Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 613
Filter
1.
Trends Plant Sci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097426

ABSTRACT

Hybrid vigor in plants confers better agronomically significant traits in offspring compared with either parent. Recently, Wang et al. reported a mitosis instead of meiosis (MiMe) system in tomato for clonal gamete production, showing the potential to exploit autopolyploid progressive heterosis by stacking genomes from four grandparents in tetraploid hybrids, developed from crossing MiMe hybrids.

2.
BMC Genomics ; 25(1): 654, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956457

ABSTRACT

BACKGROUND: Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics. Moreover, the consideration of BOA becomes particularly significant when evaluating dominance effects contributing to heterosis in crossbred populations. BOA provides a more comprehensive measure of heterosis due to its ability to differentiate the distinct genetic contributions originating from each parent breed. This detailed understanding of genetic effects is essential for making informed breeding decisions to optimize the benefits of heterosis in composite breeds like Brangus. OBJECTIVE: This study aims to identify quantitative trait loci (QTL) influencing HCW and MARB by utilizing SNP and BOA information, incorporating additive, dominance, and overdominance effects within a multi-generational Brangus commercial herd. METHODS: We analyzed phenotypic data from 1,066 genotyped Brangus steers. BOA inference was performed using LAMP-LD software using Angus and Brahman reference sets. SNP-based and BOA-based GWAS were then conducted considering additive, dominance, and overdominance models. RESULTS: The study identified numerous QTLs for HCW and MARB. A notable QTL for HCW was associated to the SGCB gene, pivotal for muscle growth, and was identified solely in the BOA GWAS. Several BOA GWAS QTLs exhibited a dominance effect underscoring their importance in estimating heterosis. CONCLUSIONS: Our findings demonstrate that SNP-based methods may not detect all genetic variation affecting economically important traits in composite breeds. BOA inclusion in genomic evaluations is crucial for identifying genetic regions contributing to trait variation and for understanding the dominance value underpinning heterosis. By considering BOA, we gain a deeper understanding of genetic interactions and heterosis, which is integral to advancing breeding programs. The incorporation of BOA is recommended for comprehensive genomic evaluations to optimize trait improvements in crossbred cattle populations.


Subject(s)
Breeding , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Cattle/genetics , Genotype , Hybrid Vigor , Meat , Alleles
3.
Plant J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976378

ABSTRACT

The utilization of rice heterosis is essential for ensuring global food security; however, its molecular mechanism remains unclear. In this study, comprehensive analyses of accessible chromatin regions (ACRs), DNA methylation, and gene expression in inter-subspecific hybrid and its parents were performed to determine the potential role of chromatin accessibility in rice heterosis. The hybrid exhibited abundant ACRs, in which the gene ACRs and proximal ACRs were directly related to transcriptional activation rather than the distal ACRs. Regarding the dynamic accessibility contribution of the parents, paternal ZHF1015 transmitted a greater number of ACRs to the hybrid. Accessible genotype-specific target genes were enriched with overrepresented transcription factors, indicating a unique regulatory network of genes in the hybrid. Compared with its parents, the differentially accessible chromatin regions with upregulated chromatin accessibility were much greater than those with downregulated chromatin accessibility, reflecting a stronger regulation in the hybrid. Furthermore, DNA methylation levels were negatively correlated with ACR intensity, and genes were strongly affected by CHH methylation in the hybrid. Chromatin accessibility positively regulated the overall expression level of each genotype. ACR-related genes with maternal Z04A-bias allele-specific expression tended to be enriched during carotenoid biosynthesis, whereas paternal ZHF1015-bias genes were more active in carbohydrate metabolism. Our findings provide a new perspective on the mechanism of heterosis based on chromatin accessibility in inter-subspecific hybrid rice.

4.
Animals (Basel) ; 14(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39061558

ABSTRACT

The application of heterosis can not only effectively improve the disease resistance and meat quality of livestock, but also significantly enhance the reproduction and growth of livestock and poultry. We conducted genome-wide association studies using data from F2 crossbred meat rabbits to screen out candidate genes with significant dominant effects associated with economic trait variation. High-throughput sequencing technology was used to obtain SNPs covering the whole genome to evaluate the homozygosity of the population genome, and analyze the number, length, frequency, and distribution of ROHs in the population. Candidate genes related to economic traits of meat rabbits were searched based on high-frequency ROH regions. After quality control filtering of genotype data, 380 F2 crossbred rabbits were identified with 78,579 SNPs and 42,018 ROHs on the autosomes. The fitting of the Logistic growth curve model showed that 49-day-old rabbits were a growth inflection point. Then, through genome-wide association studies, 10 SNP loci and seven growth trait candidate genes were found to be significantly related to body weight in meat rabbits at 84 days of age. In addition, we revealed the functional roles and locations of 20 candidate genes in the high-frequency ROH region associated with economic traits in meat rabbits. This study identified potential genes associated with growth and development in the high-frequency ROH region of meat rabbits. In this study, the identified candidate genes can be used as molecular markers for assisted selection in meat rabbits. At the same time, the inbreeding situation based on ROH assessment can provide reference for breeding and breeding preservation of meat rabbits.

5.
J Genet Genomics ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950856

ABSTRACT

Heterosis has been widely utilized in agricultural production. Despite over a century of extensive research, the underlying mechanisms of heterosis remain elusive. Most hypotheses and research have focused on the genetic basis of heterosis. However, the potential role of gut microbiota in heterosis has been largely ignored. Here, we carefully design a crossbreeding experiment with two distinct broiler breeds and conduct 16S rRNA amplicon and transcriptome sequencing to investigate the synergistic role of gut microbiota and host genes in driving heterosis. We find that the breast muscle weight of the hybrids exhibits a high heterosis, 6.28% higher than the mid-parent value. A notable difference is observed in the composition and potential function of cecal microbiota between hybrids and their parents. Over 90% of the differentially colonized microbiota and differentially expressed genes exhibit nonadditive patterns. Integrative analyses uncover associations between nonadditive genes and nonadditive microbiota, including a connection between the expression of cellular signaling pathways and metabolism-related genes and the abundance of Odoribacter, Oscillibacter, and Alistipes in hybrids. Moreover, higher abundances of these microbiota are related to better meat yield. In summary, these findings highlight the importance of gut microbiota in heterosis, serving as crucial factors that modulate heterosis expression in chickens.

6.
Genes (Basel) ; 15(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39062724

ABSTRACT

TGF-ß1/Smads is a classic signaling pathway, which plays important roles in the development process of organisms. Black porgy Acanthopagrus schlegelii and red porgy Pagrus major are valuable economic fishes, and their hybrid offspring show excellent heterosis traits. Yet the molecular regulation mechanism of the heterosis traits is less clear. Here, we explored the TGF-ß1/Smads pathway's molecular genetic information for heterosis in A. schlegelii ♂ × P. major ♀ (AP) and A. schlegelii ♀ × P. major ♂ (PA) in terms of growth and development. The mRNA expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different developmental stages of A. schlegelii were detected. Furthermore, the expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different tissues of adult (mRNA level) and larva (mRNA and protein level) of A. schlegelii, P. major, and their hybrids were determined by both real-time quantitative PCR and Western blot techniques. The results indicated the ubiquitous expression of these genes in all developmental stages of A. schlegelii and in all tested tissues of A. schlegelii, P. major, and its hybrids. Among them, the mRNA of TGF-ß1, TßR-I, and TßR-II genes is highly expressed in the liver, gill, kidney, and muscle of black porgy, red porgy, and their hybrid offspring. There are significant changes in gene and protein expression levels in hybrid offspring, which indirectly reflect hybrid advantage. In addition, there was no correlation between protein and mRNA expression levels of Smad2 protein. The results provide novel data for the differential expression of growth and development genes between the reciprocal hybridization generation of black porgy and red porgy and its parents, which is conducive to further explaining the molecular regulation mechanism of heterosis in the growth and development of hybrid porgy.


Subject(s)
Hybrid Vigor , Smad2 Protein , Transforming Growth Factor beta1 , Animals , Smad2 Protein/genetics , Smad2 Protein/metabolism , Hybrid Vigor/genetics , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Hybridization, Genetic , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Perciformes/genetics , Perciformes/growth & development , Perciformes/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Female , Male , Gene Expression Regulation, Developmental
7.
Trends Mol Med ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39069395

ABSTRACT

Historical reasons resulted in the almost exclusive use of a few species, most prominently Mus musculus, as the mainstream models in biomedical research. This selection was not based on Mus's distinctive relevance to human disease but rather to the pre-existing availability of resources and tools for the species that were used as models, which has enabled their adoption for research in health sciences. Unless the utilization and range of nontraditional research models expand considerably, progress in biomedical research will remain restricted within the trajectory that has been set by the existing models and their ability to provide clinically relevant information.

8.
Plant Physiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991561

ABSTRACT

Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of two hybrids, an intraspecific hybrid between two maize (Zea may ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Zea may ssp. parviglumis), utilizing a combination of PacBio High Fidelity (HiFi) sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well-phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a bi-parental genome graph, the haplotypic assemblies can facilitate downstream short-reads-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.

9.
Animals (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998055

ABSTRACT

Heterosis has been extensively used for pig genetic breeding and production, but the genetic basis of heterosis remains largely elusive. Crossbreeding between commercial and native breeds provides a good model to parse the genetic basis of heterosis. This study uses Duhua hybrid pigs, a crossbreed of Duroc and Liangguang small spotted pigs, as materials to explore the genetic basis underlying heterosis related to growth traits at the genomic level. The mid-parent heterosis (MPH) analysis showed heterosis of this Duhua offspring on growth traits. In this study, we examined the impact of additive and dominance effects on 100 AGE (age adjusted to 100 kg) and 100 BF (backfat thickness adjusted to 100 kg) of Duhua hybrid pigs. Meanwhile, we successfully identified SNPs associated with growth traits through both additive and dominance GWASs (genome-wide association studies). These findings will facilitate the subsequent in-depth studies of heterosis in the growth traits of Duhua pigs.

10.
BMC Genomics ; 25(1): 598, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877410

ABSTRACT

BACKGROUND: Leaves are the nutritional and economic organs of tobacco, and their biomass directly affects tobacco yield and the economic benefits of farmers. In the early stage, our research found that tobacco hybrids have more leaves and larger leaf areas, but the performance and formation reasons of biomass heterosis are not yet clear. RESULTS: This study selected 5 parents with significant differences in tobacco biomass and paired them with hybrid varieties. It was found that tobacco hybrid varieties have a common biomass heterosis, and 45 days after transplantation is the key period for the formation of tobacco biomass heterosis; By analyzing the biomass heterosis of hybrids, Va116×GDH94 and its parents were selected for transcriptome analysis. 76.69% of the differentially expressed genes between Va116×GDH94 and its parents showed overdominant expression pattern, and these overdominant expression genes were significantly enriched in the biological processes of photosynthesis and TCA cycle; During the process of photosynthesis, the overdominant up-regulation of genes such as Lhc, Psa, and rbcl promotes the progress of photosynthesis, thereby increasing the accumulation of tobacco biomass; During the respiratory process, genes such as MDH, ACO, and OGDH are overedominantly down-regulated, inhibiting the TCA cycle and reducing substrate consumption in hybrid offspring; The photosynthetic characteristics of the hybrid and its parents were measured, and the net photosynthetic capacity of the hybrid was significantly higher than that of the parents. CONCLUSION: These results indicate that the overdominant expression effect of differentially expressed genes in Va116×GDH94 and its parents plays a crucial role in the formation of tobacco biomass heterosis. The overdominant expression of genes related to photosynthesis and respiration enhances the photosynthetic ability of Va116×GDH94, reduces respiratory consumption, promotes the increase of biomass, and exhibits obvious heterosis.


Subject(s)
Biomass , Gene Expression Profiling , Gene Expression Regulation, Plant , Hybrid Vigor , Nicotiana , Photosynthesis , Photosynthesis/genetics , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Hybrid Vigor/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Transcriptome , Cell Respiration/genetics , Genes, Dominant
11.
Front Plant Sci ; 15: 1421207, 2024.
Article in English | MEDLINE | ID: mdl-38933462

ABSTRACT

Introduction: Autotetraploid rice holds high resistance to abiotic stress and substantial promise for yield increase, but it could not be commercially used because of low fertility. Thus, our team developed neo-tetraploid rice with high fertility and hybrid vigor when crossed with indica autotetraploid rice. Despite these advances, the molecular mechanisms underlying this heterosis remain poorly understood. Methods: An elite indica autotetraploid rice line (HD11) was used to cross with neo-tetraploid rice, and 34 hybrids were obtained to evaluate agronomic traits related to yield. WE-CLSM, RNA-seq, and CRISPR/Cas9 were employed to observe endosperm structure and identify candidate genes from two represent hybrids. Results and discussion: These hybrids showed high seed setting and an approximately 55% increase in 1000-grain weight, some of which achieved grain yields comparable to those of the diploid rice variety. The endosperm observations indicated that the starch grains in the hybrids were more compact than those in paternal lines. A total of 119 seed heterosis related genes (SHRGs) with different expressions were identified, which might contribute to high 1000-grain weight heterosis in neo-tetraploid hybrids. Among them, 12 genes had been found to regulate grain weight formation, including OsFl3, ONAC023, OsNAC024, ONAC025, ONAC026, RAG2, FLO4, FLO11, OsISA1, OsNF-YB1, NF-YC12, and OsYUC9. Haplotype analyses of these 12 genes revealed the various effects on grain weight among different haplotypes. The hybrids could polymerize more dominant haplotypes of above grain weight regulators than any homozygous cultivar. Moreover, two SHRGs (OsFl3 and SHRG2) mutants displayed a significant reduction in 1000-grain weight and an increase in grain chalkiness, indicating that OsFl3 and SHRG2 positively regulate grain weight. Our research has identified a valuable indica autotetraploid germplasm for generating strong yield heterosis in combination with neo-tetraploid lines and gaining molecular insights into the regulatory processes of heterosis in tetraploid rice.

12.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892214

ABSTRACT

Jeryak is the F1 generation of the cross between Gannan yak and Jersey cattle, which has the advantages of fast growth and high adaptability. The growth and development of skeletal muscle is closely linked to meat production and the quality of meat. However, the molecular regulatory mechanisms of muscle growth differences between Gannan yak and Jeryak analyzed from the perspective of chromatin opening have not been reported. In this study, ATAC-seq was used to analyze the difference of chromatin openness in longissimus muscle of Gannan yak and Jeryak. It was found that chromatin accessibility was more enriched in Jeryak compared to Gannan yak, especially in the range of the transcription start site (TSS) ± 2 kb. GO and KEGG enrichment analysis indicate that differential peak-associated genes are involved in the negative regulation of muscle adaptation and the Hippo signaling pathway. Integration analysis of ATAC-seq and RNA-seq revealed overlapping genes were significantly enriched during skeletal muscle cell differentiation and muscle organ morphogenesis. At the same time, we screened FOXO1, ZBED6, CRY2 and CFL2 for possible involvement in skeletal muscle development, constructed a genes and transcription factors network map, and found that some transcription factors (TFs), including YY1, KLF4, KLF5 and Bach1, were involved in skeletal muscle development. Overall, we have gained a comprehensive understanding of the key factors that impact skeletal muscle development in various breeds of cattle, providing new insights for future analysis of the molecular regulatory mechanisms involved in muscle growth and development.


Subject(s)
Muscle, Skeletal , RNA-Seq , Animals , Cattle/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Chromatin Immunoprecipitation Sequencing , Muscle Development/genetics , Chromatin/genetics , Chromatin/metabolism , Meat/analysis , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Heliyon ; 10(11): e32267, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38873668

ABSTRACT

Understanding the combining ability effects, heterosis, and genetic relationships between parental lines would be helpful in the maize breeding program to develop high-yielding and genetically stable maize varieties for various contrasting environments. Hence, the objective of this study was to estimate combining ability effects, heterosis, genetic distance (GD) and associations for grain yield and other agronomic traits. Forty-five F1 diallel crosses, four commercial checks, and ten inbred lines were evaluated at Bako and Jima Agricultural Research Centers, Ethiopia. Significant differences were observed among environments, genotypes and genotype by environment interaction for grain yield and almost all studied agronomic traits. Combining ability analysis showed both additive and non-additive gene effects significantly controlled grain yield and all other studied traits. The preponderance of general combining ability (GCA) effects indicates the importance of additive gene action inheriting most agronomic traits. Lines L2, L7, and L9 were the best combiners for grain yield, whereas lines L3 and L4 had desirable GCA values to improve days to flowering and plant height. Among the top ten crosses, L6 × L9, L6 × L7 and L4 × L9 were good specific combiners and had 18.8 %, 17.2 % and 16.2 % grain yield advantage over the best check, BH546. These hybrids also had high mid and better-parent heterosis compared with other crosses. The associations of GD with mean of F1 and SCA effects were positive and highly significant for grain yield and some other traits. In contrast, correlations of GD with mid and better parent heterosis were non-significant for grain yield and most other traits. The results of this study are particularly useful for breeders who envisage combining conventional and molecular methods.

14.
Plant Biotechnol J ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875130

ABSTRACT

Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.

15.
Heliyon ; 10(11): e31977, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882389

ABSTRACT

Erucic acid, more than 2 %, in mustard seed oil is considered unhealthy as edible oil, and also anti-nutritional for human consumption. The existing mustard varieties of Bangladesh contain 40-48 % erucic acid, which is a big concern for the country's nutritional, and food security and safety. Hence, to improve the seed oil quality of the existing variety, six popular cultivars of Brassica juncea mustard were crossed with a canola-grade line in 7 × 7 half diallel fashion, and the developed 21 F1 hybrids were assessed for yield contributing traits, and fatty acids composition. Variables with significant variations were found, while days to siliquae maturity, plant height, days to first flowering, and seeds per siliquae have moderate narrow sense heritability. The estimated gene action indicated that dominant or over-dominant gene action was more prominent in governing the traits. The parents, P1, P3, and P4 were discovered the best general combiners for early maturity and short phenology, whereas P2 and P7 were found to be the best general combiners for yield-attributing traits. Moreover, the hybrids P1 × P4, P1 × P6, P2 × P7, P4 × P6 and P3 × P5 were chosen as the promising hybrids due to their best specific combining ability, and desired heterotic effects on yield contributing traits. In addition, a significant decrease, on average 30-40 %, in erucic acid, but an approximately 20-25 % increase of oleic acid was found among the hybrids, in which the hybrids P1 × P6-S1, P5 × P6-S2 and P5 × P6-S4 demonstrated a better stability index. Overall, the obtained findings suggested that the hybrids, viz. P1 × P5, P1 × P6, P2 × P3, P2 × P7, P4 × P6, P5 × P6, and P6 × P7 were promising based on their early maturity, high-yielding, reduced erucic acid, and high oleic acid contents.

16.
Mol Breed ; 44(7): 46, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38911335

ABSTRACT

The wealth of sorghum genetic resources in Africa has not been fully exploited for cultivar development in the continent. Hybrid cultivars developed from locally evolved germplasm are more likely to possess a well-integrated assembly of genes for local adaptation, productivity, quality, as well as for defensive traits and broader stability. A subset of 560 sorghum accessions of known fertility reaction representing the major botanical races and agro-ecologies of Ethiopia were characterized for genetic, agronomic and utilization parameters to lay a foundation for cultivar improvement and parental selection for hybrid breeding. Accessions were genotyped using a genotyping by sequencing (GBS) generating 73,643 SNPs for genetic analysis. Significant genetic variability was observed among accessions with Admixture and Discriminant Analysis of Principal Components where 67% of the accessions fell into K=10 clusters with membership coefficient set to > 0.6. The pattern of aggregation of the accessions partially overlapped with racial category and agro-ecological adaptation. Majority of the non-restorer (B-line) accessions primarily of the bicolor race from the wet highland ecology clustered together away from two clusters of fertility restorer (R-line) accessions. Small members of the B accessions were grouped with the R clusters and in vice-versa while significant numbers of both B and R accessions were spread between the major clusters. Such pattern of diversity along with the complementary agronomic data based information indicate the potential for heterosis providing the foundation for initiating hybrid breeding program based on locally adapted germplasm. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01483-8.

17.
Insects ; 15(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921131

ABSTRACT

Hybrid rice results from crossing a male-sterile line (the A line) with a pollen doner (the restorer or R line). In 3-line hybrid breeding systems, a fertile B line is also required to maintain A line populations. Heterosis is defined as a condition of traits whereby the hybrid exceeds the average of the parental lines. Heterobeltiosis is where the hybrid exceeds both parents. Hybrid rice may display heterosis/heterobeltiosis for growth, yield and resistance to herbivores, among other traits. In a greenhouse experiment, we assessed the frequency of heterosis for resistance to the brown planthopper (Nilaparvata lugans (BPH)), whitebacked planthopper (Sogatella furcifera (WBPH)) and yellow stemborer (Scirpophaga incertulas (YSB)) in eight hybrids under varying soil nitrogen conditions. We also assessed plant biomass losses due to herbivore feeding as an approximation of tolerance (the plant's capacity to compensate for damage). Nitrogen reduced resistance to all three herbivores but was also associated with tolerance to WBPH and YSB based on improved plant survival, growth and/or yields. Plant biomass losses per unit weight of WBPH also declined under high nitrogen conditions for a number of hybrids, and there were several cases of overcompensation in rice for attacks by this herbivore. There was one case of nitrogen-related tolerance to BPH (increased grain yield) for a hybrid line with relatively high resistance, likely due to quantitative traits. Heterosis and heterobeltiosis were not essential to produce relatively high herbivore resistance or tolerance across hybrids.

18.
Genetics ; 227(4)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38809057

ABSTRACT

In F1 hybrids, phenotypic values are expected to be near the parental means under additive effects or close to one parent under dominance. However, F1 traits can fall outside the parental range, and outbreeding depression occurs when inferior fitness is observed in hybrids. Another possible outcome is heterosis, a phenomenon that interspecific hybrids or intraspecific crossbred F1s exhibit improved fitness compared to both parental species or strains. As an application of heterosis, hybrids between channel catfish females and blue catfish males are superior in feed conversion efficiency, carcass yield, and harvestability. Over 20 years of hybrid catfish production in experimental settings and farming practices generated abundant phenotypic data, making it an ideal system to investigate heterosis. In this study, we characterized fitness in terms of growth and survival longitudinally, revealing environment-dependent heterosis. In ponds, hybrids outgrow both parents due to an extra rapid growth phase of 2-4 months in year 2. This bimodal growth pattern is unique to F1 hybrids in pond culture environments only. In sharp contrast, the same genetic types cultured in tanks display outbreeding depression, where hybrids perform poorly, while channel catfish demonstrate superiority in growth throughout development. Our findings represent the first example, known to the authors, of opposite fitness shifts in response to environmental changes in interspecific vertebrate hybrids, suggesting a broader fitness landscape for F1 hybrids. Future genomic studies based on this experiment will help understand genome-environment interaction in shaping the F1 progeny fitness in the scenario of environment-dependent heterosis and outbreeding depression.


Subject(s)
Gene-Environment Interaction , Genetic Fitness , Hybrid Vigor , Hybridization, Genetic , Hybrid Vigor/genetics , Animals , Female , Catfishes/genetics , Catfishes/growth & development , Male , Genotype , Phenotype
19.
Animals (Basel) ; 14(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731340

ABSTRACT

Heterosis refers to the phenomenon where hybrids exhibit superior performance compared to the parental phenotypes and has been widely utilized in crossbreeding programs for animals and crops, yet the molecular mechanisms underlying this phenomenon remain enigmatic. A better understanding of the gene expression patterns in post-hatch chickens is very important for exploring the genetic basis underlying economically important traits in the crossbreeding of chickens. In this study, breast muscle and liver tissues (n = 36) from full-sib F1 birds and their parental pure lines were selected to identify gene expression patterns and differentially expressed genes (DEGs) at 28 days of age by strand-specific RNA sequencing (ssRNA-seq). This study indicates that additivity is the predominant gene expression pattern in the F1 chicken post-hatch breast muscle (80.6% genes with additivity) and liver (94.2% genes with additivity). In breast muscle, Gene Ontology (GO) enrichment analysis revealed that a total of 11 biological process (BP) terms closely associated with growth and development were annotated in the identified DEG sets and non-additive gene sets, including STAT5A, TGFB2, FGF1, IGF2, DMA, FGF16, FGF12, STAC3, GSK3A, and GRB2. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation presented that a total of six growth- and development-related pathways were identified, involving key genes such as SLC27A4, GLUL, TGFB2, COX17, and GSK3A, including the PPAR signaling pathway, TGF-beta signaling pathway, and mTOR signaling pathway. Our results may provide a theoretical basis for crossbreeding in domestic animals.

SELECTION OF CITATIONS
SEARCH DETAIL