Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 857
Filter
1.
Insects ; 15(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057210

ABSTRACT

Phosphine (PH3) has been widely used as a fumigant in food storage, but increasing PH3 resistance in major pests makes finding alternative fumigants urgent. Methyl benzoate (MBe), a volatile organic compound regarded to be a food-safe natural product, has recently demonstrated significant toxicity against a variety of insect pests. This study is the first evaluation of the fumigation toxicity of three benzoate compounds, MBe, vinyl benzoate, and ethyl benzoate, against PH3-susceptible and PH3-resistant strains of Rhyzopertha dominica and Sitophilus oryzae. All strains were exposed to the compounds at concentrations up to 20 µL/1.5 L air for 24 h. Compared to vinyl benzoate and ethyl benzoate, MBe induced higher mortality rates in all strains at all concentrations. When food was made available, the lethal median concentration for MBe was 10-17-fold higher than when tested without food. Moreover, no significant differences were observed between the responses of the PH3-susceptible and PH3-resistant strains to the compounds. Notably, S. oryzae was more susceptible to MBe. In laboratory settings, MBe successfully controlled PH3-resistant strains of R. dominica and S. oryzae, making it a viable option for PH3-resistance management. Thus, MBe might be suitable for food security programs as an environmentally benign alternative fumigant.

2.
Toxins (Basel) ; 16(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39057942

ABSTRACT

Crops contamination with aflatoxins (AFs) and zearalenone (ZEA) threaten human and animal health; these mycotoxins are produced by several species of Aspergillus and Fusarium. The objective was to evaluate under field conditions the influence of the wet season on the dissemination of AF- and ZEA-producing fungi via houseflies collected from dairy farms. Ten dairy farms distributed in the semi-arid Central Mexican Plateau were selected. Flies were collected in wet and dry seasons at seven points on each farm using entomological traps. Fungi were isolated from fly carcasses via direct seeding with serial dilutions and wet chamber methods. The production of AFs and ZEA from pure isolates was quantified using indirect competitive ELISA. A total of 693 Aspergillus spp. and 1274 Fusarium spp. isolates were obtained, of which 58.6% produced AFs and 50.0% produced ZEA (491 ± 122; 2521 ± 1295 µg/kg). Houseflies and both fungal genera were invariably present, but compared to the dry season, there was a higher abundance of flies as well as AF- and ZEA-producing fungi in the wet season (p < 0.001; 45.3/231 flies/trap; 8.6/29.6% contaminated flies). These results suggest that rainy-weather conditions on dairy farms increase the spread of AF- and ZEA-producing Aspergillus spp. and Fusarium spp. through houseflies and the incorporation of their mycotoxins into the food chain.


Subject(s)
Aflatoxins , Aspergillus , Dairying , Fusarium , Houseflies , Seasons , Zearalenone , Animals , Fusarium/metabolism , Mexico , Aspergillus/metabolism , Aspergillus/isolation & purification , Aflatoxins/biosynthesis , Houseflies/microbiology , Food Contamination/analysis , Farms
3.
Neotrop Entomol ; 53(4): 746-758, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967879

ABSTRACT

The order Plecoptera constitutes a relatively small group of aquatic insects, encompassing 17 extant families and comprising over 4400 valid species. In Brazil, the number of valid extant species is 207, located in two families: Perlidae (149) and Gripopterygidae (58). Despite extensive research on the southeastern region of Brazil, there is a notable scarcity of comprehensive studies consolidating geographical records and species richness of Plecoptera in the state of Minas Gerais. This study seeks to increase and refine our understanding of Plecoptera within Minas Gerais, focusing on its diversity and distribution. The initial phase involved a thorough review of articles documenting Plecoptera species in the state. Subsequently, biological material from the Museum of Entomology at the Federal University of Viçosa collection was meticulously identified, and its geographical records were incorporated. Utilizing this dataset, we compiled an updated list of Plecoptera species documented in Minas Gerais. Geographical coordinates of collection points were then mapped and graphically represented to elucidate the geographic and altitudinal distribution of these species. A total of 42 Plecoptera species were identified within the state of Minas Gerais, adding many occurrence records and documenting the first record of Gripopteryx pinima for the state. Despite these advancements, knowledge gaps persist, particularly in the mesoregions of Triângulo/Alto Paranaíba, Oeste de Minas, Vale do Mucuri, and Campo das Vertentes. This endeavor serves as an initial foundation to stimulate further collections and investments in undersampled areas, fostering future monitoring and conservation initiatives for aquatic environments.


Subject(s)
Animal Distribution , Biodiversity , Brazil , Animals , Insecta/classification
4.
Environ Monit Assess ; 196(8): 737, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009907

ABSTRACT

Aquatic ecosystems are among the most affected by anthropogenic impacts, and the rapid detection and measurement of these impacts are of great importance for the maintenance of such environments. The order of aquatic insects Odonata has emerged as an important bioindicator of environmental quality due to its sensitivity to environmental changes and its ecophysiological requirements, which make them closely associated with habitat conditions. The aim of this study was to test whether the Zygoptera/Anisoptera ratio can be used as an effective tool to assess anthropogenic changes in Cerrado streams. Our hypothesis is that the proportion of Zygoptera/Anisoptera is an efficient tool for measuring environmental alterations in Cerrado streams, with a positive relationship between habitat integrity and the proportion of Zygoptera and an inverse relationship with the proportion of Anisoptera. Adults were collected in 44 streams of the Cerrado Biome in the eastern Maranhão state. The Habitat Integrity Index (HII) was used to verify the environmental gradient. Our hypothesis was corroborated, with a positive relationship between the richness and abundance of Zygoptera and HII, while an inverse relationship was observed for Anisoptera. According to our results, streams exhibiting a Zygoptera abundance of 68% or higher and richness of 58% or higher can be classified as preserved, while those showing an Anisoptera abundance and richness surpassing 31% and 41%, respectively, may be deemed altered. The patterns detected in the Cerrado were similar to those found in studies of the Amazon Biome and the Atlantic Forest, confirming the effectiveness of this method even for naturally open environments, such as the Cerrado. We conclude, therefore, that this method can be used as a tool to generate rapid results in monitoring studies, with low cost and easy application, enabling the development of mitigation, control, and conservation measures for extremely threatened environments such as those found in the Cerrado Biome.


Subject(s)
Ecosystem , Environmental Monitoring , Odonata , Rivers , Animals , Brazil , Rivers/chemistry , Environmental Monitoring/methods , Biodiversity
5.
Adv Exp Med Biol ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38954247

ABSTRACT

According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.

6.
Insects ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38921098

ABSTRACT

The aquatic bug family Naucoridae (Hemiptera: Heteroptera: Nepomorpha) is currently represented in Brazil by 68 species. Although the diversity of the family has been the target of several recent studies, large areas of the country are still unexplored and several species that have been deposited in entomological collections are waiting for a formal description. Aiming to fill these knowledge gaps, a series of expeditions were carried out in six states of eastern Brazil between 2018 and 2023: Alagoas, Bahia, Ceará, Espírito Santo, Pernambuco, and Sergipe. The fieldwork targeted protected areas, but surrounding regions were also explored. The material obtained, in addition to specimens previously deposited in a national entomological collection, revealed the existence of Australambrysus margaritifer Jordão, Santos and Moreira, a new species herein described, and new records for other 11 species and two subspecies belonging to the genera Carvalhoiella De Carlo, 1963, Limnocoris Stål, 1876, Maculambrysus Reynoso-Velasco and Sites 2021, and Pelocoris Stål, 1876.

7.
Foods ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928788

ABSTRACT

The present review highlights the potential of insect-based proteins to address the growing need for sustainable and secure food systems. The key findings suggest that edible insects offer a viable and environmentally friendly alternative to traditional livestock, requiring significantly less land, water, and feed while emitting lower levels of greenhouse gases. Insect farming can also reduce waste and recycle nutrients, supporting circular economy models. Nutritionally, insects provide high-quality protein, essential amino acids, and beneficial fats, making them valuable to human diets. Despite these benefits, this review emphasizes the need for comprehensive regulatory frameworks to ensure food safety, manage potential allergenicity, and mitigate contamination risks from pathogens and environmental toxins. Additionally, developing innovative processing technologies can enhance the palatability and marketability of insect-based products, promoting consumer acceptance. This review concludes that with appropriate regulatory support and technological advancements, insect-based proteins have the potential to significantly contribute to global food security and sustainability efforts.

8.
Zookeys ; 1205: 1-15, 2024.
Article in English | MEDLINE | ID: mdl-38911358

ABSTRACT

Poxyaibamberus Andersen & Dantas, gen. nov. is erected based on the males of two species, P.jamanximensis Andersen & Dantas, sp. nov. from Jamanxim National Park, Pará State, Brazil, and P.ubajarensis Andersen & Dantas, sp. nov. from Ubajara National Park, Ceará State, Brazil. Both species have a comparatively short and wide head, with large eyes and short, five-segmented palps; a strong subapical seta on the ultimate flagellomere; scalpellate acrostichals; no setae on the wing veins except for one seta on the brachiolum; a long costal extension; and a large triangular anal point and a very long heel on the gonostylus. The systematic position of the new genus is briefly discussed.

9.
Gene ; 927: 148723, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38914242

ABSTRACT

Satellite DNA (satDNA) consists of tandem repeat sequences that typically evolve rapidly through evolutionary mechanisms, including unequal crossover, transposition events, and others. The evolutionary history of Euchroma gigantea is marked by complex chromosomal evolution between lineages, making this species an interesting model for understanding satDNA evolution at intraspecies level. Therefore, our aim was to comprehend the potential contribution of satDNAs to the greater chromosomal differentiation of evolutionary lineages in E. gigantea by investigating the differential patterns of amplification and contraction of the repeats. To achieve this, we employed de novo identification of satDNA using RepeatExplorer and TAREAN, allowing the satellitome characterization between lineages. A total of 26 satDNA families were identified, ranging from 18 to 1101 nucleotides in length, with most families being shared between individuals/lineages, as predicted by the library hypothesis, except for the satDNA EgiSat21-168 that was absent for Northeast Lineage. The total satDNA content of the individuals was less than 11.2%, and it appeared to increase in two directions following the chromosomal evolution model. Thirteen satDNAs exhibited different patterns of amplification, and nine ones were contracted among individuals. Additionally, most repeats showed a divergence of about 10% for these satDNAs, indicating satellitome differentiation for each lineage/individual. This scenario suggests that the expansion of the satellitome occurred differentially among individuals/lineages of E. gigantea, with the contribution of various DNA turnover mechanisms after geographical isolation, and that they could be involved with karyotype evolution.


Subject(s)
Coleoptera , DNA, Satellite , Evolution, Molecular , DNA, Satellite/genetics , Animals , Coleoptera/genetics , Coleoptera/classification , Phylogeny
10.
Food Chem ; 458: 140229, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38944920

ABSTRACT

This study investigated the in vitro bioaccessibility of aluminum, copper, iron, manganese, lead, selenium, and zinc in three important species of farmed insects: the yellow mealworm (Tenebrio molitor), the house cricket (Acheta domesticus) and the migratory locust (Locusta migratoria). Results show that all three insect species constitute excellent sources of essential elements (Fe, Cu and Zn) for the human diet, contributing to the recommended dietary allowance, i.e., 10%, 50%, and 92%, respectively. A higher accumulation of Se (≥1.4 mg Se/kg) was observed with increasing exposure concentration in A. domesticus, showing the possibility of using insects as a supplements for this element. The presence of Al and Fe nanoparticles was confirmed in all three species using single particle-inductively coupled plasma-mass spectrometry and transmission electron microscopy. The results also indicate that Fe bioaccessibility declines with increasing Fe-nanoparticle concentration. These findings contribute to increase the nutritional and toxicological insights of farmed insects.


Subject(s)
Aluminum , Gryllidae , Iron , Tenebrio , Trace Elements , Animals , Trace Elements/analysis , Trace Elements/metabolism , Iron/analysis , Iron/metabolism , Gryllidae/metabolism , Gryllidae/chemistry , Tenebrio/chemistry , Tenebrio/metabolism , Aluminum/analysis , Aluminum/metabolism , Aluminum/chemistry , Grasshoppers/chemistry , Grasshoppers/metabolism , Biological Availability , Nanoparticles/chemistry , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/analysis , Edible Insects/chemistry , Edible Insects/metabolism , Insecta/chemistry , Insecta/metabolism
11.
Article in English | MEDLINE | ID: mdl-38888220

ABSTRACT

The adaptive nature of the galler habit has been tentatively explained by the nutrition, microenvironment, and enemy hypotheses. Soil attributes have direct relationships with these three hypotheses at the cellular and macroecological scales, but their influence has been restricted previously to effects on the nutritional status of the host plant on gall richness and abundance. Herein, we discuss the ionome patterns within gall tissues and their significance for gall development, physiology, structure, and for the nutrition of the gallers. Previous ecological and chemical quantification focused extensively on nitrogen and carbon contents, evoking the carbon-nutrient defence hypothesis as an explanation for establishing the plant-gall interaction. Different elements are involved in cell wall composition dynamics, antioxidant activity, and regulation of plant-gall water dynamics. An overview of the different soil-plant-gall relationships highlights the complexity of the nutritional requirements of gallers, which are strongly influenced by environmental soil traits. Soil and plant chemical profiles interact to determine the outcome of plant-herbivore interactions and need to be addressed by considering not only the soil features and galler nutrition but also the host plant's physiological traits. The quantitative and qualitative results for iron metabolism in gall tissues, as well as the roles of iron as an essential element in the physiology and reproduction of gallers suggest that it may represent a key nutritional resource, aligning with the nutrition hypothesis, and providing an integrative explanation for higher gall diversity in iron-rich soils.

13.
Insects ; 15(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786875

ABSTRACT

We evaluated the persistence and efficacy of two different, in granulometry and content of diatoms, diatomaceous earth (DE) formulations (i.e., DE5 and DE6), against two major beetle species of stored products, i.e., Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). The formulations were applied as powders in soft wheat and maize in two doses of 500 and 1000 mg kg-1 (ppm). Samples of the treated grains were taken on the day of application and every 30 days until completion of the six-month period of storage. Adults of S. oryzae and R. dominica were exposed to the treated grains at 25 °C and 55% relative humidity, and the mortality was measured after 7, 14, and 21 days of exposure. Rhyzopertha dominica survival was not affected by any combination of DE formulation, dose, and commodity. Contrariwise, the DEs caused significant adult mortality of S. oryzae, in most of the cases tested. We observed that DE6 was equally effective in both wheat and maize, and no considerable variations were observed in S. oryzae mortality during the 6-month experimental period. Furthermore, DE6 was more effective against S. oryzae than DE5, a difference that could have potentially contributed to the variations in the diatom granulometry between these two DEs. Thus, a DE treatment of 1000 ppm was shown to provide long-term protection of wheat and maize against S. oryzae, but this is strongly dependent on the DE formulation, commodity, and insect species. Overall, such natural resource-based inert silicaceous deposits could be used with success in stored-product protection with only some minor modifications, such as sieving and drying of the raw deposit.

14.
J Biol Phys ; 50(2): 215-228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727764

ABSTRACT

The detection of magnetic fields by animals is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles are used as magnetic field transducers. Magnetite nanoparticles in the abdomen of Apis mellifera honeybees have been proposed in the literature as the magnetic field transducer. However, studies with ants and stingless bees have shown that the whole body of the insect contain magnetic material, and that the largest magnetization is in the antennae. The aim of the present study is to investigate the magnetization of all the body parts of honeybees as has been done with ants and stingless bees. To do that, the head without antennae, antennae, thorax, and abdomen obtained from Apis mellifera honeybees were analyzed using magnetometry and Ferromagnetic Resonance (FMR) techniques. The magnetometry and FMR measurements show the presence of magnetic material in all honeybee body parts. Our results present evidence of the presence of biomineralized magnetite nanoparticles in the honeybee abdomen and, for the first time, magnetite in the antennae. FMR measurements permit to identify the magnetite in the abdomen as biomineralized. As behavioral experiments reported in the literature have shown that the abdomen is involved in magnetoreception, new experimental approaches must be done to confirm or discard the involvement of the antennae in magnetoreception.


Subject(s)
Abdomen , Arthropod Antennae , Animals , Bees/physiology , Arthropod Antennae/physiology , Ferrosoferric Oxide/chemistry , Ferrosoferric Oxide/metabolism , Magnetic Fields
15.
Oecologia ; 205(1): 191-201, 2024 May.
Article in English | MEDLINE | ID: mdl-38782789

ABSTRACT

The transmission of resistance traits to herbivores across subsequent generations is an important strategy employed by plants to enhance their fitness in environments with high herbivore pressure. However, our understanding of the impact of maternal herbivory on direct and indirect induced chemical defenses of progeny, as well as the associated costs, is currently limited to herbivory by leaf-chewing insects. In this study, we investigated the transgenerational effects of a sap-feeding insect, the green peach aphid Myzus persicae, on direct and indirect chemical defenses of bell pepper plants (Capsicum annuum), and whether the effects entail costs to plant growth. Aphid herbivory on parental plants led to a reduced number of seeds per fruit, which exhibited lower germination rates and produced smaller seedlings compared to those from non-infested parental plants. In contrast, the progeny of aphid-infested plants were less preferred as hosts by aphids and less suitable than the progeny of non-infested plants. This enhanced resistance in the progeny of aphid-infested plants coincided with elevated levels of both constitutive and herbivore-induced total phenolic compounds, compared to the progeny of non-infested plants. Furthermore, the progeny of aphid-infested plants emitted herbivore-induced plant volatiles (HIPVs) that were more attractive to the aphid parasitoid Aphidius platensis than those emitted by the progeny of non-infested plants. Our results indicate that herbivory by sap-feeding insect induces transgenerational resistance on progeny bell pepper plants, albeit at the expense of vegetative growth.


Subject(s)
Aphids , Capsicum , Herbivory , Animals , Aphids/physiology , Plant Defense Against Herbivory
16.
Environ Monit Assess ; 196(5): 422, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570386

ABSTRACT

The exposure to arsenic and mercury in various insect trophic guilds from two mercury mining sites in Mexico was assessed. The two study sites were La Laja (LL) and La Soledad (LS) mines. Additionally, a reference site (LSR) was evaluated for LS. The terrestrial ecosystem was studied at LL, whereas both the terrestrial ecosystem and a stream called El Cedral (EC) were assessed at LS. The study sites are situated in the Biosphere Reserve Sierra Gorda (BRSG). Mercury vapor concentrations were measured with a portable analyzer, and concentrations of arsenic and mercury in environmental and biological samples were determined through atomic absorption spectrophotometry. Both pollutants were detected in all terrestrial ecosystem components (soil, air, leaves, flowers, and insects) from the two mines. The insect trophic guilds exposed included pollinivores, rhizophages, predators, coprophages, and necrophages. In LS, insects accumulated arsenic at levels 29 to 80 times higher than those found in specimens from LSR, and 10 to 46 times higher than those from LL. Similarly, mercury exposure in LS was 13 to 62 times higher than LSR, and 15 to 54 times higher than in LL. The analysis of insect exposure routes indicated potential exposure through air, soil, leaves, flowers, animal prey, carrion, and excrement. Water and sediment from EC exhibited high levels of arsenic and mercury compared to reference values, and predatory aquatic insects were exposed to both pollutants. In conclusion, insects from mercury mining sites in the BRSG are at risk.


Subject(s)
Arsenic , Environmental Pollutants , Mercury , Animals , Mercury/analysis , Arsenic/analysis , Ecosystem , Environmental Monitoring , Mexico , Insecta , Environmental Pollutants/analysis , Mining , Soil
17.
J Comp Physiol B ; 194(2): 105-119, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573502

ABSTRACT

The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.


Subject(s)
Biological Evolution , Immunity, Innate , Insecta , Mammals , Animals , Insecta/immunology , Mammals/immunology , Autophagy/immunology
18.
Int J Legal Med ; 138(5): 2193-2201, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38684529

ABSTRACT

Peckia (Peckia) chrysostoma (Wiedemann, 1830) (Diptera: Sarcophagidae) is a colonizer of cadavers in the Neotropical Region. Nevertheless, data on development for the P. (P.) chrysostoma (e.g., instar duration) and behavioral strategies used by the species for locating and colonizing a corpse are scant. We aimed to explore bionomic and reproductive aspects of the flesh fly P. (P.) chrysostoma, and in this article we: (a) provide quantitative data on the life cycle of P. (P.) chrysostoma; (b) present bionomic measurements (length and weight) of larvae and pupae; (c) describe intrauterine egg and larvae development; and (d) analyze the ovo/larviposition behavior by gravid females. Females showed ovaries with discernible eggs and larvae between 8 and 10 days (x̅ = 23.3 eggs/female). This study reports the first observation of egg deposition, an atypical behavior for the species. The average development time for immature stages was 22.24 h and 21.36 h for 1st and 2nd respectively, and 3rd showed an average development time of 80.47 h. Pupa had the longest duration (x̅ = 295.69 h). A direct increase was observed in weight (P < 0.05) and length (P < 0.05) throughout time. The average survival time of males and females is approximately 30 days. This study expands the knowledge on P. (P.) chrysostoma, such as facultative ovoviviparity under laboratory conditions and the life cycle, which may benefit future studies for accuracy in entomology-based estimation of minimum post-mortem interval (min PMI).


Subject(s)
Forensic Entomology , Larva , Pupa , Sarcophagidae , Animals , Larva/growth & development , Female , Pupa/growth & development , Male , Oviposition , Reproduction , Ovum , Life Cycle Stages , Postmortem Changes
19.
Neotrop Entomol ; 53(3): 617-629, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656588

ABSTRACT

Experiments are useful scientific tools for testing hypotheses by manipulating variables of interest while controlling for other factors that can bias or confuse the results and their interpretation. To ensures accuracy and reproducibility, experiments must have transparent and repeatable methodologies. Due to the importance of shredder invertebrates in organic matter processing, carbon cycling, and nutrient cycling, we tested experimentally the effect of different methodological approaches in microcosm experiments on the consumption and survival of shredders. We found that the shredder species, the presence or absence of the case, and the use or non-use of air-pumps in the microcosms did not affect shredder performance (i.e., consumption and survival). Furthermore, the type of water (stream or bottled) did not affect shredder performance. On the other hand, the amount of light had a negative effect on shredder performance, with constant light (i.e., 24 h) reducing shredder consumption and survival. Our results demonstrate that the use of different methodologies does not always result in changes in outcomes, thus ensuring comparability. However, luminosity is a critical factor that deserves attention when conducting microcosm experiments. Our findings provide valuable insights that can assist researchers in designing experiments with shredders from neotropical streams and conducting systematic reviews and meta-analyses.


Subject(s)
Rivers , Animals , Invertebrates , Reproducibility of Results , Light , Research Design
20.
Plants (Basel) ; 13(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611492

ABSTRACT

Opuntia ficus-indica has always interacted with many phytophagous insects; two of them are Dactylopius coccus and D. opuntiae. Fine cochineal (D. coccus) is produced to extract carminic acid, and D. opuntiae, or wild cochineal, is an invasive pest of O. ficus-indica in more than 20 countries around the world. Despite the economic and environmental relevance of this cactus, D. opuntiae, and D. coccus, there are few studies that have explored volatile organic compounds (VOCs) derived from the plant-insect interaction. The aim of this work was to determine the VOCs produced by D. coccus and D. opuntiae and to identify different VOCs in cladodes infested by each Dactylopius species. The VOCs (essential oils) were obtained by hydrodistillation and identified by GC-MS. A total of 66 VOCs from both Dactylopius species were identified, and 125 from the Esmeralda and Rojo Pelón cultivars infested by D. coccus and D. opuntiae, respectively, were determined. Differential VOC production due to infestation by each Dactylopius species was also found. Some changes in methyl salicylate, terpenes such as linalool, or the alcohol p-vinylguaiacol were related to Dactylopius feeding on the cladodes of their respective cultivars. Changes in these VOCs and their probable role in plant defense mechanisms should receive more attention because this knowledge could improve D. coccus rearing or its inclusion in breeding programs for D. opuntiae control in regions where it is a key pest of O. ficus-indica.

SELECTION OF CITATIONS
SEARCH DETAIL