Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Antimicrob Agents Chemother ; : e0059524, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133023

ABSTRACT

Bacillus anthracis, the causative agent of anthrax, is among the most likely bacterial pathogens to be used in a biological attack. Inhalation anthrax is a serious, life-threatening form of infection, and the mortality from acute inhaled anthrax can approach 100% if not treated early and aggressively. Food and Drug Administration-approved antibiotics indicated for post-exposure prophylaxis (PEP) or treatment of anthrax are limited. This study assessed the in vitro activity and in vivo efficacy of omadacycline and comparators against clinical isolates of B. anthracis, including a ciprofloxacin-resistant isolate. Minimum inhibitory concentrations (MICs) of omadacycline, ciprofloxacin, and doxycycline were determined against animal and human clinical isolates of B. anthracis, including the ciprofloxacin-resistant Ames strain BACr4-2. Mice were challenged with aerosolized BACr4-2 spores, and survival was monitored for 28 days post-challenge. Treatment was initiated 24 h after aerosol challenge and administered for 14 days. Omadacycline demonstrated in vitro activity against 53 B. anthracis isolates with an MIC range of ≤0.008-0.25 µg/mL, and an MIC50/MIC90 of 0.015/0.03 µg/mL. Consistent with this, omadacycline demonstrated in vivo efficacy in a PEP mouse model of inhalation anthrax caused by the Ames BACr4-2 ciprofloxacin-resistant B. anthracis isolate. Omadacycline treatment significantly increased survival compared with the vehicle control group and the ciprofloxacin treatment group. As antibiotic resistance rates continue to rise worldwide, omadacycline may offer an alternative PEP or treatment option against inhalation anthrax, including anthrax caused by antibiotic-resistant B. anthracis.

2.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38888319

ABSTRACT

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Subject(s)
Aminoglycosides , Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Lipoglycopeptides , Microbial Sensitivity Tests , Respiratory Tract Infections , Animals , Lipoglycopeptides/pharmacology , Rabbits , Anthrax/drug therapy , Anthrax/microbiology , Anthrax/mortality , Bacillus anthracis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aminoglycosides/pharmacology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Disease Models, Animal , Levofloxacin/pharmacology , Female
3.
Clin Infect Dis ; 75(Suppl 3): S411-S416, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36251550

ABSTRACT

BACKGROUND: Sufficient and diverse medical countermeasures against severe pathogenic infections, such as inhalation anthrax, are a critical need. Azithromycin and clarithromycin are antimicrobials commonly used for both upper and lower respiratory infections. They inhibit protein synthesis by blocking the formation of the 50S ribosomal subunit. To expand the armamentarium, these 2 antibiotics were evaluated in a postexposure prophylactic model of inhalation anthrax in cynomolgus macaques. METHODS: This prophylaxis study had 4 test arms: azithromycin, clarithromycin, a levofloxacin control, and a placebo. Beginning 24 hours after exposure to a target challenge dose of 200 lethal dose 50 (LD50) of Bacillus anthracis Ames spores, animals were treated orally until 30 days postchallenge and then observed until 75 days postchallenge. RESULTS: The test group that received clarithromycin had a survival rate of 67%. The test group that received azithromycin had a survival rate of 50%, but the peak azithromycin plasma levels achieved were <30 ng/mL-much lower than the expected 410 ng/mL. The levofloxacin positive control had a survival rate of 50%; all of the negative controls succumbed to infection. CONCLUSIONS: The efficacy of clarithromycin prophylaxis was statistically significant compared with placebo, while azithromycin prophylaxis was indistinguishable from placebo. Given the low plasma concentrations of azithromycin achieved in the study, it is not surprising that half the animals succumbed to anthrax during the dosing period; the animals that survived beyond the time during which placebo control animals succumbed survived to the end of the observation period.


Subject(s)
Anthrax , Bacillus anthracis , Respiratory Tract Infections , Animals , Anthrax/drug therapy , Anthrax/prevention & control , Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , Bacillus anthracis/metabolism , Clarithromycin/therapeutic use , Disease Models, Animal , Levofloxacin/therapeutic use , Macaca fascicularis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/prevention & control
4.
Clin Infect Dis ; 75(Suppl 3): S402-S410, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36251552

ABSTRACT

Amoxicillin is a broad-spectrum antibiotic used to treat a variety of gram-positive and gram-negative infections, such as infections of the ear, nose, and throat, genitourinary tract, skin, and lower respiratory tract; gonorrhea; and Helicobacter pylori. The prophylactic benefit of both amoxicillin and Augmentin (amoxicillin-clavulanate for use against ß-lactamase-expressing bacteria) was evaluated for inhalation anthrax in cynomolgus macaques in 2 studies. A pilot study on amoxicillin-clavulanate that used a portion of the study animals demonstrated empirically that dosing twice a day was efficacious. In a subsequent study on both amoxicillin and amoxicillin-clavulanate that used the remaining study animals, the animals were treated orally every 12 hours on days 1-28 postchallenge and followed for an additional 60 days (total of 88 days from day of aerosol challenge to when the animals were culled). The animals from each treatment arm of the 2 studies were completely protected. All untreated animals succumbed to the infection. The degree of protection observed in this study suggests that both amoxicillin and amoxicillin-clavulanate, administered prophylactically over a period of 28 days after a lethal exposure to Bacillus anthracis spores, is sufficient for full protection.


Subject(s)
Bacillus anthracis , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Amoxicillin-Potassium Clavulanate Combination/therapeutic use , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macaca , Pilot Projects , beta-Lactamases
5.
Clin Infect Dis ; 75(Suppl 3): S392-S401, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36251553

ABSTRACT

BACKGROUND: Bacillus anthracis can cause anthrax and is a potential bioterrorism agent. The 2014 Centers for Disease Control and Prevention recommendations for medical countermeasures against anthrax were based on in vitro data and expert opinion. However, a century of previously uncompiled observational human data that often includes treatment and outcomes is available in the literature for analysis. METHODS: We reviewed treatment outcomes for patients hospitalized with anthrax. We stratified patients by meningitis status, route of infection, and systemic criteria, then analyzed survival by treatment type, including antimicrobials, antitoxin/antiserum, and steroids. Using logistic regression, we calculated odds ratios and 95% confidence intervals to compare survival between treatments. We also calculated hospital length of stay. Finally, we evaluated antimicrobial postexposure prophylaxis (PEPAbx) using data from a 1970 Russian-language article. RESULTS: We identified 965 anthrax patients reported from 1880 through 2018. After exclusions, 605 remained: 430 adults, 145 children, and 30 missing age. Survival was low for untreated patients and meningitis patients, regardless of treatment. Most patients with localized cutaneous or nonmeningitis systemic anthrax survived with 1 or more antimicrobials; patients with inhalation anthrax without meningitis fared better with at least 2. Bactericidal antimicrobials were effective for systemic anthrax; addition of a protein synthesis inhibitor(s) (PSI) to a bactericidal antimicrobial(s) did not improve survival. Likewise, addition of antitoxin/antiserum to antimicrobials did not improve survival. Mannitol improved survival for meningitis patients, but steroids did not. PEPAbx reduced risk of anthrax following exposure to B. anthracis. CONCLUSIONS: Combination therapy appeared to be superior to monotherapy for inhalation anthrax without meningitis. For anthrax meningitis, neither monotherapy nor combination therapy were particularly effective; however, numbers were small. For localized cutaneous anthrax, monotherapy was sufficient. For B. anthracis exposures, PEPAbx was effective.


Subject(s)
Anthrax , Anti-Infective Agents , Antitoxins , Bacillus anthracis , Adult , Anthrax/drug therapy , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Antitoxins/therapeutic use , Biological Warfare Agents , Bioterrorism , Child , Hospitals , Humans , Mannitol/therapeutic use , Protein Synthesis Inhibitors/therapeutic use , Respiratory Tract Infections , Treatment Outcome
6.
Clin Infect Dis ; 75(Suppl 3): S441-S450, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36251555

ABSTRACT

BACKGROUND: The deliberate use of Bacillus anthracis spores is believed by the US government to be a high bioweapons threat. The first line of defense following potential exposure to B. anthracis spores would be postexposure prophylaxis with antimicrobials that have activity against B. anthracis. Additional therapies to address the effects of toxins may be needed in systemically ill individuals. Over the last 2 decades, the United States government (USG) collaborated with the private sector to develop, test, and stockpile 3 antitoxins: anthrax immunoglobulin intravenous (AIGIV), raxibacumab, and obiltoxaximab. All 3 products target protective antigen, a protein factor common to the 2 exotoxins released by B. anthracis, and hamper or block the toxins' effects and prevent or reduce pathogenesis. These antitoxins were approved for licensure by the United States Food and Drug Administration based on animal efficacy studies compared to placebo. METHODS: We describe USG-sponsored pre- and postlicensure studies that compared efficacy of 3 antitoxins in a New Zealand White rabbit model of inhalation anthrax; survival following a lethal aerosolized dose of B. anthracis spores was the key measure of effectiveness. To model therapeutic intervention, intravenous treatments were started following onset of antigenemia. RESULTS: In pre- and postlicensure studies, all 3 antitoxins were superior to placebo; in the postlicensure study, raxibacumab and obiltoxaximab were superior to AIGIV, but neither was superior to the other. CONCLUSIONS: These data illustrate the relative therapeutic benefit of the 3 antitoxins and provide a rationale to prioritize their deployment.


Subject(s)
Anthrax , Antitoxins , Bacillus anthracis , Animals , Anthrax/drug therapy , Anthrax/prevention & control , Antigens, Bacterial , Antitoxins/therapeutic use , Exotoxins , Rabbits
7.
Clin Infect Dis ; 75(Suppl 3): S364-S372, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36251557

ABSTRACT

This report describes a 49-year-old male construction worker who acquired a Bacillus anthracis infection after working on a sheep farm. He experienced a severe respiratory infection, septic shock, and hemorrhagic meningoencephalitis with severe intracranial hypertension. After several weeks with multiple organ dysfunction syndrome, he responded favorably to antibiotic treatment. Three weeks into his hospitalization, an intracranial hemorrhage and cerebral edema led to an abrupt deterioration in his neurological status. A single dose of raxibacumab was added to his antimicrobial regimen on hospital day 27. His overall status, both clinical and radiographic, improved within a few days. He was discharged 2 months after admission and appears to have fully recovered.


Subject(s)
Anthrax , Bacillus anthracis , Meningitis , Animals , Anthrax/complications , Anthrax/drug therapy , Anti-Bacterial Agents/therapeutic use , Male , Meningitis/drug therapy , Respiratory Tract Infections , Sheep
8.
Clin Infect Dis ; 75(Suppl 3): S341-S353, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36251560

ABSTRACT

BACKGROUND: Anthrax is a toxin-mediated zoonotic disease caused by Bacillus anthracis, with a worldwide distribution recognized for millennia. Bacillus anthracis is considered a potential biowarfare agent. METHODS: We completed a systematic review for clinical and demographic characteristics of adults and children hospitalized with anthrax (cutaneous, inhalation, ingestion, injection [from contaminated heroin], primary meningitis) abstracted from published case reports, case series, and line lists in English from 1880 through 2018, assessing treatment impact by type and severity of disease. We analyzed geographic distribution, route of infection, exposure to anthrax, and incubation period. RESULTS: Data on 764 adults and 167 children were reviewed. Most cases reported for 1880 through 1915 were from Europe; those for 1916 through 1950 were from North America; and from 1951 on, cases were from Asia. Cutaneous was the most common form of anthrax for all populations. Since 1960, adult anthrax mortality has ranged from 31% for cutaneous to 90% for primary meningitis. Median incubation periods ranged from 1 day (interquartile range [IQR], 0-4) for injection to 7 days (IQR, 4-9) for inhalation anthrax. Most patients with inhalation anthrax developed pleural effusions and more than half with ingestion anthrax developed ascites. Treatment and critical care advances have improved survival for those with systemic symptoms, from approximately 30% in those untreated to approximately 70% in those receiving antimicrobials or antiserum/antitoxin. CONCLUSIONS: This review provides an improved evidence base for both clinical care of individual anthrax patients and public health planning for wide-area aerosol releases of B. anthracis spores.


Subject(s)
Anthrax , Antitoxins , Bacillus anthracis , Adult , Aerosols , Anthrax/diagnosis , Anthrax/epidemiology , Biological Warfare Agents , Child , Heroin/therapeutic use , Humans , Respiratory Tract Infections
9.
Prehosp Disaster Med ; 35(4): 412-419, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32495728

ABSTRACT

BACKGROUND: Anthrax is a potential biological weapon and can be used in an air-borne or mail attack, such as in the attack in the United States in 2001. Planning for such an event requires the best available science. Since large-scale experiments are not feasible, mathematical modelling is a crucial tool to inform planning. The aim of this study is to systematically review and evaluate the approaches to mathematical modelling of inhalational anthrax attack to support public health decision making and response. METHODS: A systematic review of inhalational anthrax attack models was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The models were reviewed based on a set of defined criteria, including the inclusion of atmospheric dispersion component and capacity for real-time decision support. RESULTS: Of 13 mathematical modelling studies of human inhalational anthrax attacks, there were six studies that took atmospheric dispersion of anthrax spores into account. Further, only two modelling studies had potential utility for real-time decision support, and only one model was validated using real data. CONCLUSION: The limited modelling studies available use widely varying methods, assumptions, and data. Estimation of attack size using different models may be quite different, and is likely to be under-estimated by models which do not consider weather conditions. Validation with available data is crucial and may improve models. Further, there is a need for both complex models that can provide accurate atmospheric dispersion modelling, as well as for simpler modelling tools that provide real-time decision support for epidemic response.


Subject(s)
Anthrax , Bioterrorism/prevention & control , Decision Support Techniques , Models, Theoretical , Public Health , Respiratory Tract Infections , Humans
10.
Emerg Infect Dis ; 23(1): 46-55, 2017 01.
Article in English | MEDLINE | ID: mdl-27983505

ABSTRACT

Health officials lack field-implementable tools for forecasting the effects that a large-scale release of Bacillus anthracis spores would have on public health and hospitals. We created a modeling tool (combining inhalational anthrax caseload projections based on initial case reports, effects of variable postexposure prophylaxis campaigns, and healthcare facility surge capacity requirements) to project hospitalizations and casualties from a newly detected inhalation anthrax event, and we examined the consequences of intervention choices. With only 3 days of case counts, the model can predict final attack sizes for simulated Sverdlovsk-like events (1979 USSR) with sufficient accuracy for decision making and confirms the value of early postexposure prophylaxis initiation. According to a baseline scenario, hospital treatment volume peaks 15 days after exposure, deaths peak earlier (day 5), and recovery peaks later (day 23). This tool gives public health, hospital, and emergency planners scenario-specific information for developing quantitative response plans for this threat.


Subject(s)
Anthrax/epidemiology , Anthrax/prevention & control , Clinical Decision-Making/methods , Decision Support Techniques , Disease Management , Disease Outbreaks , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Animals , Anthrax/mortality , Anthrax/transmission , Anti-Bacterial Agents/therapeutic use , Bacillus anthracis/pathogenicity , Bacillus anthracis/physiology , Humans , Incidence , Respiratory Tract Infections/mortality , Respiratory Tract Infections/transmission , Survival Analysis , Time Factors , Uncertainty , United States/epidemiology
11.
Risk Anal ; 36(11): 2031-2038, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26889937

ABSTRACT

There is a need to advance our ability to characterize the risk of inhalational anthrax following a low-dose exposure. The exposure scenario most often considered is a single exposure that occurs during an attack. However, long-term daily low-dose exposures also represent a realistic exposure scenario, such as what may be encountered by people occupying areas for longer periods. Given this, the objective of the current work was to model two rabbit inhalational anthrax dose-response data sets. One data set was from single exposures to aerosolized Bacillus anthracis Ames spores. The second data set exposed rabbits repeatedly to aerosols of B. anthracis Ames spores. For the multiple exposure data the cumulative dose (i.e., the sum of the individual daily doses) was used for the model. Lethality was the response for both. Modeling was performed using Benchmark Dose Software evaluating six models: logprobit, loglogistic, Weibull, exponential, gamma, and dichotomous-Hill. All models produced acceptable fits to either data set. The exponential model was identified as the best fitting model for both data sets. Statistical tests suggested there was no significant difference between the single exposure exponential model results and the multiple exposure exponential model results, which suggests the risk of disease is similar between the two data sets. The dose expected to cause 10% lethality was 15,600 inhaled spores and 18,200 inhaled spores for the single exposure and multiple exposure exponential dose-response model, respectively, and the 95% lower confidence intervals were 9,800 inhaled spores and 9,200 inhaled spores, respectively.


Subject(s)
Anthrax , Respiratory Tract Infections , Risk Assessment/methods , Aerosols , Animals , Bacillus anthracis , Disease Models, Animal , Inhalation Exposure , Models, Statistical , Rabbits , Spores, Bacterial
12.
Vaccine ; 33(3): 430-6, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25454087

ABSTRACT

BACKGROUND: Anthrax represents a formidable bioterrorism threat for which new, optimized vaccines are required. We previously demonstrated that epitope-focused multiple antigenic peptides or a recombinant protein in Freund's adjuvant can elicit Ab against the loop neutralizing determinant (LND), a cryptic linear neutralizing epitope in the 2ß2-2ß3 loop of protective antigen from Bacillus anthracis, which mediated protection of rabbits from inhalation challenge with B. anthracis Ames strain. However, demonstration of efficacy using human-use adjuvants is required before proceeding with further development of an LND vaccine for testing in non-human primates and humans. METHODS: To optimize the LND immunogen, we first evaluated the protective efficacy and immune correlates associated with immunization of rabbits with mixtures containing two molecular variants of multiple antigenic peptides in Freunds adjuvant, termed BT-LND(2) and TB-LND(2). TB-LND(2) was then further evaluated for protective efficacy in rabbits employing human-use adjuvants. RESULTS: Immunization of rabbits with TB-LND(2) in human-use adjuvants elicited protection from Ames strain spore challenge which was statistically indistinguishable from that elicited through immunization with protective antigen. All TB-LND(2) rabbits with any detectable serum neutralization prior to challenge were protected from aerosolized spore exposure. Remarkably, rabbits immunized with TB-LND(2) in Alhydrogel/CpG had significant anamnestic increases in post-challenge LND-specific Ab and neutralization titers despite little evidence of spore germination in these rabbits. CONCLUSIONS: An LND-specific epitope-focused vaccine may complement PA-based vaccines and may represent a complementary stand-alone vaccine for anthrax.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Anthrax Vaccines/administration & dosage , Anthrax Vaccines/immunology , Anthrax/prevention & control , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Epitopes/immunology , Respiratory Tract Infections/prevention & control , Aluminum Hydroxide/administration & dosage , Animals , Anthrax/immunology , Disease Models, Animal , Female , Oligodeoxyribonucleotides/administration & dosage , Rabbits , Respiratory Tract Infections/immunology , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
13.
Pathog Dis ; 72(2): 138-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25044336

ABSTRACT

In the past decade, several Bacillus cereus strains have been isolated from otherwise healthy individuals who succumbed to bacterial pneumonia presenting symptoms resembling inhalational anthrax. One strain was indistinguishable from B. cereus G9241, previously cultured from an individual who survived a similar pneumonia-like illness and which was shown to possess a complete set of plasmid-borne anthrax toxin-encoding homologs. The finding that B. cereus G9241 pathogenesis in mice is dependent on pagA1-derived protective antigen (PA) synthesis suggests that an anthrax toxin-based vaccine may be effective against this toxin-encoding B. cereus strain. Dunkin Hartley guinea pigs were immunized with protein- and DNA-based anthrax toxin-based vaccines, immune responses were evaluated and survival rates were calculated after lethal aerosol exposure with B. cereus G9241 spores. Each vaccine induced seroconversion with the protein immunization regimen eliciting significantly higher serum levels of antigen-specific antibodies at the prechallenge time-point compared with the DNA-protein prime-boost immunization schedule. Complete protection against lethal challenge was observed in all groups with a detectable prechallenge serum titer of toxin neutralizing antibodies. For the first time, we demonstrated that the efficacy of fully defined anthrax toxin-based vaccines was protective against lethal B. cereus G9241 aerosol challenge in the guinea pig animal model.


Subject(s)
Anthrax Vaccines/immunology , Antigens, Bacterial/immunology , Bacillus cereus/immunology , Bacterial Toxins/immunology , Gram-Positive Bacterial Infections/prevention & control , Inhalation Exposure , Pneumonia, Bacterial/prevention & control , Vaccines, DNA/immunology , Animals , Anthrax Vaccines/administration & dosage , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Antigens, Bacterial/genetics , Antitoxins/blood , Bacterial Toxins/antagonists & inhibitors , Bacterial Toxins/genetics , Disease Models, Animal , Gram-Positive Bacterial Infections/microbiology , Guinea Pigs , Mice, Inbred C57BL , Pneumonia, Bacterial/microbiology , Survival Analysis , Vaccines, DNA/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
14.
Emerg Infect Dis ; 20(2): 310-4, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24447456

ABSTRACT

Bacillus anthracis was identified in a 61-year-old man hospitalized in Minnesota, USA. Cooperation between the hospital and the state health agency enhanced prompt identification of the pathogen. Treatment comprising antimicrobial drugs, anthrax immune globulin, and pleural drainage led to full recovery; however, the role of passive immunization in anthrax treatment requires further evaluation.


Subject(s)
Anthrax/microbiology , Antibodies, Bacterial/blood , Antibodies, Viral/blood , Antigens, Bacterial/blood , Bacillus anthracis/isolation & purification , Bacterial Toxins/blood , Respiratory Tract Infections/microbiology , Anthrax/diagnosis , Anthrax/immunology , Anthrax/therapy , Anti-Bacterial Agents/therapeutic use , Bacillus anthracis/pathogenicity , Drainage, Postural , Drug Administration Schedule , Humans , Immunoglobulins, Intravenous/therapeutic use , Male , Middle Aged , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/immunology , Respiratory Tract Infections/therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL