Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.198
Filter
1.
Article in English | MEDLINE | ID: mdl-39360429

ABSTRACT

A large-scale study was conducted to explore AFB1 contamination in feed samples using Thin Layer Chromatography, following an AOAC protocol. Samples were identified which were not compliant with the maximum limits for AFB1 as regulated in the United States and Pakistan. Of a total of 923 samples, 51 samples (5.5%) were not compliant according to Pakistan and 267 (28.9%) were not compliant with US-FDA standards. The overall prevalence of non-compliant samples of compound feed was 26.2% (n = 117) according to US-FDA standards, while none of the samples were non-compliant according to Pakistan standards. Among feed ingredients, the overall prevalence of non-compliant samples was 10.7% (n = 51) and 31.4% (n = 150) according to Pakistan and USFDA standards, respectively. Non-compliant feed with respect to AFB1 contamination was highly prevalent in Khyber Pakhtunkhwa, posing a serious threat to production performance and animals health.

2.
Crit Rev Toxicol ; : 1-51, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351770

ABSTRACT

Herbicide safeners are agrochemicals added to herbicide formulations to protect crops from herbicide damage without reducing the effectiveness of the herbicide against weeds. While safeners are typically structurally similar to their co-formulated herbicides, they are classified as "inert" in the United States, meaning they are not held to the same regulatory standards as the herbicides. This review systematically examines the toxicity of safeners, which is important given their large-scale global use and potential for exposure to wildlife, livestock, and humans. A systematic review of peer-reviewed literature identified only seven studies examining safener toxicity. Regulatory toxicity data, compiled from the European Chemicals Agency (ECHA) database, included data for 9 of the 18 commercial safeners. Most safeners have low acute ecotoxicity and mammalian toxicity; however, chronic effects and the underlying mechanism are less clear. Benoxacor showed enantioselective metabolism and depletion by drug-metabolizing enzymes. In conclusion, despite the widespread use of safeners, significant knowledge gaps exist regarding their toxicity. More research is needed to fully characterize the potential risks of safeners to human health and the environment. Regulatory agencies should consider reclassifying safeners as active ingredients to ensure adequate toxicity testing and risk assessment.

3.
ChemSusChem ; : e202401042, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373399

ABSTRACT

Today, the agrochemical industry faces enormous challenges to ensure the sustainable supply of high-quality food, efficient water use, low environmental impact, and the growing world population. The shortage of agrochemicals due to consumer perception, changing needs of farmers and ever-changing regulatory requirements is higher than the number of active ingredients that are placed on the market. The introduction of halogen atoms into an active ingredient molecule offers the opportunity to optimize its physico-chemical properties such as molecular lipophilicity. As early as 2010, around four-fifths of modern agrochemicals on the market contained halogen atoms. In addition, it becomes clear that modern agrochemicals have increasingly complex molecular structures with one or more stereogenic centers in the molecule. Today, almost half of modern agrochemicals are chiral molecules (herbicides, insecticides/acaricides/nematicides ≪ fungicides) and most of them consist of mixtures such as racemic mixtures of enantiomers, followed by mixtures of diastereomers and mixtures of pure enantiomers. Therefore, it is important that halogen-containing substituents or stereogenic centers are considered in the structural optimization of the active ingredients to ultimately develop sustainable agrochemicals in terms of efficacy, ecotoxicology, ease of use and cost-effectiveness.

4.
Front Pharmacol ; 15: 1431856, 2024.
Article in English | MEDLINE | ID: mdl-39376615

ABSTRACT

Hemerocallis citrina Borani is a traditional folk food used to promote the lactation of postpartum mothers in China; however, the active ingredients and corresponding mechanisms are still unknown. In this study, the lactogenic effect of alcoholic and aqueous extracts of H. citrina was primarily evaluated, and the aqueous extract (1,000 and 2,000 mg/kg) displayed significant lactation-promoting effects. Three eluates of the aqueous extract (0%, 30%, and 50%HCW) were further evaluated for their lactogenic effect, and 30% and 50% HCW showed significant lactation-promoting activity. Nineteen ingredients, including those with a high content of rutin and isoquercetin, were then identified from 30% and 50%HCW using the ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) method. Finally, the lactogenic effect of rutin and isoquercetin was evaluated, and both compounds displayed significant lactation-promoting activity. The mechanisms relative to the lactation-promoting active ingredients for H. citrina extracts and compounds are to stimulate the release of prolactin (PRL) and progesterone (P), as well as to induce the expression of prolactin receptor (PRLR) and improve the morphology of mammary tissue. This study first clarified the lactation-promoting active ingredients of H. citrina and the corresponding mechanisms, which provide a new insight into the new lactation-promoting drug and promote the high-value utilization of H. citrina resources.

5.
Heliyon ; 10(19): e38285, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39381093

ABSTRACT

Background: Pulmonary infections resulting from respiratory syncytial virus (RSV) continue to pose a significant threat to the well-being of infants and the elderly, but there is no safe, effective and specific treatment except symptomatic treatment. Forsythia Suspensa Leaf (FSL) is cold in nature and bitter in taste, and has the efficacy of clearing away heat and toxic materials. Previous research by our research group showed that the active components in FSL have the pharmacological effect of anti-RSV. Based on that, this study aims further to clarify the anti-RSV active components and mechanism of FSL. Methods: Firstly, we established the BALB/c mouse model of RSV infection, assessed the in vivo anti-RSV efficacy, and determined the optimal dosage of FSL and its active components. Evaluation parameters included body weight changes, organ indices, lung tissue pathological sections, lung tissue viral load, and inflammatory factors. Additionally, we used RT-PCR, Western Blot and other molecular biology techniques to determine the expression changes of key factors such as Nrf2 and NLRP3 in PI3K/Akt-NLRP3 pathway, and revealed the anti-RSV mechanism of FSL and its active components. Results: Pharmacodynamic experiments in animals showed that the FSL Low (0.4 g/kg·d), RosA Low (100 mg/kg·d) and Phillyrin Medium (100 mg/kg·d) groups could effectively improve the pathological conditions of mice with RSV pneumonia, such as weight loss, the level of pulmonary inflammatory factors and the increase of viral load. In addition, oral administration of Phillyrin at a dose of 100 mg/kg d to RSV-infected mice can effectively control the trend that the expression of Nrf2 protein decreases and the expression of NLRP3 protein increases in RSV pneumonia mice. Conclusion: Phillyrin, the active component in FSL, can not only directly inhibit the replication of RSV, but also effectively control the inflammatory reaction caused by RSV infection and improve lung injury, which is expected to become a potential drug against RSV pneumonia.

6.
Electrophoresis ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373618

ABSTRACT

Ireland has a successful pharmaceutical industry with over 100 pharmaceutical manufacturing sites across the island. Although this success has many benefits, the irreversible effects emissions from pharmaceutical manufacturing can have on the environment are a major drawback. Although known pollutants are regularly monitored with limits set out by the Environmental Protection Agency, one significant pollutant has been overlooked: pharmaceutical pollution. Detecting these pollutants and ensuring they are at a safe concentration for the environment is of utmost importance. In recent years, capillary electrophoresis is being recognised as a suitable alternative to high-performance liquid chromatography due to its many benefits such as faster analysis, water-based buffers and smaller sample volumes. In this paper, a capillary zone electrophoresis (CZE) method with a preconcentration step of solid-phase extraction was developed for an anti-parasitic active pharmaceutical ingredient (API) called ZB23. The API was successfully detected in a wastewater sample in less than 10 min using the CZE parameters of 25 mM borate buffer with a pH of 10.5, 15% MeOH, 10 kV voltage, 25 mbar for 5 s injection size, an Lt of 40 cm, an Ld of 31.5 cm and a detection wavelength of 214 nm.

7.
Biomed Chromatogr ; : e6027, 2024 Oct 12.
Article in English | MEDLINE | ID: mdl-39394856

ABSTRACT

This groundbreaking study introduces a pioneering development of multi-method approach for the first-ever detection and quantification of 13 genotoxic impurities (GTIs) in Apixaban (Apx) drug substance using ultra-performance liquid chromatography (UPLC) with ultraviolet (UV) detector. In this novel endeavor, two distinct UPLC-UV methods, Method A (for impurities A to G) and Method B (for impurities H to M), were meticulously developed and validated as per International Council for Harmonization (ICH) guidelines to address the challenge of identification and control of 13 GTIs in Apx drug substance. The validation process included rigorous assessment of linearity, accuracy, specificity, precision, limit of quantification (LOQ), and limit of detection (LOD) for each impurity in each method which marks a significant advancement in pharmaceutical analysis. The developed methods address the regulatory requirements set forth by ICH M7(R2) guidelines by providing a reliable approach for quantifying GTIs in Apx drug substance at trace levels to minimize the potential carcinogenic risk to the patients.

8.
Animals (Basel) ; 14(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39272388

ABSTRACT

This study aimed to determine the standardized ileal digestibility (SID) of calcium (Ca) and phosphorus (P) in various feed ingredients using the direct method. This study comprised eight experimental diets: a Ca-P-free diet and seven experimental diets, each containing monocalcium phosphate (MCP), dicalcium phosphate (DCP), monosodium phosphate (MSP) + limestone, corn, and soybean meal (SBM) as the sole sources of Ca and/or P. These diets provided 4.21 g/kg of non-phytate P from MCP, DCP, or MSP, and the MSP + limestone diet included 7.50 g/kg of Ca. The corn and SBM diets formulated to determine P digestibility maintained a dietary Ca/total P ratio of 1.4 through the addition of limestone. Chromic oxide was added to the diets as an indigestible index. On day 18, 256 male and 256 female broilers were individually weighed and randomly assigned to eight treatments, each with four replicates for each sex (eight birds per cage). This allocation followed a randomized complete block design based on body weight. On day 21, the birds were euthanized using carbon dioxide, and ileal digesta samples were collected from the distal two-thirds section of the ileum. No significant interactions between the experimental diets and sex regarding the SID of Ca or P were detected, and no effect of sex on the SID was observed. The standardized ileal Ca digestibility of MCP, DCP, limestone, corn, and SBM was found to be 84.7%, 70.1%, 52.6%, 88.6%, and 81.6%, respectively. The standardized ileal P digestibility of MCP, DCP, MSP, corn, and SBM was determined to be 91.8%, 76.8%, 94.4%, 73.1, and 88.4%, respectively. Given the variable digestibility of Ca and P across different feed ingredients, the consideration of the specific type of ingredients used in diet formulation is crucial.

9.
Front Microbiol ; 15: 1426893, 2024.
Article in English | MEDLINE | ID: mdl-39252828

ABSTRACT

Introduction: Plant growth-promoting rhizobacteria (PGPR) and elevated CO2 (eCO2) have demonstrated their individual potential to enhance plant yield and quality through close interaction with rhizosphere microorganisms and plant growth. However, the efficacy of PGPR under eCO2 on rhizosphere microbiome and, ultimately, plant yield and active ingredient accumulation are not yet fully understood. Methods: This study investigated how the medicinal plant Pseudostellaria heterophylla (P. heterophylla) and its rhizosphere microbes respond to PGPR (Bacillus subtilis and Pseudomonas fluorescens) at eCO2 (1,000 ppm). Results and Discussion: It was found that the yield and active ingredient polysaccharides accumulation in the tuber of P. heterophylla were significantly increased by 38 and 253%, respectively. This promotion has been associated with increased root development and changes in the indigenous microbial community. Metagenomics analysis revealed a significant reduction in pathogenic Fusarium abundance in the rhizosphere. Potential biocontrol bacteria Actinobacteria and Proteobacteria were enriched, especially the genera Bradyrhizobium and Rhodanobacter. The reshaping of the rhizosphere microbiome was accompanied by the upregulation of biological pathways related to metabolite biosynthesis in the rhizosphere. These modifications were related to the promotion of the growth and productivity of P. heterophylla. Our findings highlighted the significant role played by PGPR in medicinal plant yield and active ingredient accumulation when exposed to eCO2.

10.
Toxicol Rep ; 13: 101720, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39286406

ABSTRACT

Agmatine, 1-Amino-4-guanidinobutane, is a ubiquitous naturally occurring molecule present in low amounts in a wide variety of foodstuff. Clinical trials have demonstrated the safety of oral agmatine sulfate and have led to its development as an effective dietary ingredient for promoting resilient nerve functions. Although clearly required, the mutagenic and genotoxic effects of agmatine have not been previously reported. The present study, therefore, undertook to assess the safety profile of agmatine using currently accepted in vitro and in vivo mutagenicity and genotoxicity tests. The test item was G-Agmatine®, a proprietary brand of agmatine sulfate. Using the bacterial reverse mutation assay (Ames test), the study found that G-Agmatine® has no mutagenic effects. It had no clastogenic effects as observed by the in vitro chromosomal aberration test using Chinese Hamster lung cells. And it lacked genotoxic effects as evidenced by the lack of increased frequency of micronucleated polychromatic immature erythrocytes following oral administration in the mouse micronucleus test. Taken together with previously published data, results of the present study further support the safety of agmatine sulfate as a dietary ingredient.

11.
Foods ; 13(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39335787

ABSTRACT

The number of people with dementia is increasing annually worldwide. Alzheimer's disease (AD), which accounts for the highest percentage of dementia-causing diseases, remains difficult to cure, and prevention of its onset is important. We aimed to discover new AD-preventive ingredients and investigate the inhibitory effects of ten different species of seafood digests prepared by protease treatment on ß-secretase 1 (BACE1) activity. Substantial inhibition of BACE1 activity was observed in five species of seafood, and protease-digested whitebait (WPD) showed the highest inhibitory effect among the ten marine samples. We further examined the potential of WPD as an AD preventive component using a familial AD strain (5xFAD) murine model. The intraperitoneal administration of WPD for 28 days substantially decreased the insoluble amyloid ß1-42 content and the expression of glial fibrillary acidic protein, a marker of astrogliosis, in the cerebral cortex of the 5xFAD mice. These results strongly suggest that WPD is a novel functional food-derived ingredient with preventive effects against AD.

12.
Foods ; 13(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39335915

ABSTRACT

Mangosteen (Garcinia mangostana L.) fruits are high in nutrients and phytochemical compounds. The use of fresh whole mangosteen fruit pulp, including the seeds (MFS), instead of flour and sugar in crackers not only enhances the functional nutritional and medicinal benefits for consumers but also adds value to the products. The study investigated the nutritional value of MFS and then employed MFS to formulate MFS-based crackers with varying levels of MFS substitution in order to develop crackers enriched with functional ingredients. Proximate compositions, amino acids, sugars, minerals, fatty acids, color, texture, and antiradical properties were analyzed in fresh MFS and MFS-based crackers. The results indicated that MFS can be a source of crude fiber, minerals, amino acids, omega-6, and omega-9 fatty acids. Adding 13%, 18%, and 23% ground MFS to the crackers improved their nutritional value and physical characteristics compared to the control (0% MFS). MFS-based crackers promoted significantly (p < 0.05) higher fiber (4.04 ± 0.00-5.66 ± 0.01%gdw), ash (2.45 ± 0.00-2.74 ± 0.01%gdw), and protein (4.72 ± 0.00-7.72 ± 0.05%gdw) than the control without MFS addition. Carbohydrates (including dietary fiber) and total sugar decreased significantly (p < 0.05) to 57.68 ± 0.00-55.21 ± 0.11%gdw and 2.37 ± 0.00-4.42 ± 0.01%gdw, respectively, in all MFS-based crackers compared to the control basal cracker with added sugar. Moreover, MFS-based crackers contained oleic acid (C18:1, omega-9) at 5.19-5.78%gdw and linoleic acid (C18:2, omega-6) at 0.63-0.77%gdw. Furthermore, the MFS-based crackers had higher levels of minerals (i.e., potassium, phosphorus, sulfur, calcium, and magnesium) and bioactive compounds such as total phenolic acid and total flavonoid, as well as antiradical activity. This study revealed that MFS can be applied as an alternative functional ingredient in the manufacturing of nutritious cracker products, and the findings could potentially be implemented to promote the utilization of mangosteen seed as a sustainable agricultural product and waste-reducing method.

13.
Foods ; 13(18)2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39335934

ABSTRACT

The coffee pulp, a significant by-product of coffee processing, is often discarded but has potential for recycling and high-value uses. This study aimed to investigate the chemical composition of two coffee pulp ingredients, a flour (CPF) and an aqueous extract (CPE), and conducted acute and sub-chronic toxicity assays to determine their safety. The proximate composition revealed the high fiber content of both ingredients; the CPF mainly contained insoluble fiber, while CPE consisted exclusively of soluble pectic polysaccharides. The CPF had higher concentrations of amino acids and a better balance of essential/non-essential amino acids, whereas the CPE exhibited higher concentrations of free amino acids, ensuring higher bioavailability. Both ingredients showed elevated mineral content, while heavy-metal concentrations remained within acceptable limits. This study established the bioactive potential of the CPF and the CPE, demonstrating the high content of caffeine and gallic, protocatechuic, and 4-caffeoylquinic acids. The toxicity studies revealed that the CPF and the CPE exhibited safety when orally administered to mice. Administered doses were non-toxic, as they did not induce lethality or adverse effects in the mice or produce significant histopathological or biochemical adverse changes. This study represents a first step in valorizing the CPF and the CPE as safe novel food ingredients with health benefits for functional and nutritional foods.

14.
Article in English | MEDLINE | ID: mdl-39341418

ABSTRACT

BACKGROUND: There is a need to examine the impact of increasingly prevalent antibiotic shortages on patient outcomes and on the emergence and spread of antimicrobial resistance (AMR). OBJECTIVES: To: 1) assess patterns and causes of shortages, 2) investigate the effect of shortages on health systems and patient outcomes, and 3) identify strategies for forecasting and managing shortages. DATA SOURCES: PubMed/MEDLINE, EMBASE, Scopus, and Web of Science. STUDY ELIGIBILITY CRITERIA: Studies published in English during January 2000-July 2023. PARTICIPANTS: Healthcare, policy and strategic teams managing and responding to shortages. Patient populations (adult and children) affected by shortages. INTERVENTIONS: Strategies, policies, and mitigation options for managing and responding to antibiotic drug shortages. RISK OF BIAS: Methodological quality of included studies was reviewed using the most appropriate tool from Joanna Briggs Institute critical appraisal tool for each study design. METHODS: Data synthesis was qualitative and quantitative using descriptive statistics. RESULTS: The final analysis included 74 studies (61/74, 82.4% high-income countries). Shortages were most reported for piperacillin-tazobactam (21/74, 28.4%) with most of the reported antibiotics being in the WHO Watch category (27/54, 51%). Frequent cause of shortages was disruption in manufacturing including supply of active pharmaceutical ingredient and raw materials. Clinical implications of shortages included increased length of hospital stay, treatment failure after using inferior alternative agents and negative impact on antimicrobial stewardship programmes (AMS). Robust economic impact analysis of shortages is unavailable. Successfully reported mitigation strategies were driven by AMS and infectious diseases teams in hospitals. CONCLUSIONS: Antibiotic shortages are directly or indirectly driven by economic viability and reliance on single source ingredients. The limited data on clinical outcomes indicates mixed effect with some infections becoming more difficult to treat, though there is no robust data on the impact of shortages on AMR. The mitigation strategies to manage shortages rely heavily on AMS teams.

15.
Poult Sci ; 103(12): 104297, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39326177

ABSTRACT

This study aimed to evaluate several fibrous feed ingredients as potential substitutes for oat hulls (OH), assessing their efficacy in providing structural integrity to broiler feeds. A total of 4,160 day-old male Ross-308 broilers were allocated to eight dietary treatments, including a control group (CON) without additional fiber supplementation and 7 diets where 3% of the wheat content was replaced by either OH, soy hulls (SH), beet pulp (BP), carob bean (CB), wheat straw (WS), rice hulls (RH), or wheat bran (WB). The experimental design followed a complete randomized block design with 10 pens per treatment and 52 birds each. Growth performance and gut development indices were monitored, and the coefficients of total tract apparent retention (CTTAR) of nutrients were measured at 28 d. The OH improved feed conversion ratio (FCR) during the entire growth period (1-36 d) compared to the CON, SH, CB, WS, RH, and WB (P < 0.05). Conversely, BP diets reduced the final BW and ADFI compared to OH (P < 0.05) but were not different from the CON (P > 0.05). However, the FCR in birds fed with BP was similar to OH but lower than the CON group. In addition, BP-fed birds had higher CTTAR of ether extract and non-starch polysaccharides and relative weight of empty proventriculus and gizzard to BW at 14 and 28 d compared to CON. The WS, RH, and WB yielded similar final BW to OH and CON but higher FCR (P < 0.05). The CB, on the other hand, resulted in the highest FCR when contrasted with the other substitutes and CON (P < 0.05). Finding an alternative to OH with comparable benefits remains a challenge, with WS, RH, and WB showing similar final BW but inferior FCR to OH, and BP showing similar FCR but lower BW and ADFI.

16.
Acta Crystallogr C Struct Chem ; 80(Pt 10): 685-692, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39226425

ABSTRACT

We report the crystal structures of three matrine derivatives, namely, the salts (1R,2R,9S,17S)-6-oxo-7,13-diazatetracyclo[7.7.1.02,7.013,17]heptadecan-13-ium (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate (matrine caffeinate) sesquihydrate, C15H25N2O+·C9H7O4-·1.5H2O (Matrine-CA), and the 2-hydroxybenzoate (salicylate) monohydrate, C15H25N2O+·C7H5O3-·H2O (Matrine-SA), as well as the 1.75-hydrate form, (1R,2R,9S,17S)-7,13-diazatetracyclo[7.7.1.02,7.013,17]heptadecan-6-one 1.75-hydrate, C15H24N2O·1.75H2O (Matrine-H). Each derivative exhibited a consistent molecular conformation for the matrine core, which is notably distinct from that of the anhydrous form. Notably, both salts crystallized in the orthorhombic space group P212121, with an asymmetric unit featuring one cation and one anion. Within the two salt structures, intermolecular proton transfer between matrine and the acid is observed, culminating in the formation of a matrine cation protonated at the tertiary amine N site. The Matrine-CA crystal packing is manifested as a three-dimensional (3D) network arising from one-dimensional (1D) supramolecular helical chains, stabilized by N-H...O and O-H...O hydrogen bonds. In the case of Matrine-SA, the matrine cation is interconnected via hydrogen bonds with salicylate anions and water molecules, also forming a 1D helical motif. The structure of the hydrate form, Matrine-H, is reported again with the disordered solvent molecules accurately located. To further elucidate the structural attributes, Hirshfeld surface analysis and fingerprint plots are employed, offering a nuanced perspective on the intermolecular contacts and interactions within these crystalline forms.

17.
Heliyon ; 10(18): e37600, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39309964

ABSTRACT

Introduction: During processing, a large amount of by-products is produced from tamarillo fruits in the form of stalks, outer skins, and pomace (residual seeds and inner skins). This material is a renewable source of bioactive compounds with high economic value and positive effects on human health. Previous reviews have focused on the ethnobotanical, traditional uses, and phytochemistry of the tamarillo fruit. This report aims to compile production and cultivation data, as well as the valorization of this agro-industrial residue, green extraction methods used for extracting the bioactive compounds, and their biological activity. Method: In this study, a literature search was conducted in five scientific databases: Web of Science, ScienceDirect, Scopus, PubMed, and Google Scholar to retrieve research published in English, Spanish, or Portuguese between 2009 and 2024, which mentions the composition and extraction methods of bioactive compounds from tamarillo wastes and by-products and the health benefits associated with these compounds. The data extracted was compiled and shown in this scoping review. Results: Tamarillo wastes and by products have a rich nutritional and bioactive composition, including high protein, vitamins A and C, minerals, dietary fiber, sugars, terpenes, flavonoids, carotenoids, anthocyanins, and other phytochemicals. Green methods have been effective, yielding high amounts of these compounds while preserving their integrity. Natural polyphenols have shown antioxidant, anticholinesterase, anti-inflammatory, antimicrobial, anti-diabetic, and anti-obesity properties. The antioxidant fibers, mucilage, and pectin of the pomace contribute to improved intestinal health. Conclusion: Therefore, these wastes and by-products have potential uses as natural colorant, antioxidants, supplements, functional foods, active biobased films, and in pharmaceutical and cosmeceutical sectors due to their effective bioactive molecules. Future research should focus on the use of tamarillo by-products as a source of functional ingredients in several other formulations that are still little explored, as well as their use as a natural colorant and antioxidant. More studies are necessary on the composition-activity relationship, physiological mechanisms, and clinical response.

18.
Food Chem ; 463(Pt 2): 141268, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39298856

ABSTRACT

Curry leaf (Murraya koenigii L.) is valued for its characteristic flavor and is used in varied cuisines and formulations. In this work, the effect of three different drying techniques: tray drying (TD), conductive hydro drying (CHD), and freeze drying (FD), at varying temperatures (40 °C, 60 °C, 80 °C) on the phytochemical and physical properties of curry leaf dried as leaf or as pulp was evaluated. Drying behavior was studied using the Page model and effective diffusivity was found to increase with temperature. CHD at 40 °C resulted in the lowest moisture content (4.98 ± 0.03 %) while FD resulted in the lowest water activity (0.54 ± 0.04). Excellent flow properties were observed in TD 60 °C and CHD 80 °C. However, CHD at 40 °C exhibited superior color retention. TD 80 °C and CHD 80 °C, with reduced drying duration resulted in higher phenolics, flavonoids and alkaloid contents. On the contrary, CHD 40 °C sample showed better antioxidant activity and flavor retention through GC-MS. Similarly, SEM analysis showed intact cell structures in samples dried at lower temperatures. Overall, considering drying time, product quality, and process costs, CHD, often regarded as a nonthermal approach, is an excellent approach for the production of curry leaf powder.

19.
Food Chem ; 463(Pt 2): 141170, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39288456

ABSTRACT

When conventional solvents such as water, methanol, ethanol, hexane, petroleum ether, etc., are used to extract active ingredients from natural resources, an evaporation process is required to remove solvent from active ingredients, which not only consumes huge amounts of energy, but also causes harm to human health and the environment. The CO2-responsive switchable hydrophilic solvent (SHS) based on amines and water is an emerging, green and recyclable solvent, which not only has high extraction efficiency of active ingredients, but also can remove solvent from active ingredients without evaporation process. This paper reviews the research progress of amine-based SHS in the extraction of bioactive ingredients from natural resources. The process flow, extraction mechanism, critical influencing factors, recovery of amines and latest applications have been summarized. On this basis, some shortcomings of amine-based SHS are also pointed out. Finally, the improvement directions of amine-based SHS extraction in the future is prospected.

20.
J Anim Sci ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292957

ABSTRACT

To be more sustainable, the pet food industry could increase inclusion of animal by-products from the human food chain and fish hydrolysates have been reported to benefit dogs' health. However, there is limited research on the impact of alternative marine hydrolysates in dog food. The current study evaluated the effects of including shrimp hydrolysate as replacement for wheat gluten (experimental diet) in an extruded complete diet (control diet) on diet palatability, intake, digestibility, fecal characteristics and metabolites, oral volatile sulfur compounds (VSC) and coat quality in dogs. Palatability of diets was assessed in a two-bowl test, conducted with twelve healthy adult Beagle dogs. No differences were observed in first approach, first taste or intake ratio. A randomized block design lasting 12 weeks were performed with 12 dogs distributed into six blocks, according to sex and body weight; one dog from each block was randomly allocated to each diet. Fecal characteristics and metabolites were measured in weeks 0, 4, 8, and 12, VSC and coat quality in weeks 4, 8 and 12, and apparent total tract digestibility (ATTD) of nutrients and energy in week 12. The inclusion of shrimp hydrolysate did not affect intake, but increased fecal output (dry matter, DM, basis, P < 0.05). Fecal butyrate concentration was lower (P < 0.05) in dogs fed the experimental diet. The inclusion of shrimp hydrolysate did not affect ATTD of nutrients and energy, and VSC. Both diets promoted high coat quality. The experimental diet decreased gloss and general evaluation scores in week 4 (P < 0.05), but improved scale score in weeks 4 and 12 (P < 0.05). Overall, the findings indicate the potential of including shrimp hydrolysate in diets for dogs, fostering a more sustainable industry.

SELECTION OF CITATIONS
SEARCH DETAIL