inflammation, and glycemic control in a novel mouse model of MetS. Male 5-week-old C57BL/6 mice were fed a high-fat, high-salt, high-sugar diet (HFSS; 42% kcal fat content in food and drinking water with 0.9% saline and 10% high fructose corn syrup) for 16 weeks. After 6 weeks of HFSS, mice were randomly allocated to either the placebo group or low- (70 mg/kg/day), mid- (140 mg/kg/day), or high-dose (280 mg/kg/day) hesperidin supplementation for 12 weeks. The HFSS diet induced significant metabolic disturbances. HFSS + placebo mice gained almost twice the weight of control mice (p < 0.0001). Fasting blood glucose (FBG) increased by 40% (p < 0.0001), plasma insulin by 100% (p < 0.05), and HOMA-IR by 150% (p < 0.0004), indicating insulin resistance. Hesperidin supplementation reduced plasma insulin by 40% at 140 mg/kg/day (p < 0.0001) and 50% at 280 mg/kg/day (p < 0.005). HOMA-IR decreased by 45% at both doses (p < 0.0001). Plasma hesperidin levels significantly increased in all hesperidin groups (p < 0.0001). Oxidative stress, measured by 8-OHdG, was increased by 40% in HFSS diet mice (p < 0.001) and reduced by 20% with all hesperidin doses (p < 0.005). In conclusion, hesperidin supplementation reduced insulin resistance and oxidative stress in HFSS-fed mice, demonstrating its dose-dependent therapeutic potential in MetS.


Subject(s)
Citrus , Dietary Supplements , Disease Models, Animal , Hesperidin , Insulin Resistance , Metabolic Syndrome , Mice, Inbred C57BL , Oxidative Stress , Animals , Hesperidin/pharmacology , Oxidative Stress/drug effects , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Male , Mice , Citrus/chemistry , Dose-Response Relationship, Drug , Blood Glucose/metabolism , Blood Glucose/drug effects , Diet, High-Fat/adverse effects , Antioxidants/pharmacology
19.
J Asian Nat Prod Res ; : 1-12, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945159

ABSTRACT

The therapeutic potential of two important flavonoids, i.e. hesperidin and naringenin, remains unutilized due to pharmacokinetics issues, especially poor aqueous solubility. Hydrotropic solid dispersions with different agents like sodium salicylate, niacinamide, benzoic acid, and urea etc. can change the solubility profile of poorly soluble drugs. The current study investigated the potential of different hydrotropic agents in improving the solubility of both natural bioactives. The hydrotropic solid dispersion in 1:3 w/w drug: sodium salicylate ratio showed maximum solubility and dissolution amongst all the tested hydrotropes. This novel and economical approach could be explored for other poorly soluble pharmaceuticals.

20.
J Microbiol Biotechnol ; 34(6): 1206-1213, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38693048

ABSTRACT

Citrus fruits offer a range of health benefits due to their rich nutritional profile, including vitamin C, flavonoids, carotenoids, and fiber. It is known that unripe citrus has higher levels of vitamin C, dietary fiber, polyphenols, and flavonoids compared to mature fruits. In this study, we assessed the nutritional components of unripe citrus peel and pressed juices, as well as their anti-obesity potential through the modulation of adipocyte differentiation and the expression of adipogenesis-related genes, specifically PPARγ and C/EBPα, in 3T3-L1 preadipocytes. Our analysis revealed that unripe citrus peel exhibited elevated levels of fiber and protein compared to pressed juice, with markedly low levels of free sugar, particularly sucrose. The content of hesperidin, a representative flavonoid in citrus fruits, was 3,157.6 mg/kg in unripe citrus peel and 455.5 mg/kg in pressed juice, indicating that it was approximately seven times higher in unripe citrus peel compared to pressed juice. Moreover, we observed that the peel had a dose-dependently inhibitory effect on adipocyte differentiation, which was linked to a significant downregulation of adipogenesis-related gene expression. Thus, our findings suggest that unripe citrus possesses anti-obesity effects by impeding adipogenesis and adipocyte differentiation, with the peel demonstrating a more pronounced effect compared to pressed juice.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Citrus , PPAR gamma , Citrus/chemistry , Adipogenesis/drug effects , Animals , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Cell Differentiation/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Fruit/chemistry , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Dietary Fiber/analysis , Flavonoids/pharmacology , Flavonoids/analysis , Hesperidin/pharmacology , Anti-Obesity Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit and Vegetable Juices/analysis , Ascorbic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL