Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.313
Filter
1.
Sci Rep ; 14(1): 15634, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972879

ABSTRACT

Sepsis is a life-threatening condition that arises when the body's response to infection causes injury to its tissues and organs. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme released in response to the drop in cholesterol level occurring in sepsis. Our study aimed to evaluate the prognostic role of serum Proprotein convertase subtilisin/kexin type 9 (PCSK9) level in children with sepsis and severe sepsis. Sixty children were included in this study. They were divided into two groups: 30 children in the sepsis group and 30 in the severe sepsis group. Another 30 apparently healthy children were included as a control group. Blood samples were withdrawn from all included children for complete blood count (CBC), renal function tests (RFT), liver function tests (LFT), LDL-cholesterol (LDL-C), blood culture, and serum PCSK9. In this study, PCSK9 and LDL-C were higher in the two sepsis groups than in the control group (p < 0.05). They were also higher in the severe sepsis group than the sepsis group and in the non-survivors than in the survivors (p < 0.05). PCSK9 was positively correlated with length of hospital stay in surviving children (r = 0.67, p = 0.001) and had predicted significant hematological dysfunction (adjusted B = - 96.95, p = 0.03). In conclusion, the PCSK9 assay can be used as a biomarker for bad prognosis in children suffering from clinical sepsis.


Subject(s)
Biomarkers , Proprotein Convertase 9 , Sepsis , Humans , Proprotein Convertase 9/blood , Sepsis/blood , Sepsis/diagnosis , Male , Female , Child , Child, Preschool , Biomarkers/blood , Prognosis , Cholesterol, LDL/blood , Infant , Case-Control Studies
2.
Open Biol ; 14(7): 230437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955221

ABSTRACT

Toxorhynchites mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito Toxorhynchites theobaldi was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of Tx. theobaldi, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.


Subject(s)
Culicidae , Animals , Culicidae/physiology , Culicidae/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Transcriptome , Gene Expression Profiling , Digestive System/metabolism , Digestion , Gastrointestinal Tract/metabolism , Phylogeny , Feeding Behavior
3.
J Exp Bot ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989653

ABSTRACT

In plant biology Fusicoccin (FC) is one of the most studied fungal metabolites to date. Since the structural identification in 1964, much has been learned about its effects on the physiology of plants, about the interference with the action of plant hormones, the molecular nature of the plant receptor(s) for FC and the biosynthetic pathway for FC in the fungus. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase|14-3-3 receptor has taken center stage in explaining all FC induced physiological effects. However, a more critical review shows that this is not at all evident for a number of FC induced effects. Examples of this are: the inhibition of outward rectifying K+-channels in guard cells, the phosphorylation/activation of PEP-carboxylase and malate accumulation, the antagonism with ABA induced production of H2O2 / NO and the effect on ethylene production. In addition, recently two other physiological processes were shown to be targeted by FC, viz. the activation of TORC1 and the interference of FC with the immune response to fungal elicitors. In this review, the notion will be challenged that all FC affected processes start with the binding to and activation of the PM-ATPase and the question is raised whether may be other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule; in analogy to the fungal product and plant hormone gibberellic acid. A relevant question in this respect is whether it is a coincidence that proteins that act in a coordinated fashion during stomatal opening (the ATPases and K+-channels) are targeted by FC? Or are the sites where FC binds in the plant, conserved during evolution because they serve a physiological role, namely the accommodation of a plant produced molecule? In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile to make a renewed attempt with current day improved technology to answer this question and may be upgrade FC or structural analogue(s) to a new level, the level of plant hormone.

4.
Cells ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38994977

ABSTRACT

Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the tightly regulated local inflammatory response triggered in the early post-MI phase involving cardiomyocytes, (myo)fibroblasts, endothelial cells, and infiltrating immune cells. Next, we explore how the bone marrow and extramedullary hematopoiesis (such as in the spleen) contribute to sustaining immune cell supply at a cardiac level. Lastly, we discuss recent findings on how metabolic cardiovascular risk factors, including hypercholesterolemia, hypertriglyceridemia, diabetes, and hypertension, disrupt this immunological response and explore the potential modulatory effects of lifestyle habits and pharmacological interventions. Understanding how different metabolic risk factors influence the inflammatory response triggered by MI and unraveling the underlying molecular and cellular mechanisms may pave the way for developing personalized therapeutic approaches based on the patient's metabolic profile. Similarly, delving deeper into the impact of lifestyle modifications on the inflammatory response post-MI is crucial. These insights may enable the adoption of more effective strategies to manage post-MI inflammation and improve cardiovascular health outcomes in a holistic manner.


Subject(s)
Inflammation , Myocardial Infarction , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/therapy , Myocardial Infarction/physiopathology , Inflammation/pathology , Risk Factors , Animals
5.
Front Physiol ; 15: 1339907, 2024.
Article in English | MEDLINE | ID: mdl-38952870

ABSTRACT

Introduction: Several fluorescent proteins (FPs) and chromoproteins (CPs) are present in anthozoans and play possible roles in photoprotection. Coral tissues in massive corals often display discoloration accompanied by inflammation. Incidences of the pink pigmentation response (PPR) in massive Porites, described as inflammatory pink lesions of different shapes and sizes, has recently increased worldwide. FPs are reported to be present in PPR lesions, wherein a red fluorescent protein (RFP) appears to play a role in reducing reactive oxygen species. However, to date, the biochemical characterization and possible roles of the pigments involved are poorly understood. The present study aimed to identify and characterize the proteins responsible for pink discoloration in massive Porites colonies displaying PPRs, as well as to assess the differential distribution of pigments and the antioxidant properties of pigmented areas. Method: CPs were extracted from PPR lesions using gel-filtration chromatography and identified via genetic analysis using liquid chromatography-tandem mass spectrometry. The coexistence of CPs and RFP in coral tissues was assessed using microscopic observation. Photosynthetic antivity and hydrogen peroxide-scavenging activitiy were measured to assess coral stress conditions. Results: The present study revealed that the same CP (plut2.m8.16902.m1) isolated from massive Porites was present in both the pink spot and patch morphologies of the PPR. CPs were also found to coexist with RFP in coral tissues that manifested a PPR, with a differential distribution (coenosarc or tip of polyps' tentacles). High hydrogen peroxide-scavenging rates were found in tissues affected by PPR. Discussion and Conclusion: The coexistence of CPs and RFP suggests their possible differential role in coral immunity. CPs, which are specifically expressed in PPR lesions, may serve as an antioxidant in the affected coral tissue. Overall, this study provides new knowledge to our understanding of the role of CPs in coral immunity.

6.
J Virol ; : e0058424, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888344

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in substantial morbidity and mortality. The basis of severe disease in humans is difficult to determine without the use of experimental animal models. Mice are resistant to infection with ancestral strains of SARS-CoV-2, although many variants that arose later in the pandemic were able to directly infect mice. In almost all cases, viruses that naturally infected mice or were engineered to enable mouse infection required mouse passage to become virulent. In most cases, changes in structural and nonstructural changes occurred during mouse adaptation. However, the mechanism of increased virulence in mice is not understood. Here, using a recently described strain of mouse-adapted SARS-CoV-2 (rSARS2-MA30N501Y), we engineered a series of recombinant viruses that expressed a subset of the mutations present in rSARS2-MA30N501Y. Mutations were detected in the spike protein and in three nonstructural proteins (nsp4, nsp8, and nsp9). We found that infection of mice with recombinant SARS-CoV-2 expressing only the S protein mutations caused very mild infection. Addition of the mutations in nsp4 and nsp8 was required for complete virulence. Of note, all these recombinant viruses replicated equivalently in cultured cells. The innate immune response was delayed after infection with virulent compared to attenuated viruses. Further, using a lineage tracking system, we found that attenuated virus was highly inhibited in the ability to infect the parenchyma, but not the airway after infection. Together, these results indicate that mutations in both the S protein and nonstructural proteins are required for maximal virulence during mouse adaptation.IMPORTANCEUnderstanding the pathogenesis of coronavirus disease 2019 (COVID-19) requires the study of experimental animals after infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). For this purpose, several mouse-adapted SARS-CoV-2 strains have been developed. Here, using a strain of mouse-adapted virus that causes a range of diseases ranging from mild to severe, we show that mutations in both a structural protein [spike (S) protein] and nonstructural proteins are required for maximal virulence. Thus, changes in the S protein, the most widely studied viral protein, while required for mouse adaptation, are not sufficient to result in a virulent virus.

7.
J Virol ; : e0068624, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888343

ABSTRACT

Nervous necrosis virus (NNV), an aquatic RNA virus belonging to Betanodavirus, infects a variety of marine and freshwater fishes, leading to massive mortality of cultured larvae and juveniles and substantial economic losses. The enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is widely recognized as a central component in the innate immune response to cytosolic DNA derived from different pathogens. However, little is known about the response of cGAS to aquatic RNA viruses. This study found that Epinephelus coioides cGAS (EccGAS) overexpression inhibited NNV replication, whereas EccGAS silencing promoted NNV replication. The anti-NNV activity of EccGAS was involved in interferon (IFN) signaling activation including tumor necrosis factor receptor-associated factor family member-associated NF-kappa-B activator-binding kinase 1 (TBK1) phosphorylation, interferon regulatory factor 3 (IRF3) nuclear translocation, and the subsequent induction of IFNc and ISGs. Interestingly, NNV employed its capsid protein (CP) or Protein A (ProA) to negatively or positively modulate EccGAS-mediated IFN signaling by simultaneously targeting EccGAS. CP interacted with EccGAS via the arm-P, S-P, and SD structural domains and promoted its polyubiquitination with K48 and K63 linkages in an EcUBE3C (the ubiquitin ligase)-dependent manner, ultimately leading to EccGAS degradation. Conversely, ProA bound to EccGAS and inhibited its ubiquitination and degradation. In regulating EccGAS protein content, CP's inhibitory action was more pronounced than ProA's protective effect, allowing successful NNV replication. These novel findings suggest that NNV CP and ProA dynamically modulate the EccGAS-mediated IFN signaling pathway to facilitate the immune escape of NNV. Our findings shed light on a novel mechanism of virus-host interaction and provide a theoretical basis for the prevention and control of NNV.IMPORTANCEAs a well-known DNA sensor, cGAS is a pivotal component in innate anti-viral immunity to anti-DNA viruses. Although there is growing evidence regarding the function of cGAS in the resistance to RNA viruses, the mechanisms by which cGAS participates in RNA virus-induced immune responses in fish and how aquatic viruses evade cGAS-mediated immune surveillance remain elusive. Here, we investigated the detailed mechanism by which EccGAS positively regulates the anti-NNV response. Furthermore, NNV CP and ProA interacted with EccGAS, regulating its protein levels through ubiquitin-proteasome pathways, to dynamically modulate the EccGAS-mediated IFN signaling pathway and facilitate viral evasion. Notably, NNV CP was identified to promote the ubiquitination of EccGAS via ubiquitin ligase EcUBE3C. These findings unveil a novel strategy for aquatic RNA viruses to evade cGAS-mediated innate immunity, enhancing our understanding of virus-host interactions.

8.
Basic Res Cardiol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922408

ABSTRACT

Combined [18F]FDG PET-cardiac MRI imaging (PET/CMR) is a useful tool to assess myocardial viability and cardiac function in patients with acute myocardial infarction (AMI). Here, we evaluated the prognostic value of PET/CMR in a porcine closed-chest reperfused AMI (rAMI) model. Late gadolinium enhancement by PET/CMR imaging displayed tracer uptake defect at the infarction site by 3 days after the rAMI in the majority of the animals (group Match, n = 28). Increased [18F]FDG uptake at the infarcted area (metabolism/contractility mismatch) with reduced tracer uptake in the remote viable myocardium (group Mismatch, n = 12) 3 days after rAMI was observed in the animals with larger infarct size and worse left ventricular ejection fraction (LVEF) (34 ± 8.7 vs 42.0 ± 5.2%), with lower LVEF also at the 1-month follow-up (35.8 ± 9.5 vs 43.0 ± 6.3%). Transcriptome analyses by bulk and single-nuclei RNA sequencing of the infarcted myocardium and border zones (n = 3 of each group, and 3 sham-operated controls) revealed a strong inflammatory response with infiltration of monocytes and macrophages in the infarcted and border areas in Mismatch animals. Our data indicate a high prognostic relevance of combined PET/MRI in the subacute phase of rAMI for subsequent impairment of heart function and underline the adverse effects of an excessive activation of the innate immune system in the initial phase after rAMI.

9.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928053

ABSTRACT

The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.


Subject(s)
Fish Diseases , Immunity, Innate , Phylogeny , Piscirickettsia , Piscirickettsiaceae Infections , Renibacterium , Salmo salar , Animals , Piscirickettsia/genetics , Immunity, Innate/genetics , Salmo salar/microbiology , Salmo salar/genetics , Salmo salar/immunology , Fish Diseases/microbiology , Fish Diseases/immunology , Fish Diseases/genetics , Piscirickettsiaceae Infections/microbiology , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/genetics , Piscirickettsiaceae Infections/veterinary , Renibacterium/genetics , Renibacterium/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Evolution, Molecular
10.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915695

ABSTRACT

The abnormal innate immune response is a prominent feature underlying autoimmune diseases. One emerging factor that can trigger dysregulated immune activation is cytosolic mitochondrial double-stranded RNAs (mt-dsRNAs). However, the mechanism by which mt-dsRNAs stimulate immune responses remains poorly understood. Here, we discover SRA stem-loop interacting RNA binding protein (SLIRP) as a key amplifier of mt-dsRNA-triggered antiviral signals. In autoimmune diseases, SLIRP is commonly upregulated, and targeted knockdown of SLIRP dampens the interferon response. We find that the activation of melanoma differentiation-associated gene 5 (MDA5) by exogenous dsRNAs upregulates SLIRP, which then stabilizes mt-dsRNAs and promotes their cytosolic release to activate MDA5 further, augmenting the interferon response. Furthermore, the downregulation of SLIRP partially rescues the abnormal interferon-stimulated gene expression in autoimmune patients' primary cells and makes cells vulnerable to certain viral infections. Our study unveils SLIRP as a pivotal mediator of interferon response through positive feedback amplification of antiviral signaling.

11.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891876

ABSTRACT

Enterovirus A71 (EV-A71) is a major pathogen causing hand, foot, and mouth disease (HFMD) in children worldwide. It can lead to severe gastrointestinal, pulmonary, and neurological complications. The innate immune system, which rapidly detects pathogens via pathogen-associated molecular patterns or pathogen-encoded effectors, serves as the first defensive line against EV-A71 infection. Concurrently, the virus has developed various sophisticated strategies to evade host antiviral responses and establish productive infection. Thus, the virus-host interactions and conflicts, as well as the ability to govern biological events at this first line of defense, contribute significantly to the pathogenesis and outcomes of EV-A71 infection. In this review, we update recent progress on host innate immune responses to EV-A71 infection. In addition, we discuss the underlying strategies employed by EV-A71 to escape host innate immune responses. A better understanding of the interplay between EV-A71 and host innate immunity may unravel potential antiviral targets, as well as strategies that can improve patient outcomes.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Host-Pathogen Interactions , Immune Evasion , Immunity, Innate , Humans , Immune Evasion/immunology , Enterovirus A, Human/immunology , Enterovirus A, Human/pathogenicity , Host-Pathogen Interactions/immunology , Enterovirus Infections/immunology , Enterovirus Infections/virology , Animals , Hand, Foot and Mouth Disease/immunology , Hand, Foot and Mouth Disease/virology
12.
Pathogens ; 13(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921776

ABSTRACT

Gilthead sea bream and European sea bass display different resistance-susceptibility patterns during infection with different nervous necrosis virus (NNV) species, which may derive from differences in the triggered immune response. Based on this premise, we analysed the transcription of several selected immune-related genes in sea bream experimentally infected with NNV isolates obtained from sea bass (DlNNV, RGNNV) or sea bream (SaNNV, RGNNV/SJNNV). Viral replication only occurred in SaNNV-inoculated fish; therefore, the differences between the immune response elicited by both viruses may be the key to understanding the mechanism behind the inhibition of DlNNV replication. Principal component analysis clustered samples according to the viral isolate from 1 day post infection onwards and evidenced differences in the immune response against both viruses, even though no mortalities or symptoms were recorded. The response against DlNNV is characterized by higher rtp3 transcription early after the infection, longer-lasting il-10 transcription and stronger induction of casp1 and hsp70. These genes should be targets for future studies in order to elucidate their role in hampering NNV replication in sea bream, which is essential for developing effective prophylactic measures.

13.
Expert Rev Mol Diagn ; : 1-7, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38864429

ABSTRACT

BACKGROUND: A distinct phenotype in Coronavirus disease 2019 (Covid-19) was observed in severe patients, consisting of a highly impaired interferon (IFN) type I response, an exacerbated inflammatory response. OBJECTIVE: The aim of the present study was to investigate a possible association of single nucleotide polymorphisms (SNPs), in five genes related to the immune response, rs3775291 in TLR3; rs2292151 in TICAM1; rs1758566 in IFNA1; rs1800629 in TNF, and rs1800795 in IL6 with the severity of Covid-19. METHODS: A cross-sectional study was performed, with non-severe and severe/critical patients diagnosed with Covid-19, by two public hospitals in Brazil. In total, 300 patients were genotyped for the SNPs, 150 with the non-severe form of the disease and 150 with severe/critical form. RESULTS: The T/T genotype of TLR3 in recessive model shows 58% of protection against severe/critical Covid-19; as well as the genotypes G/A+A/A of TICAM1 in dominant model with 60% of protection, and in a codominant model G/A with 57% and A/A with 71% of protection against severe/critical Covid-19. Comparing severe and critical cases, the T/C genotype of IFNA1 in the codominant model and TC+C/C in the dominant model showed twice the risk of critical Covid-19. CONCLUSION: We can conclude that rs3775291, rs2292151 and rs1758566 can influence the COVID-19 severity.

14.
Mol Cell ; 84(11): 2203-2213.e5, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38749421

ABSTRACT

The cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a pivotal role in innate immune responses to viral infection and inhibition of autoimmunity. Recent studies have suggested that micronuclei formed by genotoxic stress can activate innate immune signaling via the cGAS-STING pathway. Here, we investigated cGAS localization, activation, and downstream signaling from micronuclei induced by ionizing radiation, replication stress, and chromosome segregation errors. Although cGAS localized to ruptured micronuclei via binding to self-DNA, we failed to observe cGAS activation; cGAMP production; downstream phosphorylation of STING, TBK1, or IRF3; nuclear accumulation of IRF3; or expression of interferon-stimulated genes. Failure to activate the cGAS-STING pathway was observed across primary and immortalized cell lines, which retained the ability to activate the cGAS-STING pathway in response to dsDNA or modified vaccinia virus infection. We provide evidence that micronuclei formed by genotoxic insults contain histone-bound self-DNA, which we show is inhibitory to cGAS activation in cells.


Subject(s)
Chromosome Segregation , Membrane Proteins , Micronuclei, Chromosome-Defective , Nucleotides, Cyclic , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Micronuclei, Chromosome-Defective/radiation effects , Nucleotides, Cyclic/metabolism , Phosphorylation , DNA Replication/radiation effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Immunity, Innate/radiation effects , DNA Damage , HEK293 Cells , Animals , Radiation, Ionizing , HeLa Cells
15.
FASEB J ; 38(10): e23644, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38738472

ABSTRACT

Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.


Subject(s)
Tumor Microenvironment , Animals , Mice , Tumor Microenvironment/immunology , Cell Line, Tumor , Neuroblastoma/immunology , Neuroblastoma/therapy , Neuroblastoma/pathology , Female , Humans , Immunomodulation , Mice, Inbred C57BL
16.
Virol Sin ; 39(3): 501-512, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789039

ABSTRACT

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 â€‹h after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.


Subject(s)
Calmodulin , Endosomes , Immunity, Innate , Porcine epidemic diarrhea virus , Virus Replication , Animals , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/physiology , Swine , Calmodulin/metabolism , Calmodulin/genetics , Endosomes/metabolism , Endosomes/virology , Host-Pathogen Interactions/immunology , Swine Diseases/virology , Swine Diseases/immunology , Vero Cells , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Interferon-beta/genetics , Interferon-beta/immunology , Interferon-beta/metabolism
17.
Poult Sci ; 103(7): 103800, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743966

ABSTRACT

The combination of inflammatory factors resulting from an influenza A virus infection is one of the main causes of death in host animals. Studies have shown that guinea pig guanosine monophosphate binding protein 1 (guanylate-binding protein 1, gGBP1) can downregulate cytokine production induced by the influenza virus. Therefore, exploring the innate immune defense mechanism of GBP1 in the process of H5N1 influenza virus infection has important implications for understanding the pathogenic mechanism, disease prevention, and the control of influenza A virus infections. We found that, in addition to inhibiting the early replication of influenza virus, gGBP1 also inhibited the production of CCL2 and CXCL10 cytokines induced by the influenza virus as well as the proliferation of mononuclear macrophages induced by these cytokines. These findings further confirmed that gGBP1 inhibited the production of cytokines through its GTPase activity and cell proliferation through its C-terminal α-helix structure. This study revealed the effect of gGBP1 on the production of cellular inflammatory factors during influenza virus infection and determined the key amino acid residues that assist in the inhibitory processes mediated by gGBP1.


Subject(s)
GTP-Binding Proteins , Influenza A Virus, H5N1 Subtype , Animals , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/immunology , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/immunology , Cytokines/metabolism , Cytokines/genetics , Influenza in Birds/virology , Influenza in Birds/immunology , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Immunity, Innate , Poultry Diseases/virology , Poultry Diseases/immunology , Chickens
18.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793692

ABSTRACT

Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.


Subject(s)
Ducks , Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks/virology , Flavivirus/pathogenicity , Flavivirus/immunology , Flavivirus/genetics , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus Infections/transmission , Genome, Viral , Poultry Diseases/virology , Poultry Diseases/transmission , Viral Vaccines/immunology , Farmers , Antibodies, Viral/blood , Humans
19.
Stem Cell Reports ; 19(5): 710-728, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701780

ABSTRACT

Heterogeneity among both primed and naive pluripotent stem cell lines remains a major unresolved problem. Here we show that expressing the maternal-specific linker histone H1FOO fused to a destabilizing domain (H1FOO-DD), together with OCT4, SOX2, KLF4, and LMYC, in human somatic cells improves the quality of reprogramming to both primed and naive pluripotency. H1FOO-DD expression was associated with altered chromatin accessibility around pluripotency genes and with suppression of the innate immune response. Notably, H1FOO-DD generates naive induced pluripotent stem cells with lower variation in transcriptome and methylome among clones and a more uniform and superior differentiation potency. Furthermore, we elucidated that upregulation of FKBP1A, driven by these five factors, plays a key role in H1FOO-DD-mediated reprogramming.


Subject(s)
Cellular Reprogramming , Histones , Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Cellular Reprogramming/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Histones/metabolism , Cell Differentiation/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Chromatin/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptome
20.
Immunity ; 57(5): 1160-1176.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38697118

ABSTRACT

Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.


Subject(s)
B-Lymphocytes , Influenza Vaccines , Single-Cell Analysis , Humans , Influenza Vaccines/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Vaccination , Antibodies, Viral/immunology , Adjuvants, Immunologic , Adjuvants, Vaccine , Monocytes/immunology , Polysorbates , Squalene/immunology , Immunity, Innate/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...