Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters











Publication year range
1.
Circulation ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162035

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality in patients with type 2 diabetes (T2DM). Acute increases in circulating levels of ketone body 3-hydroxybutyrate have beneficial acute hemodynamic effects in patients without T2DM with chronic heart failure with reduced ejection fraction. However, the cardiovascular effects of prolonged oral ketone ester (KE) treatment in patients with T2DM and HFpEF remain unknown. METHODS: A total of 24 patients with T2DM and HFpEF completed a 6-week randomized, double-blind crossover study. All patients received 2 weeks of KE treatment (25 g D-ß-hydroxybutyrate-(R)-1,3-butanediol × 4 daily) and isocaloric and isovolumic placebo, separated by a 2-week washout period. At the end of each treatment period, patients underwent right heart catheterization, echocardiography, and blood samples at trough levels of intervention, and then during a 4-hour resting period after a single dose. A subsequent second dose was administered, followed by an exercise test. The primary end point was cardiac output during the 4-hour rest period. RESULTS: During the 4-hour resting period, circulating 3-hydroxybutyrate levels were 10-fold higher after KE treatment (1010±56 µmol/L; P<0.001) compared with placebo (91±55 µmol/L). Compared with placebo, KE treatment increased cardiac output by 0.2 L/min (95% CI, 0.1 to 0.3) during the 4-hour period and decreased pulmonary capillary wedge pressure at rest by 1 mm Hg (95% CI, -2 to 0) and at peak exercise by 5 mm Hg (95% CI, -9 to -1). KE treatment decreased the pressure-flow relationship (∆ pulmonary capillary wedge pressure/∆ cardiac output) significantly during exercise (P<0.001) and increased stroke volume by 10 mL (95% CI, 0 to 20) at peak exercise. KE right-shifted the left ventricular end-diastolic pressure-volume relationship, suggestive of reduced left ventricular stiffness and improved compliance. Favorable hemodynamic responses of KE treatment were also observed in patients treated with sodium-glucose transporter-2 inhibitors and glucagon-like peptide-1 analogs. CONCLUSIONS: In patients with T2DM and HFpEF, a 2-week oral KE treatment increased cardiac output and reduced cardiac filling pressures and ventricular stiffness. At peak exercise, KE treatment markedly decreased pulmonary capillary wedge pressure and improved pressure-flow relationship. Modulation of circulating ketone levels is a potential new treatment modality for patients with T2DM and HFpEF. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifier: NCT05236335.

2.
J Nutr Health Aging ; 28(9): 100329, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137624

ABSTRACT

OBJECTIVES: Ketone bodies are endogenous metabolites produced during fasting or a ketogenic diet that have pleiotropic effects on aging pathways. Ketone esters (KEs) are compounds that induce ketosis without dietary changes, but KEs have not been studied in an older adult population. The primary objective of this trial was to assess the tolerability and safety of KE ingestion in a cohort of older adults. DESIGN: Randomized, placebo-controlled, double-blinded, parallel-arm trial (NCT05585762). SETTING: General community, Northern California, USA. PARTICIPANTS: Community-dwelling older adults, independent in activities of daily living, with no unstable acute medical conditions (n = 30; M = 15, F = 15; age = 76 y, range 65-90 y) were randomized and n = 23 (M = 14, F = 9) completed the protocol. INTERVENTION: Participants were randomly allocated to consume either KE (25 g bis-octanoyl (R)-1,3-butanediol) or a taste, appearance, and calorie-matched placebo (PLA) containing canola oil daily for 12 weeks. MEASUREMENTS: Tolerability was assessed using a composite score from a daily log for 2-weeks, and then via a bi-weekly phone interview. Safety was assessed by vital signs and lab tests at screening and weeks 0, 4 and 12, along with tabulation of adverse events. RESULTS: There was no difference in the prespecified primary outcome of proportion of participants reporting moderate or severe nausea, headache, or dizziness on more than one day in a two-week reporting period (KE n = 2 (14.3% [90% CI = 2.6-38.5]); PLA n = 1 (7.1% [90% CI = 0.4-29.7]). Dropouts numbered four in the PLA group and two in the KE group. A greater number of symptoms were reported in both groups during the first two weeks; symptoms were reported less frequently between 2 and 12 weeks. There were no clinically relevant changes in safety labs or vital signs in either group. CONCLUSIONS: This KE was safe and well-tolerated in this study of healthy older adults. These results provide an initial foundation for use of KEs in clinical research with older adults.

3.
medRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38699344

ABSTRACT

Bis-octanoyl (R)-1,3-butanediol (BO-BD) is a novel ketone ester (KE) ingredient which increases blood beta-hydroxybutyrate (BHB) concentrations rapidly after ingestion. KE is hypothesized to have beneficial metabolic effects on health and performance, especially in older adults. Whilst many studies have investigated the ketogenic effect of KE in young adults, they have not been studied in an exclusively older adult population, for whom age-related differences in body composition and metabolism may alter the effects. This randomized, observational, open-label study in healthy older adults (n = 30, 50% male, age = 76.5 years, BMI = 25.2 kg/m2) aimed to elucidate acute tolerance, blood BHB and blood glucose concentrations for 4 hours following consumption of either 12.5 or 25 g of BO-BD formulated firstly as a ready-to-drink beverage (n = 30), then as a re-constituted powder (n = 21), taken with a standard meal. Both serving sizes and formulations of BO-BD were well tolerated, and increased blood BHB, inducing nutritional ketosis (≥ 0.5mM) that lasted until the end of the study. Ketosis was dose responsive; peak BHB concentration (Cmax) and incremental area under the curve (iAUC) were significantly greater with 25 g compared to 12.5 g of BO-BD in both formulations. There were no significant differences in Cmax or iAUC between formulations. Blood glucose increased in all conditions following the meal; there were no consistent significant differences in glucose response between conditions. These results demonstrate that both powder and beverage formulations of the novel KE, BO-BD, induce ketosis in healthy older adults, facilitating future research on functional effects of this ingredient in aging.

5.
Anat Cell Biol ; 57(1): 97-104, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38192123

ABSTRACT

Heavy reliance on glucose metabolism and a reduced capacity to use ketone bodies makes glioblastoma (GBM) a promising candidate for ketone-based therapies. Ketogenic diet (KD) is well-known for its promising effects in controlling tumor growth in GBM. Moreover, synthetic ketone ester (KE) has demonstrated to increase blood ketone levels and enhance animal survival in a metastatic VM-M3 murine tumor model. Here, we compared the efficacy of a KE-supplemented Atkins-type diet (ATD-KE) to a classic KD in controlling tumor progression and enhancing survival in a clinically relevant orthotopic patient-derived xenograft GBM model. Our findings demonstrate that ATD-KE preserves body weight (percent change from the baseline; 112±2.99 vs. 116.9±2.52 and 104.8±3.67), decreases blood glucose (80.55±0.86 vs. 118.6±9.51 and 52.35±3.89 mg/dl), and increases ketone bodies in blood (1.15±0.03 mM vs. 0.55±0.04 and 2.66±0.21 mM) and brain tumor tissue (3.35±0.30 mM vs. 2.04±0.3 and 4.25±0.25 mM) comparable to the KD (results presented for ATD-KE vs. standard diet [STD] and KD, respectively). Importantly, the ATD-KE treatment significantly enhanced survival compared to the STD and was indistinguishable from the KD (47 days in STD vs. 56 days in KD and ATD-KE), suggesting that a nutritionally balanced low carbohydrate ATD combined with KE may be as effective as the KD alone in reducing brain tumor progression. Overall, these data support the rationale for clinical testing of KE-supplemented low-carb diet as an adjunct treatment for brain tumor patients.

6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1024221

ABSTRACT

Objective:To investigate the clinical efficacy of ginkgo ketone ester dropping pills combined with agatroban injection in the treatment of acute cerebral infarction.Methods:This prospective case-control study was conducted on 120 patients with acute cerebral infarction who were treated at The Hospital of Shanxi University of Chinese Medicine between April 2020 and April 2022. These patients were randomly divided into a control group and a study group using the random number table method, with 60 patients in each group. The control group received intravenous injections of agatroban based on conventional treatment, while the study group received treatment with ginkgo ketone ester dropping pills combined with agatroban injection based on conventional treatment. The treatment duration was 2 weeks. Clinical efficacy was evaluated after continuous treatment for 2 weeks.Results:The overall response rate in the study group was 95.0% (57/60), which was significantly higher than 80.0% (48/60) in the control group ( χ2 = 6.17, P = 0.012). After treatment, the Barthel index in the study group was (65.3 ± 7.3) points, which was significantly higher than (59.8 ± 7.5) points in the control group ( t = -4.07, P < 0.001). The modified Rankin Scale score and the National Institutes of Health Stroke Scale score in the study group were (1.2 ± 0.4) points and (4.6 ± 0.7) points, which were significantly lower than (2.4 ± 0.6) points and (7.6 ± 1.1) points, respectively, in the control group ( t = 12.89, 17.82, both P < 0.001). Interleukin-6, hypersensitive C-reactive protein, and tumor necrosis factor-α levels in the study group were significantly lower than those in the control group ( t = 10.10, 18.25, 14.15, all P < 0.001). The nitric oxide levels in the study group were significantly higher than those in the control group, while endothelin 1 and thromboxane A2 levels in the study group were significantly lower than those in the control group ( t = -7.65, 10.77, 21.90, all P < 0.001). There was no significant difference in incidence of adverse reactions between the two groups ( P > 0.05). Conclusion:The combination of ginkgo ketone ester dropping pills and agatroban injection has a remarkable therapeutic effect on acute cerebral infarction. The combined therapy can reduce the severity of neurological deficits in patients, promote brain function recovery, improve quality of life, adjust serum inflammatory factors, and thereby be worthy of clinical application.

7.
J Diet Suppl ; 21(1): 38-52, 2024.
Article in English | MEDLINE | ID: mdl-36847287

ABSTRACT

Exogenous ketone monoesters can raise blood ß-OHB and lower glucose without other nutritional modifications or invasive procedures. However, unpleasant taste and potential gastrointestinal discomfort may make adherence to supplementation challenging. Two novel ketone supplements promise an improved consumer experience but differ in their chemical properties; it is currently unknown how these affect blood ß-OHB and blood glucose compared to the ketone monoester. In a double-blind randomized cross-over pilot study, N=12 healthy individuals (29 ± 5 years, BMI = 25 ± 4 kg/m2, 42% female) participated in three experimental trials with a different ketone supplement providing 10 grams of active ingredient in each; (i) the monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, (ii) D-ß-hydroxybutyric acid with R-1,3-butanediol, and (iii) R-1,3-butanediol. Blood ß-OHB and glucose were measured via finger prick capillary blood samples at baseline and across 240 minutes post-supplementation. Supplement acceptability, hunger, and gastrointestinal distress were assessed via questionnaires. ß-OHB was elevated compared to baseline in all conditions. Total and incremental area under the curve (p < 0.05) and peak ß-OHB (p < 0.001) differed between conditions with highest values seen in the ketone monoester condition. Blood glucose was reduced after consumption of each supplement, with no differences in total and incremental area under the curve across supplements. Supplement acceptability was greatest for D-ß-hydroxybutyric acid with R-1,3-butanediol, with no effect on hunger or evidence of gastrointestinal distress across all supplements. All ketone supplements tested raised ß-OHB with highest values seen after ketone monoester ingestion. Blood glucose was lowered similarly across the assessed time frame with all three supplements.


Subject(s)
Blood Glucose , Ketones , Female , Humans , Male , 3-Hydroxybutyric Acid , Dietary Supplements , Glucose , Pilot Projects , Double-Blind Method
8.
medRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961234

ABSTRACT

Background: Frailty is a geriatric syndrome characterized by chronic inflammation and metabolic insufficiency that creates vulnerability to poor outcomes with aging. We hypothesize that geroscience interventions, which target mechanisms of aging, could ameliorate frailty. Metabolites such as ketone bodies are candidate geroscience interventions, having pleiotropic effects on inflammo-metabolic aging mechanisms. Ketone esters (KEs) induce ketosis without dietary changes, but KEs have not been studied in an older adult population. Our long-term goal is to examine if KEs modulate geroscience mechanisms and clinical outcomes relevant to frailty in older adults. Objectives: The primary objective of this randomized, placebo-controlled, double-blinded, parallel-group, pilot trial is to determine tolerability of 12-weeks of KE ingestion in a generalizable population of older adults (≥ 65 years). Secondary outcomes include safety and acute blood ketone kinetics. Exploratory outcomes include physical function, cognitive function, quality of life, aging biomarkers and inflammatory measures. Methods: Community-dwelling adults who are independent in activities of daily living, with no unstable acute medical conditions (n=30) will be recruited. The study intervention is a KE or a taste, appearance, and calorie matched placebo beverage. Initially, acute 4-hour ketone kinetics after 12.5g or 25g of KE consumption will be assessed. After collection of baseline safety, functional, and biological measurements, subjects will randomly be allocated to consume KE 25g or placebo once daily for 12-weeks. Questionnaires will assess tolerability daily for 2-weeks, and then via phone interview at bi-monthly intervals. Safety assessments will be repeated at week 4. All measures will be repeated at week 12. Conclusion: This study will evaluate feasibility, tolerability, and safety of KE consumption in older adults and provide exploratory data across a range of geroscience-related endpoints. This data will inform design of larger trials to rigorously test KE effects on geroscience mechanisms and clinical outcomes relevant to frailty.

9.
AAPS PharmSciTech ; 24(7): 184, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700072

ABSTRACT

Ketone ester ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate) has gained popularity as an exogenous means to achieve ketosis. Regarding its potential as a therapeutic prodrug, it will be necessary to study its pharmacokinetic profile and its proximal metabolites (beta-hydroxybutyrate, 1,3-butanediol, and acetoacetate) in humans. Here we develop and validate two LC-MS methods for quantifying KE and its metabolites in human plasma. The first assay uses a C18 column to quantitate ketone ester, beta-hydroxybutyrate, and 1,3-butanediol, and the second assay uses a hydrophilic interaction liquid chromatography (HILIC) column for the quantitation of acetoacetate. The method was partially validated for intra- and inter-day accuracy and precision based on the ICH M10 guidelines. For both the assays, the intra- and inter-run accuracy was ±15% of the nominal concentration, and the precision (%CV) was <15% for all 4 molecules being quantified. The matrix effect for all molecules was evaluated and ranged from -62.1 to 44.4% (combined for all molecules), while the extraction recovery ranged from 65.1 to 119% (combined for all molecules). Furthermore, the metabolism of ketone ester in human plasma and human serum albumin was studied using the method. Non-saturable metabolism of ketone ester was seen in human plasma at concentrations as high as 5 mM, and human serum albumin contributed to the metabolism of ketone ester. Together, these assays can be used to track the entire kinetics of ketone ester and its proximal metabolites. The reverse-phase method was used to study the metabolic profile of KE in human plasma and the plasma protein binding of 1,3-BD.


Subject(s)
Acetoacetates , Ketones , Humans , 3-Hydroxybutyric Acid , Chromatography, Liquid , Tandem Mass Spectrometry , Butylene Glycols , Esters
10.
Front Physiol ; 14: 1196535, 2023.
Article in English | MEDLINE | ID: mdl-37427402

ABSTRACT

Introduction: Bis-hexanoyl (R)-1,3-butanediol (BH-BD) is a novel ketone ester that, when consumed, is hydrolyzed into hexanoic acid (HEX) and (R)-1,3-butanediol (BDO) which are subsequently metabolized into beta-hydroxybutyrate (BHB). Methods: We undertook a randomized, parallel, open-label study in healthy adults (n = 33) to elucidate blood BHB, HEX and BDO concentrations for 8 h following consumption of three different serving sizes (SS) of BH-BD (12.5, 25 and 50 g/day) before (Day 0) and after 7 days of daily BH-BD consumption (Day 7). Results: Maximal concentration and area under the curve of all metabolites increased proportionally to SS and were greatest for BHB followed by BDO then HEX on both Day 0 and 7. Metabolite half-life tended to decrease with increasing SS for BHB and HEX. Time to peak concentration increased with increasing SS for BHB and BDO on both days. In vitro incubation of BH-BD in human plasma demonstrated BH-BD undergoes rapid spontaneous hydrolysis. Conclusion: These results demonstrate that orally ingested BH-BD is hydrolyzed into products that appear in the plasma and undergo conversion to BHB in a SS dependent manner, and that metabolism of BH-BD neither becomes saturated at serving sizes up to 50 g nor displays consistent adaptation after 7 days of daily consumption.

11.
Nutrients ; 15(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37447394

ABSTRACT

There is growing interest in the investigation of ketogenic diets as a potential therapy for bipolar disorder. The overlapping pharmacotherapies utilized for both bipolar disorder and seizures suggest that a mechanistic overlap may exist between these conditions, with fasting and the ketogenic diet representing the most time-proven therapies for seizure control. Recently, preliminary evidence has begun to emerge supporting a potential role for ketogenic diets in treating bipolar disorder. Notably, some patients may struggle to initiate a strict diet in the midst of a mood episode or significant life stressors. The key question addressed by this pilot clinical trial protocol is if benefits can be achieved with a less restrictive diet, as this would allow such an intervention to be accessible for more patients. Recent development of so-called ketone esters, that once ingested is converted to natural ketone bodies, combined with low glycemic index dietary changes has the potential to mimic two foundational components of therapeutic ketosis: high levels of ketones and minimal spiking of glucose/insulin. This pilot clinical trial protocol thus aims to investigate the effect of a 'ketogenic-mimicking diet' (combining supplementation of ketone esters with a low glycemic index dietary intervention) on neural network stability, mood, and biomarker outcomes in the setting of bipolar disorder. Positive findings obtained via this pilot clinical trial protocol may support future target engagement studies of ketogenic-mimicking diets or related ketogenic interventions. A lack of positive findings, in contrast, may justify a focus on more strict dietary interventions for future research.


Subject(s)
Bipolar Disorder , Diet, Ketogenic , Seizures , Humans , Bipolar Disorder/diet therapy , Diet , Diet, Ketogenic/methods , Ketone Bodies , Ketones , Seizures/prevention & control , Pilot Projects
12.
JACC Heart Fail ; 11(10): 1337-1347, 2023 10.
Article in English | MEDLINE | ID: mdl-37452805

ABSTRACT

BACKGROUND: Cardiogenic shock (CS) is a life-threatening condition with sparse treatment options. The ketone body 3-hydroxybutyrate has favorable hemodynamic effects in patients with stable chronic heart failure. Yet, the hemodynamic effects of exogenous ketone ester (KE) in patients with CS remain unknown. OBJECTIVES: The authors aimed to assess the hemodynamic effects of single-dose enteral treatment with KE in patients with CS. METHODS: In a double-blind, crossover study, 12 patients with CS were randomized to an enteral bolus of KE and isocaloric, isovolumic placebo containing maltodextrin. Patients were assessed with pulmonary artery catheterization, arterial blood samples, echocardiography, and near-infrared spectroscopy for 3 hours following each intervention separated by a 3-hour washout period. RESULTS: KE increased circulating 3-hydroxybutyrate (2.9 ± 0.3 mmol/L vs 0.2 ± 0.3 mmol/L, P < 0.001) and was associated with augmented cardiac output (area under the curve of relative change: 61 ± 22 L vs 1 ± 18 L, P = 0.044). Also, KE increased cardiac power output (0.07 W [95% CI: 0.01-0.14]; P = 0.037), mixed venous saturation (3 percentage points [95% CI: 1-5 percentage points]; P = 0.010), and forearm perfusion (3 percentage points [95% CI: 0-6 percentage points]; P = 0.026). Right (P = 0.048) and left (P = 0.017) ventricular filling pressures were reduced whereas heart rate and mean arterial and pulmonary arterial pressures remained similar. Left ventricular ejection fraction improved by 4 percentage points (95% CI: 2-6 percentage points; P = 0.005). Glucose levels decreased by 2.6 mmol/L (95% CI: -5.2 to 0.0; P = 0.047) whereas insulin levels remained unaltered. CONCLUSIONS: Treatment with KE improved cardiac output, biventricular function, tissue oxygenation, and glycemic control in patients with CS (Treatment With the Ketone Body 3-hydroxybutyrate in Patients With Cardiogenic Shock [KETO-SHOCK1]; NCT04642768).


Subject(s)
Heart Failure , Shock, Cardiogenic , Humans , Shock, Cardiogenic/therapy , Stroke Volume , Ketones/pharmacology , Ketones/therapeutic use , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/therapeutic use , Cross-Over Studies , Ventricular Function, Left , Hemodynamics , Ketone Bodies/pharmacology , Ketone Bodies/therapeutic use
13.
Trends Endocrinol Metab ; 34(7): 414-425, 2023 07.
Article in English | MEDLINE | ID: mdl-37271711

ABSTRACT

Integrity of the microbiome is an essential element for human gut health. 3-Hydroxybutyrate (3HB) secreted into the gut lumen has gained attention as a regulator of gut physiology, including stem cell expansion. In this opinion, I propose new prebiotics leading to gut health by use of a ketone (3HB) donor. When exogenous 3HB is supplied through ketone donation, it has the potential to markedly improve gut health by altering the gut microbiome and systemic metabolic status. Poly-hydroxybutyrate (PHB) donates 3HB and primarily influences microbiota, making it an effective prebiotic for improving the gut environment. Thus, exogenous 3HB donation to the lumen of the gut may aid gut health by maintaining the integrity of microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Prebiotics , Hydroxybutyrates/metabolism , 3-Hydroxybutyric Acid/metabolism
14.
Front Physiol ; 14: 1197768, 2023.
Article in English | MEDLINE | ID: mdl-37260594
15.
Metabolism ; 145: 155608, 2023 08.
Article in English | MEDLINE | ID: mdl-37268056

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is a major risk factor for the development of heart failure with reduce ejection fraction (HFrEF). While previous studies have focused on HFrEF, the cardiovascular effects of ketone bodies in acute MI are unclear. We examined the effects of oral ketone supplementation as a potential treatment strategy in a swine acute MI model. METHODS: Farm pigs underwent percutaneous balloon occlusion of the LAD for 80 min followed by 72 h reperfusion period. Oral ketone ester or vehicle was administered during reperfusion and continued during the follow-up period. RESULTS: Oral KE supplementation induced ketonemia 2-3 mmol/l within 30 min after ingestion. KE increased ketone (ßHB) extraction in healthy hearts without affecting glucose and fatty acid (FA) consumption. During reperfusion, the MI hearts consumed less FA with no change in glucose consumption, whereas hearts from MI-KE-fed animals consumed more ßHB and FA, as well as improved myocardial ATP production. A significant elevation of infarct T2 values indicative of inflammation was found only in untreated MI group compared to sham. Concordantly, cardiac expression of inflammatory markers, oxidative stress, and apoptosis were reduced by KE. RNA-seq analysis identified differentially expressed genes related to mitochondrial energy metabolism and inflammation. CONCLUSIONS: Oral KE supplementation induced ketosis and enhanced myocardial ßHB extraction in both healthy and infarcted hearts. Acute oral supplementation with KE favorably altered cardiac substrate uptake and utilization, improved cardiac ATP levels, and reduced cardiac inflammation following MI.


Subject(s)
Heart Failure , Myocardial Infarction , Swine , Animals , Ketones/pharmacology , Stroke Volume , Disease Models, Animal , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Adenosine Triphosphate , Glucose/pharmacology , Dietary Supplements
16.
Front Physiol ; 14: 1165224, 2023.
Article in English | MEDLINE | ID: mdl-37113697

ABSTRACT

Objective: The ketone diester, R,S-1,3-butanediol diacetoacetate (BD-AcAc2), attenuates the accretion of adiposity and reduces hepatic steatosis in high-fat diet-induced obese mice when carbohydrate energy is removed from the diet to accommodate energy from the ester. Reducing carbohydrate energy is a potential confounder due to the well-known effects of carbohydrate restriction on components of energy balance and metabolism. Therefore, the current investigation was designed to determine whether the addition of BD-AcAc2 to a high-fat, high-sugar diet (with no reduction in carbohydrate energy) would attenuate the accretion of adiposity and markers of hepatic steatosis and inflammation. Methods: Sixteen 11-week-old male C57BL/6J mice were randomized to one of two groups for 9 weeks (n = 8 per group): 1) Control (CON, HFHS diet) or 2) Ketone ester (KE, HFHS diet + BD-AcAc2, 25% by kcals). Results: Body weight increased by 56% in CON (27.8 ± 2.5 to 43.4 ± 3.7 g, p < 0.001) and by 13% in KE (28.0 ± 0.8 to 31.7 ± 3.1 g, p = 0.001). Non-alcoholic fatty liver disease activity scores (NAS) for hepatic steatosis, inflammation, and ballooning were lower in the KE group compared to CON (p < 0.001 for all). Markers of hepatic inflammation [Tnfα (p = 0.036); Mcp1 (p < 0.001)], macrophage content [(Cd68 (p = 0.012)], and collagen deposition and hepatic stellate cell activation [(αSma (p = 0.004); Col1A1 (p < 0.001)] were significantly lower in the KE group compared to CON. Conclusion: These findings extend those of our previous work and show that BD-AcAc2 attenuates the accretion of adiposity and reduces markers of liver steatosis, inflammation, ballooning, and fibrosis in lean mice placed on a HFHS diet where carbohydrate energy was not removed to accommodate energy from addition of the diester.

17.
J Am Nutr Assoc ; 42(2): 169-177, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35512774

ABSTRACT

BACKGROUND: Ketosis has been reported to benefit healthspan and resilience, which has driven considerable interest in development of exogenous ketones to induce ketosis without dietary changes. Bis hexanoyl (R)-1,3-butanediol (BH-BD) is a novel ketone di-ester that can be used as a food ingredient that increases hepatic ketogenesis and blood beta-hydroxybutyrate (BHB) concentrations. METHODS: Here, we provide the first description of blood ketone and metabolite kinetics for up to five hours after consumption of a beverage containing BH-BD by healthy adults (n = 8) at rest in three randomized, cross-over conditions (25 g + Meal (FEDH); 12.5 g + Meal (FEDL) ; 25 g + Fasted (FASTH)). RESULTS: Consumption of BH-BD effectively raised plasma r-BHB concentrations to 0.8-1.7 mM in all conditions, and both peak r-BHB concentration and r-BHB area under the curve were greater with 25 g versus 12.5 g of BH-BD. Urinary excretion of r-BHB was <1 g. Plasma concentration of the non-physiological isoform s-BHB was increased to 20-60 µM in all conditions. BH-BD consumption decreased plasma glucose and free fatty acid concentrations; insulin was increased when BH-BD was consumed with a meal. CONCLUSIONS: These results demonstrate that consumption of BH-BD effectively induces exogenous ketosis in healthy adults at rest.


Subject(s)
Esters , Ketosis , Adult , Humans , 3-Hydroxybutyric Acid , Hydroxybutyrates , Ketone Bodies , Ketones
18.
J Am Nutr Assoc ; 42(7): 635-642, 2023.
Article in English | MEDLINE | ID: mdl-36278841

ABSTRACT

Objective: Growing interest in the metabolic state of ketosis has driven development of exogenous ketone products to induce ketosis without dietary changes. Bis hexanoyl (R)-1,3-butanediol (BH-BD) is a novel ketone ester which, when consumed, increases blood beta-hydroxybutyrate (BHB) concentrations. BH-BD is formulated as a powder or ready-to-drink (RTD) beverage; the relative efficacy of these formulations is unknown, but hypothesized to be equivalent.Methods: This randomized, observer-blinded, controlled, crossover decentralized study in healthy adults (n = 15, mean age = 33.7 years, mean BMI = 23.6 kg/m2) aimed to elucidate blood BHB and glucose concentrations before and 15, 30, 45, 60, 90 and 120 minutes following two serving sizes of reconstituted BH-BD powder (POW 25 g, POW 12.5 g), compared to a RTD BH-BD beverage (RTD 12.5 g), and a non-ketogenic control, all taken with a standard meal.Results: All BH-BD products were well tolerated and increased BHB, inducing nutritional ketosis (BHB ≥0.5 mM) after ∼15 minutes, relative to the control. BHB remained elevated 2 h post-consumption. The control did not increase BHB. Ketosis was dose responsive; peak BHB concentration and area under the curve (AUC) were two-fold greater with POW 25 g compared to POW 12.5 g and RTD 12.5 g. There were no differences in peak BHB and AUC between matched powder and RTD formulas. Blood glucose increased in all conditions following the meal but there were neither significant differences in lowest observed concentrations, nor consistent differences at each time point between conditions. These results demonstrate that both powdered and RTD BH-BD formulations similarly induce ketosis with no differences in glucose concentrations in healthy adults.

19.
Front Nutr ; 9: 1041026, 2022.
Article in English | MEDLINE | ID: mdl-36458175

ABSTRACT

Exogenous ketone ester supplementation provides a means to increase circulating ketone concentrations without the dietary challenges imposed by ketogenic diets. Our group has shown that oral R,S-1,3, butanediol diacetoacetate (BD-AcAc2) consumption results in body weight loss or maintenance with moderate increases in circulating ketones. We have previously shown a diet consisting of 25% BD-AcAc2 can maintain lean body mass (LBM) and induce fat mass (FM) loss in young, healthy male mice, but the underlying mechanisms are still unknown. Therefore, the purpose of this study was to determine if a diet consisting of 25% BD-AcAc2 (ketone ester, KE) would alter body composition, transcriptional regulation, the proteome, and the lipidome of skeletal muscle in aged mice. We hypothesized that the KE group would remain weight stable with improvements in body composition compared to controls, resulting in a healthy aging phenotype. Male C57BL/6J mice (n = 16) were purchased from Jackson Laboratories at 72 weeks of age. After 1 week of acclimation, mice were weighed and randomly assigned to one of two groups (n = 8 per group): control (CON) or KE. A significant group by time interaction was observed for body weight (P < 0.001), with KE fed mice weighing significantly less than CON. FM increased over time in the control group but was unchanged in the KE group. Furthermore, LBM was not different between CON and KE mice despite KE mice weighing less than CON mice. Transcriptional analysis of skeletal muscle identified 6 genes that were significantly higher and 21 genes that were significantly lower in the KE group compared to CON. Lipidomic analysis of skeletal muscle identified no differences between groups for any lipid species, except for fatty acyl chains in triacylglycerol which was 46% lower in the KE group. Proteomics analysis identified 44 proteins that were different between groups, of which 11 were lower and 33 were higher in the KE group compared to CON. In conclusion, 72-week-old male mice consuming the exogenous KE, BD-AcAc2, had lower age-related gains in body weight and FM compared to CON mice. Furthermore, transcriptional and proteomics data suggest a signature in skeletal muscle of KE-treated mice consistent with markers of improved skeletal muscle regeneration, improved electron transport chain utilization, and increased insulin sensitivity.

20.
Nutrients ; 14(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297110

ABSTRACT

TCN006, a formulation of (R)-3-Hydroxybutyrate glycerides, is a promising ingredient for enhancing ketone intake of humans. Ketones have been shown to have beneficial effects on human health. To be used by humans, TCN006 must be determined safe in appropriately designed safety studies. The results of a bacterial reverse mutation assay, an in vitro mammalian micronucleus study, and 14-and 90-day repeat dose toxicity studies in rats are reported herein. In the 14- and 90-day studies, male and female Wistar rats had free access to drinking water containing 0, 75,000, 125,000 or 200,000 ppm TCN006 for 92 and 93 days, respectively. TCN006 tested negative for genotoxicity and the no observed adverse effect level (NOAEL) for toxicity in the 14- and 90-day studies was 200,000 ppm, the highest dose administered. In the longer term study, the mean overall daily intake of TCN006 in the 200,000 ppm groups was 14,027.9 mg/kg bw/day for males and 20,507.0 mg/kg bw/day for females. At this concentration, palatability of water was likely affected, which led to a decrease in water consumption in both males and females compared to respective controls. This had no effect on the health of the animals. Although the rats were administered very high levels of (R)-3-Hydroxybutyrate glycerides, there were no signs of ketoacidosis.


Subject(s)
Drinking Water , Glycerides , Humans , Rats , Male , Female , Animals , Rats, Wistar , 3-Hydroxybutyric Acid , Body Weight , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL