Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Colloids Surf B Biointerfaces ; 239: 113971, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759296

ABSTRACT

The optimal material for repairing skull defects should exhibit outstanding biocompatibility and mechanical properties. Specifically, hydrogel scaffolds that emulate the microenvironment of the native bone extracellular matrix play a vital role in promoting osteoblast adhesion, proliferation, and differentiation, thereby yielding superior outcomes in skull reconstruction. In this study, a composite network hydrogel comprising sodium alginate (SA), epigallocatechin gallate (EGCG), and zinc ions (Zn2+) was developed to establish an ideal osteogenic microenvironment for bone regeneration. Initially, physical entanglement and hydrogen bonding between SA and EGCG resulted in the formation of a primary network hydrogel known as SA-EGCG. Subsequently, the inclusion of Zn2+ facilitated the creation of a composite network hydrogels named SA-EGCG-Zn2+ via dynamic coordination bonds with SA and EGCG. The engineered SA-EGCG2 %-Zn2+ hydrogels offered an environment mimicking the native extracellular matrix (ECM). Moreover, the sustained release of Zn2+ from the hydrogel effectively enhanced cell adhesion, promoted proliferation, and stimulated osteoblast differentiation. In vitro experiments have shown that SA-EGCG2 %-Zn2+ hydrogels greatly enhance the attachment and growth of osteoblast precursor cells (MC3T3-E1), while also increasing the expression of genes related to osteogenesis in these cells. Additionally, in vivo studies have confirmed that SA-EGCG2 %-Zn2+ hydrogels promote new bone formation and accelerate the regeneration of bone in situ, indicating promising applications in the realm of bone tissue engineering.


Subject(s)
Alginates , Catechin , Cell Proliferation , Hydrogels , Skull , Tissue Scaffolds , Zinc , Zinc/chemistry , Zinc/pharmacology , Alginates/chemistry , Alginates/pharmacology , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Skull/drug effects , Skull/injuries , Skull/pathology , Animals , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Cell Differentiation/drug effects , Osteogenesis/drug effects , Bone Regeneration/drug effects , Cell Adhesion/drug effects
2.
Biomed Eng Lett ; 14(3): 537-548, 2024 May.
Article in English | MEDLINE | ID: mdl-38645584

ABSTRACT

Wound healing is a complex biological process crucial for restoring tissue integrity and preventing infections. The development of advanced materials that facilitate and expedite the wound-healing process has been a focal point in biomedical research. In this study, we aimed to enhance the wound-healing potential of hydrogel scaffolds by incorporating graphene oxide and poly (ethylene glycol) methyl ether methacrylate (MEO2MA). Various masses of graphene oxide were added to MEO2MA hydrogels via free radical polymerisation. Comprehensive characterizations, encompassing mechanical properties, and biocompatibility assays, were conducted to evaluate the hydrogels' suitability for wound healing. In vitro experiments demonstrated that the graphene oxide-based hydrogels exhibited a proper swelling degree and tensile strength, responding effectively to moisture conditions and adhesiveness for wound healing. Notably, the tensile strength significantly increased to 626 kPa in the graphene oxide hydrogels. Biocompatibility assessments revealed that the graphene oxide/MEO2MA hydrogels were non-toxic to human dermal fibroblast cell growth, with no significant difference in cell viability observed in the graphene oxide/MEO2MA hydrogel (H-HG) group. In a rat skin experiment, the wound-healing rate of the hydrogel incorporating graphene oxide surpassed that of the pristine hydrogel after a 15-day treatment, achieving over 95% wound closure in the H-HG group. The histopathological analysis further supported the efficacy of the H-HG hydrogel dressing in promoting more effective tissue regeneration. These results collectively highlight the potential of the graphene oxide/MEO2MA hydrogel scaffold as a promising dressing for medical applications.

3.
J Biomater Sci Polym Ed ; 35(10): 1511-1522, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574263

ABSTRACT

Infected bone defect (IBD) is a great challenge in orthopedics, which involves in bone loss and infection. Here, a self-assembling hydrogel scaffold (named AMP-RAD/EXO), integrating antimicrobial peptides(AMPs), RADA16 and BMSCs exosomes with an innovative strategy, is developed and applied in IBD treatment for sustained antimicrobial ability, accelerating osteoblasts proliferation and promoting bone regeneration. AMPs present an excellent ability to inhibit infection, RADA16 is a self-assembling peptide hydrogel for AMPs delivery, and BMSCs exosomes can promote the bone regeneration. The prepared AMP-RAD/EXO exhibited a polyporous 3D structure for imbibition of BMSCs exosomes and migration of osteoblasts. In vitro studies indicate AMP-RAD/EXO can inhibit the growth of Staphylococcus aureus, accelerate the proliferation and migration of BMSCs. More importantly, in vivo results also prove that AMP-RAD/EXO exhibit an excellent effect on IBD treatment. Thus, the prepared AMP-RAD/EXO provides a multifunctional scaffold concept for bone tissue engineering technology.


Subject(s)
Bone Regeneration , Exosomes , Hydrogels , Staphylococcus aureus , Tissue Scaffolds , Hydrogels/chemistry , Exosomes/chemistry , Tissue Scaffolds/chemistry , Animals , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Bone Regeneration/drug effects , Cell Proliferation/drug effects , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Cell Movement/drug effects , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteoblasts/drug effects , Tissue Engineering , Bone and Bones
4.
Brain Res ; 1836: 148936, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38649134

ABSTRACT

The extracellular matrix is recognized as an efficient and determining component in the growth, proliferation, and differentiation of cells due to its ability to perceive and respond to environmental signals. Applying three-dimensional scaffolds can create conditions similar to the extracellular matrix and provide an opportunity to investigate cell fate. In this study, we employed the PuraMatrix hydrogel scaffold as an advanced cell culture platform for the neural differentiation of stem cells derived from human breastmilk to design an opportune model for tissue engineering. Isolated stem cells from breastmilk were cultured and differentiated into neural-like cells on PuraMatrix peptide hydrogel and in the two-dimensional system. The compatibility of breastmilk-derived stem cells with PuraMatrix and cell viability was evaluated by scanning electron microscopy and MTT assay, respectively. Induction of differentiation was achieved by exposing cells to the neurogenic medium. After 21 days of the initial differentiation process, the expression levels of glial fibrillary acidic protein (GFAP), microtubule-associated protein (MAP2), ß-tubulin III, and neuronal nuclear antigen (NeuN) were analyzed using the immunostaining technique. The results illustrated a notable expression of MAP2, ß-tubulin-III, and NeuN in the three-dimensional cell culture in comparison to the two-dimensional system, indicating the beneficial effect of PuraMatrix scaffolds in the process of differentiating breastmilk-derived stem cells into neural-like cells. In view of the obtained results, the combination of breastmilk-derived stem cells and PuraMatrix hydrogel scaffold could be an advisable preference for neural tissue regeneration and cell therapy.


Subject(s)
Cell Differentiation , Milk, Human , Humans , Cell Differentiation/physiology , Cells, Cultured , Tissue Scaffolds , Neural Stem Cells/physiology , Neurons/cytology , Neurons/physiology , Neurons/metabolism , Hydrogels , Cell Survival/physiology , Glial Fibrillary Acidic Protein/metabolism , Female , Microtubule-Associated Proteins/metabolism , Stem Cells/physiology , Stem Cells/cytology , Tissue Engineering/methods , Tubulin/metabolism , Cell Culture Techniques/methods , Extracellular Matrix/metabolism , Nerve Tissue Proteins/metabolism , Neurogenesis/physiology , Peptides , Antigens, Nuclear
5.
Carbohydr Polym ; 334: 122039, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553236

ABSTRACT

Biological processes, such as bone defects healing are precisely controlled in both time and space. This spatiotemporal characteristic inspires novel therapeutic strategies. The sustained-release systems including hydrogels are commonly utilized in the treatment of bone defect; however, traditional hydrogels often release drugs at a consistent rate, lacking temporal precision. In this study, a hybrid hydrogel has been developed by using sodium alginate, sucrose acetate isobutyrate, and electrospray microspheres as the base materials, and designed with ultrasound response, and on-demand release properties. Sucrose acetate isobutyrate was added to the hybrid hydrogel to prevent burst release. The network structure of the hybrid hydrogel is formed by the interconnection of Ca2+ with the carboxyl groups of sodium alginate. Notably, when the hybrid hydrogel is exposed to ultrasound, the ionic bond can be broken to promote drug release; when ultrasound is turned off, the release returned to a low-release state. This hybrid hydrogel reveals not only injectability, degradability, and good mechanical properties but also shows multiple responses to ultrasound. And it has good biocompatibility and promotes osteogenesis efficiency in vivo. Thus, this hybrid hydrogel provides a promising therapeutic strategy for the treatment of bone defects.


Subject(s)
Alginates , Drug Delivery Systems , Microspheres , Alginates/chemistry , Bone Regeneration , Osteogenesis , Hydrogels/chemistry
6.
Polymers (Basel) ; 16(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38337307

ABSTRACT

Gelatin methacryloyl (GelMA) is an ideal bioink that is commonly used in bioprinting. GelMA is primarily acquired from mammalian sources; however, the required amount makes the market price extremely high. Since garbage overflow is currently a global issue, we hypothesized that fish scales left over from the seafood industry could be used to synthesize GelMA. Clinically, the utilization of fish products is more advantageous than those derived from mammals as they lower the possibility of disease transmission from mammals to humans and are permissible for practitioners of all major religions. In this study, we used gelatin extracted from fish scales and conventional GelMA synthesis methods to synthesize GelMA, then tested it at different concentrations in order to evaluated and compared the mechanical properties and cell responses. The fish scale GelMA had a printing accuracy of 97%, a swelling ratio of 482%, and a compressive strength of about 85 kPa at a 10% w/v GelMA concentration. Keratinocyte cells (HaCaT cells) were bioprinted with the GelMA bioink to assess cell viability and proliferation. After 72 h of culture, the number of cells increased by almost three-fold compared to 24 h, as indicated by many fluorescent cell nuclei. Based on this finding, it is possible to use fish scale GelMA bioink as a scaffold to support and enhance cell viability and proliferation. Therefore, we conclude that fish scale-based GelMA has the potential to be used as an alternative biomaterial for a wide range of biomedical applications.

7.
Gels ; 10(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38391483

ABSTRACT

Terminology is pivotal for facilitating clear communication and minimizing ambiguity, especially in specialized fields such as chemistry. In materials science, a subset of chemistry, the term "pore" is traditionally linked to the International Union of Pure and Applied Chemistry (IUPAC) nomenclature, which categorizes pores into "micro", "meso", and "macro" based on size. However, applying this terminology in closely-related areas, such as 3D bioprinting, often leads to confusion owing to the lack of consensus on specific definitions and classifications tailored to each field. This review article critically examines the current use of pore terminology in the context of 3D bioprinting, highlighting the need for reassessment to avoid potential misunderstandings. We propose an alternative classification that aligns more closely with the specific requirements of bioprinting, suggesting a tentative size-based division of interconnected pores into 'parvo'-(d < 25 µm), 'medio'-(25 < d < 100 µm), and 'magno'-(d > 100 µm) pores, relying on the current understanding of the pore size role in tissue formation. The introduction of field-specific terminology for pore sizes in 3D bioprinting is essential to enhance the clarity and precision of research communication. This represents a step toward a more cohesive and specialized lexicon that aligns with the unique aspects of bioprinting and tissue engineering.

8.
ACS Appl Mater Interfaces ; 16(5): 5582-5597, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38258503

ABSTRACT

The tendon-bone interface has a complex gradient structure vital for stress transmission and pressure buffering during movement. However, injury to the gradient tissue, especially the tendon and cartilage components, often hinders the complete restoration of the original structure. Here, a metal ion network hydrogel scaffold, with the capability of targeting multitissue, was constructed through the photopolymerization of the LHERHLNNN peptide-modified zeolitic imidazolate framework-8 (LZIF-8) and the WYRGRL peptide-modified magnesium metal-organic framework (WMg-MOF) within the hydrogel scaffold, which could facilitate the directional migration of metal ions to form a dynamic gradient, thereby achieving integrated regeneration of gradient tissues. LZIF-8 selectively migrated to the tendon, releasing zinc ions to enhance collagen secretion and promoting tendon repair. Simultaneously, WMg-MOF migrated to cartilage, releasing magnesium ions to induce cell differentiation and facilitating cartilage regeneration. Infrared spectroscopy confirmed successful peptide modification of nano ZIF-8 and Mg-MOF. Fluorescence imaging validated that LZIF-8/WMg-MOF had a longer retention, indirectly confirming their successful targeting of the tendon-bone interface. In summary, this dual-targeted metal ion network hydrogel scaffold has the potential to facilitate synchronized multitissue regeneration at the compromised tendon-bone interface, offering favorable prospects for its application in the integrated reconstruction characterized by the gradient structure.


Subject(s)
Hydrogels , Magnesium , Hydrogels/pharmacology , Hydrogels/chemistry , Tendons , Peptides , Ions , Tissue Scaffolds/chemistry
9.
Biomater Adv ; 158: 213780, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280287

ABSTRACT

Tissue engineered skin equivalents are increasingly recognized as potential alternatives to traditional skin models such as human ex vivo skin or animal skin models. However, most of the currently investigated human skin equivalents (HSEs) are constructed using mammalian collagen which can be expensive and difficult to extract. Fish skin is a waste product produced by fish processing industries and identified as a cost-efficient and sustainable source of type I collagen. In this work, we describe a method for generating highly stable HSEs based on fibrin fortified tilapia fish collagen. The fortified fish collagen (FFC) formulation is optimized to enable reproducible fabrication of full-thickness HSEs that undergo limited contraction, facilitating the incorporation of human donor-derived skin cells and formation of biomimetic dermal and epidermal layers. The morphology and barrier function of the FFC HSEs are compared with a commercial skin model and validated with immunohistochemical staining and transepithelial electrical resistance testing. Finally, the potential of a high throughput screening platform with FFC HSE is explored by scaling down its fabrication to 96-well format.


Subject(s)
Ichthyosis, Lamellar , Tilapia , Animals , Humans , Skin , Collagen , Epidermis , Collagen Type I , Mammals
10.
Macromol Rapid Commun ; 45(5): e2300448, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232973

ABSTRACT

Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D-accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis-epoxy poly(ethylene glycol) leads to a transparent, self-supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy)3 ]2+ (bpy = 2,2'-bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo3 S13 ]2- ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co4 POM = [Co4 (H2 O)2 (PW9 O34 )2 ]10- ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.


Subject(s)
Alanine/analogs & derivatives , Hydrogels , Photosensitizing Agents , Photosensitizing Agents/chemistry , Hydrogels/chemistry , Light , Catalysis
11.
Regen Biomater ; 11: rbad094, 2024.
Article in English | MEDLINE | ID: mdl-38173775

ABSTRACT

Glioblastoma (GBM) is among the most common and aggressive adult central nervous system tumors. One prominent characteristic of GBM is the presence of abnormal microvessels. A significant correlation between angiogenesis and prognosis has been observed. Accurately reconstructing this neovascularization and tumor microenvironment through personalized in vitro disease models presents a significant challenge. However, it is crucial to develop new anti-angiogenic therapies for GBM. In this study, 3D bioprinted glioma stem cell (GSC)-laden hydrogel scaffolds, hybrid GSC hydrogels and cell-free hydrogel scaffolds were manufactured to investigate the vascularization ability of GSCs in varying 3D microenvironments. Our results demonstrated that the bioactivity of GSCs in the 3D bioprinted GSC-laden hydrogel scaffold was preferable and stable, and the amounts of vascular endothelial growth factor A and basic fibroblast growth factor were the highest in the microenvironment. When the three different models were co-cultured with human umbilical vein endothelial cells, the expression of angiogenesis-related markers was the most abundant in the bioprinted GSC-laden hydrogel scaffold. Additionally, xenograft tumors formed by bioprinted GSC-laden hydrogel scaffolds more closely resembled human gliomas regarding color, texture and vascularization. Notably, in xenograft tumors derived from 3D bioprinted GSC-laden hydrogel scaffolds, the number of human CD105+ cells was significantly higher, and human endothelial vascular lumen-like structures were observed. This indicates that the 3D bioprinted GSC-laden hydrogel scaffold is a suitable model for mimicking the glioma microenvironment and studying tumor angiogenesis.

12.
Adv Healthc Mater ; : e2302686, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38134345

ABSTRACT

Organoids have emerged as major technological breakthroughs and novel organ models that have revolutionized biomedical research by recapitulating the key structural and functional complexities of their in vivo counterparts. The combination of organoid systems and microfluidic technologies has opened new frontiers in organoid engineering and offers great opportunities to address the current challenges of existing organoid systems and broaden their biomedical applications. In this review, the key features of the existing organoids, including their origins, development, design principles, and limitations, are described. Then the recent progress in integrating organoids into microfluidic systems is highlighted, involving microarrays for high-throughput organoid manipulation, microreactors for organoid hydrogel scaffold fabrication, and microfluidic chips for functional organoid culture. The opportunities in the nascent combination of organoids and microfluidics that lie ahead to accelerate research in organ development, disease studies, drug screening, and regenerative medicine are also discussed. Finally, the challenges and future perspectives in the development of advanced microfluidic platforms and modified technologies for building organoids with higher fidelity and standardization are envisioned.

13.
Int J Biol Macromol ; 253(Pt 1): 126658, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37660865

ABSTRACT

In tissue engineering, scaffold microstructures and mechanical cues play a significant role in regulating stem cell differentiation, proliferation, and infiltration, offering a promising strategy for osteochondral tissue repair. In this present study, we aimed to develop a facile method to fabricate an acellular hydrogel scaffold (AHS) with tunable mechanical stiffness and microstructures using carboxymethyl cellulose (CMC). The impacts of the degree of crosslinking, crosslinker length, and matrix density on the AHS were investigated using different characterization methods, and the in vitro biocompatible of AHS was also examined. Our CMC-based AHS showed tunable mechanical stiffness ranging from 50 kPa to 300 kPa and adjustable microporous size between 50 µm and 200 µm. In addition, the AHS was also proven biocompatible and did not negatively affect rabbit bone marrow stem cells' dual-linage differentiation into osteoblasts and chondrocytes. In conclusion, our approach may present a promising method in osteochondral tissue engineering.


Subject(s)
Mesenchymal Stem Cells , Tissue Engineering , Animals , Rabbits , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Carboxymethylcellulose Sodium , Hydrogels/pharmacology
14.
Biomater Adv ; 153: 213565, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37542914

ABSTRACT

This study aimed to improve the mechanical and biological properties of alginate-based hydrogels. For this purpose, in-situ forming hydrogels were prepared by dual crosslinking of Alginate (Alg)/Oxidized Alginate (OAlg)/Silk Fibroin (SF) through simultaneous ionic gelation using CaCO3-GDL and Schiff-base reaction. The resulting hydrogels were characterized by FTIR, SEM, compressive modulus, and rheological tests. Compared to the physically-crosslinked alginate hydrogel, the compressive modulus of dual-crosslinked Alg/OAlg/SF hydrogel increased from 28 to 67 kPa, due to the covalent imine bond formation. Then, MTT and DAPI staining assays were performed to demonstrate the biocompatibility of hydrogel. Furthermore, the differentiation potential of bone marrow mesenchymal stem cells encapsulated in hydrogel scaffolds to bone tissue was tested by ALP activity, Alizarin Red staining, and real-time PCR. The overall results showed the potential of Alginate/Oxidized Alginate/Silk Fibroin hydrogel scaffold for bone tissue engineering applications.


Subject(s)
Fibroins , Tissue Engineering , Tissue Engineering/methods , Hydrogels , Alginates , Bone and Bones
15.
Nano Lett ; 23(16): 7379-7388, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37578316

ABSTRACT

The completed volumetric muscle loss (VML) regeneration remains a challenge due to the limited myogenic differentiation as well as the oxidative, inflammatory, and hypoxic microenvironment. Herein, a 2D Ti3C2Tx MXene@MnO2 nanocomposite with conductivity and microenvironment remodeling was fabricated and applied in developing a multifunctional hydrogel (FME) scaffold to simultaneously conquer these hurdles. Among them, Ti3C2Tx MXene with electroconductive ability remarkably promotes myogenic differentiation via enhancing the myotube formation and upregulating the relative expression of the myosin heavy chain (MHC) protein and myogenic genes (MyoD and MyoG) in myogenesis. The MnO2 nanoenzyme-reinforced Ti3C2Tx MXene significantly reshapes the hostile microenvironment by eliminating reactive oxygen species (ROS), regulating macrophage polarization from M1 to M2 and continuously supplying O2. Together, the FME hydrogel as a bioactive multifunctional scaffold significantly accelerates structure-functional VML regeneration in vivo and represents a multipronged strategy for the VML regeneration via electroactivity and microenvironment management.


Subject(s)
Muscle, Skeletal , Regeneration , Muscle, Skeletal/physiology , Manganese Compounds/pharmacology , Titanium/pharmacology , Oxides , Hydrogels/pharmacology
16.
Heliyon ; 9(7): e17050, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483767

ABSTRACT

Repairing significant bone defects remains a critical challenge, raising the clinical demand to design novel bone biomaterials that incorporate osteogenic and angiogenic properties to support the regeneration of vascularized bone. Bioactive glass scaffolds can stimulate angiogenesis and osteogenesis. In addition, natural or synthetic polymers exhibit structural similarity with extracellular matrix (ECM) components and have superior biocompatibility and biodegradability. Thus, there is a need to prepare composite scaffolds of hydrogels for vascularized bone, which incorporate to improve the mechanical properties and bioactivity of natural polymers. In addition, those composites' 3-dimensional (3D) form offer regenerative benefits such as direct doping of the scaffold with ions. This review presents a comprehensive discussion of composite scaffolds incorporated with BaG, focusing on their effects on osteo-inductivity and angiogenic properties. Moreover, the adaptation of the ion-doped hydrogel composite scaffold into a 3D scaffold for the generation of vascularized bone tissue is exposed. Finally, we highlight the challenges and future of manufacturing such biomaterials.

17.
Pharmaceutics ; 15(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37514135

ABSTRACT

Cartilage tissue engineering has attracted great attention in defect repair and regeneration. The utilization of bioactive scaffolds to effectively regulate the phenotype and proliferation of chondrocytes has become an elemental means for cartilage tissue regeneration. On account of the simultaneous requirement of mechanical and biological performances for tissue-engineered scaffolds, in this work we prepared a naturally derived hydrogel composed of a bioactive kartogenin (KGN)-linked chitosan (CS-KGN) and an aldehyde-modified oxidized alginate (OSA) via the highly efficient Schiff base reaction and multifarious physical interactions in mild conditions. On the basis of the rigid backbones and excellent biocompatibility of these two natural polysaccharides, the composite hydrogel demonstrated favorable morphology, easy injectability, good mechanical strength and tissue adhesiveness, low swelling ratio, long-term sustainable KGN release, and facilitated bone marrow mesenchymal stem cell activity, which could simultaneously provide the mechanical and biological supports to promote chondrogenic differentiation and repair the articular cartilage defects. Therefore, we believe this work can offer a designable consideration and potential alternative candidate for cartilage and other soft tissue implants.

18.
Mater Today Bio ; 21: 100691, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37455815

ABSTRACT

Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.

19.
Biomed Mater ; 18(4)2023 06 05.
Article in English | MEDLINE | ID: mdl-37236199

ABSTRACT

The development of hydrogel based scaffold with the capability of enhanced antibacterial effects and wound healing is the promising strategy for the treatment of wound tissues with bacterial infection. Herein, we fabricated a hollow channeled hydrogel scaffold based on the mixture of dopamine modified alginate (Alg-DA) and gelatin via co-axial 3D printing for the treatment of bacterial-infected wound. The scaffold was crosslinked by copper/calcium ions, which could enhance the structural stability and mechanical properties. Meanwhile, copper ions crosslinking endowed the scaffold with good photothermal effects. The photothermal effect and copper ions showed excellent antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Moreover, the hollow channels and the sustained released copper ions could stimulate angiogenesis and accelerate wound healing process. Thus, the prepared hollow channeled hydrogel scaffold might be a potential candidate for promoting wound healing application.


Subject(s)
Copper , Hydrogels , Hydrogels/chemistry , Copper/chemistry , Anti-Bacterial Agents/chemistry , Wound Healing , Bacteria , Printing, Three-Dimensional , Ions
20.
ACS Appl Mater Interfaces ; 15(22): 26472-26483, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37218620

ABSTRACT

Three-dimensional (3D) bioinspired hydrogels have played an important role in tissue engineering, owing to their advantage of excellent biocompatibility. Here, the two-photon polymerization (TPP) of a 3D hydrogel with high precision has been investigated, using the precursor with hyaluronic acid vinyl ester (HAVE) as the biocompatibility hydrogel monomer, 3,3'-((((1E,1'E)-(2-oxocyclopentane-1,3-diylidene) bis(methanylylidene)) bis(4,1-phenylene)) bis(methylazanediyl))dipropanoate as the water-soluble initiator, and dl-dithiothreitol (DTT) as the click-chemistry cross-linker. The TPP properties of the HAVE precursors have been comprehensively investigated by adjusting the solubility and the formulation of the photoresist. The feature line width of 22 nm has been obtained at a processing laser threshold of 3.67 mW, and the 3D hydrogel scaffold structures have been fabricated. Furthermore, the average value of Young's modulus is 94 kPa for the 3D hydrogel, and cell biocompatibility has been demonstrated. This study would provide high potential for achieving a 3D hydrogel scaffold with highly precise configuration in tissue engineering and biomedicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...