Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893421

ABSTRACT

Efficient boron removal from irrigation waters is crucial for sustainable agriculture, as elevated levels of boron can be toxic to many plants, limiting growth and crop productivity. In this context, the present study investigated the sorption equilibrium of boron using zeolites in two types of aqueous matrices: a synthetic solution containing only boron and natural irrigation waters. Through the application of various isothermal sorption models (Langmuir, Freundlich, Sips, Toth, Jovanovic, Temkin, Dubinin-Radushkevich, and Redlich-Peterson), the efficacy of zeolite for boron removal under controlled and real conditions was evaluated. The results indicated a notable difference in sorption behavior between the two matrices, reflecting the complexity and heterogeneity of interactions in the boron-zeolite system. In the synthetic solution, the Freundlich model provided the best fit (R2 = 0.9917), suggesting heterogeneous and multilayer sorption, while the Sips model showed high efficacy in describing the sorption in both matrices, evidencing its capability to capture the complex nature of the interaction between boron and zeolite under different environmental conditions. However, in natural irrigation waters, the Jovanovic model demonstrated the most accurate fit (R2 = 0.999), highlighting the importance of physical interactions in boron sorption. These findings underscore the significant influence of the water matrix on the efficacy of zeolite as a boron removal agent, emphasizing the need to consider the specific composition of irrigation water in the design of removal treatments. Additionally, the results stress the importance of selecting the appropriate isothermal model to predict boron sorption behavior, which is crucial for developing effective and sustainable treatment strategies. This study provides a basis for optimizing boron removal in various agricultural and industrial applications, contributing to the design of more efficient and specific water treatment processes.

2.
Environ Sci Pollut Res Int ; 30(16): 47077-47089, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36735126

ABSTRACT

Mercury emissions from the industrial sector have become an undeniable concern for researchers due to their toxic health effects. Efforts have been made to develop green, efficient, and reliable methods for removal of mercury from wastewater. Sorption process promises fruitful results for the decontamination of cations from wastewater. Among the number of used sorbents, metal sulfides have been emerged as an appropriate material for removing toxic metals that possess good affinity due to sulfur-based active sites for Hg through "Lewis's acid-based soft-soft interactions." Herein, nickel-sulfide nanoparticles were synthesized, followed by their incorporation in chitosan microspheres. FTIR analysis confirmed the synthesis of nickel sulfide-chitosan microspheres (NiS-CMs) displaying sharp bands for multiple functional groups. XRD analysis showed that the NiS-CMs possessed a crystallite size of 42.1 nm. SEM analysis indicated the size of NiS-CMs to be 950.71 µm based on SEM micrographs. The sorption of mercury was performed using the NiS-CMs, and the results were satisfactory, with a sorption capacity of 61 mg/g at the optimized conditions of pH 5.0, 80 ppm concentration, in 60 min at 25 °C. Isothermal models and kinetics studies revealed that the process followed pseudo-second-order kinetics and the Langmuir isothermal model best fitted to experimental data. It was concluded that the NiS-CMs have emerged as the best choice for removing toxic mercury ions with a positive impact on the environment.


Subject(s)
Chitosan , Mercury , Water Pollutants, Chemical , Mercury/analysis , Chitosan/chemistry , Nickel/analysis , Microspheres , Wastewater , Decontamination , Cations/analysis , Hazardous Substances/analysis , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
3.
Polymers (Basel) ; 14(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35746079

ABSTRACT

The discharge of textile wastewater into aquatic streams is considered a major challenge due to its effect on the water ecosystem. Direct blue 78 (DB78) dye has a complex structure. Therefore, it is difficult to separate it from industrial wastewater. In this study, carbon obtained from the pyrolysis of mixed palm seeds under different temperatures (400 °C and 1000 °C) was activated by a thermochemical method by using microwave radiation and an HCl solution in order to improve its adsorption characteristics. The generated activated carbon was used to synthesize a novel activated carbon/chitosan microbead (ACMB) for dye removal from textile wastewater. The obtained activated carbon (AC) was characterized by a physicochemical analysis that included, namely, particle size, zeta potential, SEM, EDX, and FTIR analyses. A series of batch experiments were conducted in terms of the ACMB dose, contact time, pH, and activated carbon/chitosan ratios in synthetic microbeads for enhancing the adsorption capacity. A remarkable improvement in the surface roughness was observed using SEM analysis. The particle surface was transformed from a slick surface with a minor-pore structure to a rough surface with major-pore structure. The zeta potential analysis indicated a higher improvement in the carbon surface charge, from -35 mv (before activation) to +20 mv (after activation). The adsorption tests showed that the dye-removal efficiency increased with the increasing adsorbent concentration. The maximum removal efficiencies were 97.8% and 98.4% using 3 and 4 g/L of AC400°C MB-0.3:1 and AC1000°C MB-0.3:1, respectively, with initial dye concentrations of 40 mg/L under acidic conditions (pH = 4-5), and an optimal mixing time of 50 min. The equilibrium studies for AC400°C MB-0.3:1 and AC1000°C MB-0.3:1 showed that the equilibrium data best fitted to the Langmuir isothermal model with R2 = 0.99. These results reveal that activated carbon/chitosan microbeads are an effective adsorbent for the removal of direct blue 78 dye and provide a new platform for dye removal.

4.
Polymers (Basel) ; 14(9)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35567021

ABSTRACT

In the present study, nanocellulose was extracted from palm leaves to synthesize nanocellulose/chitosan nanocomposites for the removal of dyes from textile industrial wastewater. Nanocellulose is of interest in water purification technologies because of its high surface area and versatile surface chemistry. Following bleach, alkali, and acid treatments on palm leaves, nanocellulose is obtained as a white powder. The produced nanocellulose was investigated. The adsorption capacity of chitosan, nanocellulose, and novel synthetic nanocellulose/chitosan microbeads (CCMB) for direct blue 78 dye (DB78) removal was studied. A series of batch experiments were conducted in terms of adsorbent concentration, mixing time, pH, dye initial concentration, and nanocellulose concentration in synthetic microbeads. The CCMB was characterized by using physicochemical analysis, namely Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), zeta potential analysis, and Fourier-transform infrared spectroscopy (FTIR). It was found that the surface area of synthetic CCMB is 10.4 m2/g, with a positive net surface charge. The adsorption tests showed that the dye removal efficiency increases with an increasing adsorbent concentration. The maximum removal efficiencies were 91.5% and 88.4%, using 14 and 9 g/L of CCMB-0.25:1. The initial dye concentrations were 50 and 100 mg/L under acidic conditions (pH = 3.5) and an optimal mixing time of 120 min. The equilibrium studies for CCMB-0.25:1 showed that the equilibrium data were best fitted to Langmuir isothermal model with R2 = 0.99. These results revealed that nanocellulose/chitosan microbeads are an effective eco-adsorbent for the removal of direct blue 78 dye and provide a new platform for dye removal.

5.
Molecules ; 26(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924445

ABSTRACT

Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin-Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb's free energy parameter (-20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of -45.4 for ACL and -56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.

6.
Bioresour Technol ; 324: 124660, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33434872

ABSTRACT

As an alternative energy source for fossil energy, use of biomass pyrolysis to reduce pyrolusite is of great significance for energy conservation, emission reduction and environmental protection. Kinetics and thermodynamics of reducing pyrolusite using biomass pyrolysis was studied using thermogravimetric analysis analysis. Five non-isothermal methods, Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Distributed Activation Energy Model, Starink and Friedman, were employed to calculate the pyrolysis kinetics and thermodynamic parameters. The results showed that pyrolusite reduction by biomass pyrolysis can be divided into four stages: drying stage (30-175 °C), rapid pyrolysis reduction stage (175-350 °C), slow pyrolysis reduction stage (350-680 °C) and char formation stage (680-900 °C). The apparent activation energy, reaction enthalpy, Gibbs free energy and entropy change of pyrolusite reduction by biomass pyrolysis was calculated ranges from 170 to 180 kJ/mol, 164 to 174 kJ/mol, 136.97 to 137.25 kJ/mol and 45.67 to 61.91 J/mol·K, respectively. This work provides theoretical basis and practical guidance for the reduction of pyrolusite by waste corn stalk.


Subject(s)
Pyrolysis , Zea mays , Biomass , Kinetics , Manganese Compounds , Oxides , Thermogravimetry
7.
Front Chem ; 6: 556, 2018.
Article in English | MEDLINE | ID: mdl-30533410

ABSTRACT

Zirconium (Zr)-containing silica residue purification (ZSR-P) discharged from industrial production of ZrOCl2 was used as an adsorbent, and CdCl2 solution was used as the simulated wastewater containing cadmium ions (Cd2+). The properties and mechanisms of ZSR-P absorbing Cd2+ were studied. The results showed that ZSR-P had a good effect on the adsorption and removal of Cd2+ in water. The adsorption time, initial concentration of Cd2+, and pH of the solution had a significant effect on the adsorption behavior, whilst the pH value had the greatest effect amongst them. Under optimal conditions, the amount of Cd2+ adsorbed by ZSR-P was 43.1 mg/g. The isothermal adsorption conformed to the Langmuir adsorption model, and the adsorption kinetics conformed to the secondary adsorption rate model. In ZSR-P-Cd, Cd2+ was uniformly distributed on the surface of SiO2 particles and in the pores formed by the accumulation of particles. Adsorption of Cd2+ by ZSR-P was achieved through the reaction between Si-OH on the surface of SiO2 and Cd2+ hydroxyl compounds.

8.
Environ Sci Pollut Res Int ; 24(2): 1270-1282, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27771877

ABSTRACT

The removal of methylparaben (MP), a well-known endocrine disruptor, from aqueous solutions using polyacrylonitrile (PAN) beads has been studied under batch conditions, at room temperature and at different initial MP concentrations. The kinetic and equilibrium results have been analyzed. Kinetic modeling analysis has been carried out with three different types of adsorption models: pseudo-first-order, pseudo-second-order, and Elovich model. Kinetic data analysis indicated that the adsorption was a second-order process. The MP adsorption by PAN was also quantitatively evaluated by using the equilibrium adsorption isotherm models of Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin and the applicability of the respective isotherm equations has been compared through the correlation coefficients. Adsorption data resulted well fitted by the Freundlich isotherm model. Data of MP adsorption have also been used to test different adsorption diffusion models. The diffusion rate equations inside particulate of Dumwald-Wagner and the intraparticle diffusion model have been used to calculate the diffusion rate. The actual rate-controlling step involved in the MB adsorption process was determined. The kinetic expression by Boyd gave the right indications. All together, our results indicate that PAN beads are a useful tool to remediate water bodies polluted by endocrine disruptors.


Subject(s)
Acrylic Resins/chemistry , Parabens/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Diffusion , Hydrogen-Ion Concentration , Kinetics , Solutions , Thermodynamics
9.
J Theor Biol ; 335: 88-96, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23820038

ABSTRACT

Mathematical models taking temperature variations into account are useful in predicting microbial growth in foods, like meat products, for which Lactobacillus plantarum is a mesophilic and one of the main spoiling bacterium. The current study assessed the ability of the main primary models and their non-isothermal versions to predict L. plantarum growth under constant and variable temperature. Experimental data of microbial growth were obtained in MRS medium under isothermal conditions (4, 8, 12, 16, 20, and 30°C) which were used to obtain the secondary models. The experimental data under non-isothermal conditions (periodically oscillating temperature between the plateaus 4-12, 5-15, and 20-30°C) were used to validate the non-isothermal models. The bias factors indicated that all assessed models provided safe predictions of the microorganism growth at the non-isothermal conditions. Overall, despite the very good performance of the primary models (isothermal), none of the models was able to predict with accuracy the L. plantarum growth under temperature variations, mainly when the temperature range was close to refrigeration temperature. Incorporating the complex microbial adaptation mechanisms into the predictive models is a challenge to be overcome.


Subject(s)
Bacterial Physiological Phenomena , Lactobacillus plantarum/growth & development , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL