Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.417
Filter
1.
Cell Tissue Res ; 397(3): 275-285, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39105776

ABSTRACT

The complex interactome crucial for successful pregnancy is constituted by the intricate network of endocrine and paracrine signaling pathways, involving gametes, embryos, and the female reproductive tract. Specifically, the oviduct exhibits distinct responses to gametes and early embryos during particular phases of the estrus cycle, a process tightly regulated by reproductive hormones. Moreover, these hormones play a pivotal role in orchestrating cyclical changes within oviductal epithelial cells. To unravel the molecular mechanisms underlying these dynamic changes, our study aimed to investigate the involvement of protein kinase A (PKA) in oviductal epithelial cells throughout the estrus cycle and in advanced pregnancy, extending our studies to oviductal epithelial cell in primary culture. By a combination of 2D-gel electrophoresis, Western blotting, and mass spectrometry, we identified 17 proteins exhibiting differential phosphorylation status mediated by PKA. Among these proteins, we successfully validated the phosphorylation status of heat shock 70 kDa protein (HSP70), aconitase 2 (ACO2), and lamin B1 (LMNB1). Our findings unequivocally demonstrate the dynamic regulation of PKA throughout the estrus cycle in oviductal epithelial cells. Also, analysis by bioinformatics tools suggest its pivotal role in mediating cyclical changes possibly through modulation of apoptotic pathways. This research sheds light on the intricate molecular mechanisms underlying reproductive processes, with implications for understanding fertility and reproductive health.


Subject(s)
Apoptosis , Cyclic AMP-Dependent Protein Kinases , Epithelial Cells , Estrous Cycle , Signal Transduction , Animals , Female , Epithelial Cells/metabolism , Cattle , Cyclic AMP-Dependent Protein Kinases/metabolism , Estrous Cycle/physiology , Estrous Cycle/metabolism , Oviducts/metabolism , Oviducts/cytology , Fallopian Tubes/metabolism , Fallopian Tubes/cytology , Phosphorylation
2.
Ann Hematol ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153144

ABSTRACT

Bruton tyrosine kinase (BTK) inhibitors play an important role in targeted treatment of B-cell lymphoproliferative disorders. However, adverse events may limit the proper course of treatment in many patients. The purpose of this study is to compare the risk of cardiovascular and non-cardiovascular adverse events in patients with chronic lymphocytic leukemia (CLL) or small cell lymphocytic lymphoma (SLL) treated with the first-generation BTK inhibitor ibrutinib versus second-generation acalabrutinib, using real-world data from a collaborative multinational network. We used data from the network (TriNetX), which encompasses more than 100 healthcare organizations worldwide. We queried the database for patients aged ≥ 18 years with chronic lymphocytic leukemia or small-cell lymphomas treated with ibrutinib or acalabrutinib in the past ten years before the analysis. We used propensity score matching to balance the cohorts. The 3-year cumulative incidences and hazard ratios for the following outcomes were calculated: atrial flutter or fibrillation, other arrhythmias, heart failure, ischemic stroke or peripheral embolism, acute coronary syndrome, bleeding, and sepsis. We compared 2,107 patients in each group. Atrial fibrillation or flutter occurred in 150 (7.1%) patients with acalabrutinib and 310 (14.7%) patients with ibrutinib during the 3-year follow-up (hazard ratio, 0.68, 95% CI 0.55-0.84). New-onset hypertension occurred in 342 (16.3%) patients in the acalabrutinib group and 584 (27.7%) patients in the ibrutinib group (hazard ratio 0.81, 95% CI 0.66-0.98). Sepsis was diagnosed in 136 (6.5%) patients in the acalabrutinib group versus 239 (11.3%) patients in the ibrutinib group (hazard ratio 0.77, 95 CI 0.60-0.98). The two groups had no significant differences concerning the other adverse events. In a large retrospective cohort using real-world data from electronic medical registers, patients with CLL or SLL treated with acalabrutinib had a better cardiovascular and non-cardiovascular safety profile than those treated with ibrutinib, with lower risks of atrial flutter or fibrillation, new-onset arterial hypertension, and sepsis.

3.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126006

ABSTRACT

The use of tyrosine kinase inhibitors (TKI) has been growing in veterinary oncology and in the past few years several TKI have been tested in dogs. However, different from human medicine, we lack strategies to select patients to be treated with each TKI. Therefore, this study aimed to screen different tumor subtypes regarding TKI target immunoexpression as a predictor strategy to personalize the canine cancer treatment. It included 18 prostatic carcinomas, 36 soft tissue sarcomas, 20 mammary gland tumors, 6 urothelial bladder carcinomas, and 7 tumors from the endocrine system. A total of 87 patients with paraffin blocks were used to perform immunohistochemistry (IHC) of human epidermal growth factor receptor 2 (HER-2), epidermal growth factor receptors 1 (EGFR1), vascular endothelial growth factor receptor 2 (VEGFR-2), platelet derived growth factor receptor beta (PDGFR-ß), c-KIT, and extracellular signal-regulated kinase 1/2 (ERK1/ERK2). The immunohistochemical screening revealed a heterogeneous protein expression among histological types with mesenchymal tumors showing the lowest expression level and carcinomas the highest expression. We have demonstrated by IHC screening that HER2, EGFR1, VEGFR-2, PDGFR-ß and ERK1/ERK2 are commonly overexpressed in dogs with different carcinomas, and KIT expression is considered relatively low in the analyzed samples.


Subject(s)
Dog Diseases , Immunohistochemistry , Dogs , Animals , Dog Diseases/metabolism , Dog Diseases/drug therapy , Dog Diseases/pathology , Male , Female , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/veterinary , Neoplasms/pathology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Biomarkers, Tumor/metabolism , Receptor, ErbB-2/metabolism , Proto-Oncogene Proteins c-kit/metabolism , ErbB Receptors/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Humans
4.
Clin Transl Oncol ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126618

ABSTRACT

BACKGROUND: The Phosphoinositide 3-kinase (PI3K) inhibitors may be used in cancer progression and mortality along with standard therapy to improve therapeutic efficacy of Advanced Breast Cancer (ABC). PURPOSE: This systematic review and meta- analysis were conducted to understand the therapeutic and toxicity profile of PI3K inhibitors in ABC. METHODS: The electronic databases were searched for suitable trials as per the criteria. The outcomes assessed were Progression- Free Survival, Objective Response Rate and Disease Control Rate. The data were systematically reviewed and meta-analyzed by Mantele- Haenszel method. RESULTS: Seven studies were included in the systematic review and meta- analysis. The co- administration of PI3K inhibitors with standard therapy improved the Progression- Free Survival significantly, while a marginal improvement was observed in Objective Response Rate, no difference in Disease Control Rate and toxicity significantly increased. CONCLUSIONS: The addition of PI3K inhibitors decreased the risk of progression but increased the risk of toxicity.

5.
Res Vet Sci ; 177: 105363, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053093

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is a neoplasm type often diagnosed in dogs. However, studies focused on further investigating its molecular biology, mainly biomarkers to help implementing new therapies, remain scare in the literature. Thus, immunostaining and the gene expression of epidermal growth factor receptors (HER1 and HER2) in canine cSCC presenting different cell differentiation degrees were herein assessed. Thirty-two (32) canine cSCC were selected, classified based on to their cell differentiation degree and subjected to immunohistochemical study to assess HER1 and HER2 immunostaining intensity and distribution. In addition, HER1 and HER2 gene expression was investigated through real-time PCR. Membranous and cytoplasmic immunostaining were observed in both markers. HER2 prevailed in poorly differentiated cSCC; there was positive protein expression correlation between both markers. Mean HER1 gene expression was higher in moderately differentiated, whereas mean HER2 gene expression was higher in poorly differentiated cSCC. Moreover, there was gene expression correlation between markers, regardless of cell differentiation degree. Thus, HER2 protein immunostaining and gene expression were higher in poorly differentiated canine cSCC and it enabled understanding that increase observed in this epidermal growth factor receptor is proportional to this neoplasm's cell differentiation degree in canine species. Results in the current study helped better understanding canine cSCC's molecular biology; however, it is relevant studying other markers aiming to investigate signaling pathways.


Subject(s)
Carcinoma, Squamous Cell , Dog Diseases , ErbB Receptors , Immunohistochemistry , Receptor, ErbB-2 , Skin Neoplasms , Animals , Dogs , Dog Diseases/genetics , Dog Diseases/metabolism , Carcinoma, Squamous Cell/veterinary , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Skin Neoplasms/veterinary , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Immunohistochemistry/veterinary , Female , Gene Expression Regulation, Neoplastic , Male , Real-Time Polymerase Chain Reaction/veterinary
6.
J Biol Chem ; 300(8): 107550, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002682

ABSTRACT

The PKC-related kinases (PRKs, also termed PKNs) are important in cell migration, cancer, hepatitis C infection, and nutrient sensing. They belong to a group of protein kinases called AGC kinases that share common features like a C-terminal extension to the catalytic domain comprising a hydrophobic motif. PRKs are regulated by N-terminal domains, a pseudosubstrate sequence, Rho-binding domains, and a C2 domain involved in inhibition and dimerization, while Rho and lipids are activators. We investigated the allosteric regulation of PRK2 and its interaction with its upstream kinase PDK1 using a chemical biology approach. We confirmed the phosphoinositide-dependent protein kinase 1 (PDK1)-interacting fragment (PIF)-mediated docking interaction of PRK2 with PDK1 and showed that this interaction can be modulated allosterically. We showed that the polypeptide PIFtide and a small compound binding to the PIF-pocket of PRK2 were allosteric activators, by displacing the pseudosubstrate PKL region from the active site. In addition, a small compound binding to the PIF-pocket allosterically inhibited the catalytic activity of PRK2. Together, we confirmed the docking interaction and allostery between PRK2 and PDK1 and described an allosteric communication between the PIF-pocket and the active site of PRK2, both modulating the conformation of the ATP-binding site and the pseudosubstrate PKL-binding site. Our study highlights the allosteric modulation of the activity and the conformation of PRK2 in addition to the existence of at least two different complexes between PRK2 and its upstream kinase PDK1. Finally, the study highlights the potential for developing allosteric drugs to modulate PRK2 kinase conformations and catalytic activity.


Subject(s)
Protein Kinase C , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Humans , Allosteric Regulation , Protein Kinase C/metabolism , Protein Kinase C/genetics , Protein Kinase C/chemistry , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Catalytic Domain , Molecular Docking Simulation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/chemistry , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , 3-Phosphoinositide-Dependent Protein Kinases/genetics , 3-Phosphoinositide-Dependent Protein Kinases/chemistry , Protein Binding
7.
Chembiochem ; : e202400296, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008807

ABSTRACT

The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.

8.
Cancer Manag Res ; 16: 781-789, 2024.
Article in English | MEDLINE | ID: mdl-39010861

ABSTRACT

Purpose: Lung cancer is the leading cause of cancer-related deaths worldwide. However, with the optimization of screening strategies and advances in treatment, mortality has been decreasing in recent years. In this study, we describe non-small cell lung cancer patients diagnosed between 2021 and 2022 at a high-complexity hospital in Latin America, as well as the immunohistochemistry techniques used to screen for ROS1 rearrangements, in the context of the recent approval of crizotinib for the treatment of ROS1 rearrangements in non-small cell lung cancer in Colombia. Methods: A descriptive cross-sectional study was conducted. Sociodemographic, clinical, and molecular pathology information from non-small cell lung cancer individuals who underwent immunohistochemistry to detect ROS1 rearrangements between 2021 and 2022 at Fundación Valle del Lili (Cali, Colombia) was recorded. The clinical outcomes of confirmed ROS1 rearrangements in non-small cell lung cancer patients were reported. Results: One hundred and thirty-six patients with non-small cell lung cancer were included. The median age at diagnosis was 69.8 years (interquartile range 61.9-77.7). At diagnosis, 69.8% (n = 95) were at stage IV. ROS1 immunohistochemistry was performed using the monoclonal D4D6 antibody clone in 54.4% (n = 74) of the cases, while 45.6% (n = 62) were done with the monoclonal SP384 antibody clone. Two patients were confirmed to have ROS1 rearrangements in non-small cell lung cancer using next-generation sequencing and received crizotinib. On follow-up at months 5.3 and 7.0, one patient had a partial response, and the other had oligo-progression, respectively. Conclusion: Screening for ROS1 rearrangements in non-small cell lung cancer is imperative, as multiple prospective studies have shown improved clinical outcomes with tyrosine kinase inhibitors. Given the recent approval of crizotinib in Colombia, public health policies must be oriented toward early detection of driver mutations and prompt treatment. Additionally, future approvals of newly tested tyrosine kinase inhibitors should be anticipated.

9.
Cancers (Basel) ; 16(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39001552

ABSTRACT

Lung adenocarcinoma is the most prevalent form of lung cancer, and drug resistance poses a significant obstacle in its treatment. This study aimed to investigate the overexpression of long non-coding RNAs (lncRNAs) as a mechanism that promotes intrinsic resistance in tumor cells from the onset of treatment. Drug-tolerant persister (DTP) cells are a subset of cancer cells that survive and proliferate after exposure to therapeutic drugs, making them an essential object of study in cancer treatment. The molecular mechanisms underlying DTP cell survival are not fully understood; however, long non-coding RNAs (lncRNAs) have been proposed to play a crucial role. DTP cells from lung adenocarcinoma cell lines were obtained after single exposure to tyrosine kinase inhibitors (TKIs; erlotinib or osimertinib). After establishing DTP cells, RNA sequencing was performed to investigate the differential expression of the lncRNAs. Some lncRNAs and one mRNA were overexpressed in DTP cells. The clinical relevance of lncRNAs was evaluated in a cohort of patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA). RT-qPCR validated the overexpression of lncRNAs and mRNA in the residual DTP cells and LUAD biopsies. Knockdown of these lncRNAs increases the sensitivity of DTP cells to therapeutic drugs. This study provides an opportunity to investigate the involvement of lncRNAs in the genetic and epigenetic mechanisms that underlie intrinsic resistance. The identified lncRNAs and CD74 mRNA may serve as potential prognostic markers or therapeutic targets to improve the overall survival (OS) of patients with lung cancer.

10.
Article in English | MEDLINE | ID: mdl-39079797

ABSTRACT

BACKGROUND: A lower dosage of tyrosine kinase inhibitors (TKIs) in patients with chronic myeloid leukaemia (CML) has shown efficacy in managing short-term toxicity and maintaining a deep molecular response in patients who fail to achieve treatment-free remission. METHOD: From over 700 patients with CML who were treated at two centres over the last three decades, this retrospective study identified eight patients characterised by long-term treatment failure and simultaneous prolonged significant haematologic toxicity that prevented the use of the standard tyrosine kinase inhibitor dosage. RESULTS: Patients had a high or intermediate ELTS risk score, and most had significant comorbidities. Two patients were treated previously with busulfan, and four were aged over 70, which might explain the reduced pool of normal haematopoietic stem cells. However, concomitant myelodysplastic syndrome or the presence of clonal haematopoiesis of indeterminate potential was not demonstrated. Despite prolonged treatment failure, the survival of these patients (who were ineligible for stem cell transplantation) ranged from 45-396 months. Neither mutations in the ABL kinase domain nor additional cytogenetic abnormalities developed during the treatment of these patients, prompting speculation about the low selective pressure of low-dose tyrosine kinase inhibitors and/or the absence of mutations at diagnosis. CONCLUSION: It is important not to stop treatment with tyrosine kinase inhibitors at a low personalised dosage in CML patients with prolonged significant haematologic toxicity despite long-term treatment failure.

11.
Genes (Basel) ; 15(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39062675

ABSTRACT

This study sought to assess how post-game creatine kinase (CK) levels correlate with the number of sprints and the impact of the ACTN3 polymorphism on this response. This research constituted a descriptive/observational, retrospective cross-sectional study. DNA was extracted from blood samples for ACTN3 polymorphism genotyping. CK was measured 48 h after official matches, and the number of sprints (>19 km/h) was tracked using Global Positioning System (GPS) technology. The main cohort included 23 professional soccer players from the top tier of the Brazilian Championship. We analyzed 115 GPS + CK data sets. The replication cohort comprised 18 professional soccer players from the First Division of the Championship, had the same methodology applied, and featured a total of 90 GPS (sprints > 25.2 km/h) + CK data sets. For the main cohort, a significant positive correlation was seen between the number of sprints and the CK levels (p = 0.009). Athletes with the ACTN3 RR genotype had higher CK levels as more sprints were performed during the match (p = 0.017). However, the relationship was not found for X allele carriers (p > 0.05). For the replication cohort, there was a near-significant correlation between CK levels and the number of sprints (p = 0.05), and RR individuals showed a significant association (p = 0.01), whereas X allele carriers did not (p = 0.06). A greater number of sprints during matches is linked to higher CK levels, primarily among players with the ACTN3 RR genotype, which is potentially due to an increased presence of type II muscle fibers. These findings were replicated for both cohorts of elite Brazilian soccer players, emphasizing the importance of genetic factors in injury prevention.


Subject(s)
Actinin , Creatine Kinase , Running , Soccer , Humans , Actinin/genetics , Brazil , Male , Creatine Kinase/blood , Creatine Kinase/genetics , Adult , Athletes , Athletic Performance , Cross-Sectional Studies , Retrospective Studies , Genotype , Polymorphism, Single Nucleotide , Young Adult , Polymorphism, Genetic
12.
Oncol Lett ; 28(3): 432, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39049983

ABSTRACT

p16INK4a and p21WAF1/Cip1 are cyclin-dependent kinase inhibitors involved in cell cycle control, which can function as oncogenes or tumor suppressors, depending on the context of various extracellular and intracellular signals, and cell type. In human papillomavirus-induced cervical cancer, p16 INK4a shows oncogenic activity and functions as a diagnostic marker of cervical neoplasia, whereas p21 WAF1/Cip1 acts as a tumor suppressor and its downregulation is associated with the progression of malignant transformation. Several histone deacetylase (HDAC) inhibitors promote the positive and negative regulation of a number of genes, including p16 INK4a and p21 WAF1/Cip1; however, the effects of sodium valproate (VPA) on these genes and on the proteins they encode remain uncertain in HeLa cervical cancer cells. In the present study, these effects were investigated in HeLa cells treated with 0.5 or 2 mM VPA for 24 h, using reverse transcription-quantitative PCR, confocal microscopy and western blotting. The results revealed a decrease in the mRNA expression levels of p16 INK4a and a tendency for p16INK4a protein abundance to decrease in the presence of 2 mM VPA. By contrast, an increase in the protein expression levels of p21WAF1/Cip1 was detected in the presence of 0.5 and 2 mM VPA. Furthermore, VPA was confirmed to inhibit HDAC activity and induce global hyperacetylation of histone H3. Notably, VPA was shown to suppress p16 INK4a, a biomarker gene of cervical carcinoma, and to increase the abundance of the tumor suppressor protein p21WAF1/Cip1, thus contributing to the basic knowledge regarding the antitumorigenic potential of VPA. Exploration of epigenetic changes associated with the promoters of p16 INK4a and p21 WAF1/Cip1, such as histone H3 methylation, may provide further information and improve the understanding of these findings.

13.
Front Oncol ; 14: 1406951, 2024.
Article in English | MEDLINE | ID: mdl-39040443

ABSTRACT

Fibroblast Growth Factor Receptors (FGFRs) play a significant role in Estrogen Receptor-positive (ER+) breast cancer by contributing to tumorigenesis and endocrine resistance. This review explores the structure, signaling pathways, and implications of FGFRs, particularly FGFR1, FGFR2, FGFR3, and FGFR4, in ER+ breast cancer. FGFR1 is frequently amplified, especially in aggressive Luminal B-like tumors, and its amplification is associated with poor prognosis and treatment resistance. The co-amplification of FGFR1 with oncogenes like EIF4EBP1 and NSD3 complicates its role as a standalone oncogenic driver. FGFR2 amplification, though less common, is critical in hormone receptor regulation, driving proliferation and treatment resistance. FGFR3 and FGFR4 also contribute to endocrine resistance through various mechanisms, including the activation of alternate signaling pathways like PI3K/AKT/mTOR and RAS/RAF/MEK/ERK. Endocrine resistance remains a major clinical challenge, with around 70% of breast cancers initially hormone receptor positive. Despite the success of CDK 4/6 inhibitors in combination with endocrine therapy (ET), resistance often develops, necessitating new treatment strategies. FGFR inhibitors have shown potential in preclinical studies, but clinical trials have yielded limited success due to off-target toxicities and lack of predictive biomarkers. Current clinical trials, including those evaluating FGFR inhibitors like erdafitinib, lucitanib, and dovitinib, have demonstrated mixed outcomes, underscoring the complexity of FGFR signaling in breast cancer. The interplay between FGFR and other signaling pathways highlights the need for comprehensive molecular profiling and personalized treatment approaches. Future research should focus on identifying robust biomarkers and developing combination therapies to enhance the efficacy of FGFR-targeted treatments. In conclusion, targeting FGFR signaling in ER+ breast cancer presents both challenges and opportunities. A deeper understanding of the molecular mechanisms and resistance pathways is crucial for the successful integration of FGFR inhibitors into clinical practice, aiming to improve outcomes for patients with endocrine-resistant breast cancer.

14.
Heliyon ; 10(13): e34036, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071691

ABSTRACT

Loxosceles spp. spiders can cause serious public health issues. Chemical control is commonly used, leading to health and environmental problems. Identifying molecular targets and using them with natural compounds can help develop safer and eco-friendlier biopesticides. We studied the kinetics and predicted structural characteristics of arginine kinase (EC 2.7.3.3) from Loxosceles laeta (LlAK), a key enzyme in the energy metabolism of these organisms. Additionally, we explored (-)-epigallocatechin gallate (EGCG), a green tea flavonoid, as a potential lead compound for the LlAK active site through fluorescence and in silico analysis, such as molecular docking and molecular dynamics (MD) simulation and MM/PBSA analyses. The results indicate that LlAK is a highly efficient enzyme (K m Arg 0.14 mM, K m ATP 0.98 mM, k cat 93 s-1, k cat/K m Arg 630 s-1 mM-1, k cat/K m ATP 94 s-1 mM-1), which correlates with its structure similarity to others AKs (such as Litopenaeus vannamei, Polybetes pythagoricus, and Rhipicephalus sanguineus) and might be related to its important function in the spider's energetic metabolism. Furthermore, the MD and MM/PBSA analysis suggests that EGCG interacted with LlAK, specifically at ATP/ADP binding site (RMSD <1 nm) and its interaction is energetically favored for its binding stability (-40 to -15 kcal/mol). Moreover, these results are supported by fluorescence quenching analysis (K d 58.3 µM and K a 1.71 × 104 M-1). In this context, LlAK is a promising target for the chemical control of L. laeta, and EGCG could be used in combination with conventional pesticides to manage the population of Loxosceles species in urban areas.

15.
J Pers Med ; 14(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064005

ABSTRACT

We performed a systematic review and meta-analysis to assess the efficacy of EGFR-tyrosine kinase inhibitors (TKI) retreatment in advanced/metastatic non-small-cell lung cancer (NSCLC) patients. We systematically searched PubMed, Embase, Cochrane databases, ASCO, and ESMO websites for studies evaluating EGFR-TKI retreatment in advanced/metastatic NSCLC patients. All analyses were performed using R software (v.4.2.2). We included 19 studies (9 CTs and 10 retrospective cohorts) with a total of 886 patients. In a pooled analysis of all patients during retreatment with TKI, median OS was 11.7 months (95% confidence interval [CI] 10.2-13.4 months) and PFS was 3.2 months (95% CI 2.5-3.9 months). ORR was 15% (95% CI 10-21%) and DCR was 61% (95% CI 53-67%). The subanalysis by generation of TKI in the rechallenge period revealed a slightly better ORR for patients on 3rd generation TKI (p = 0.05). Some limitations include the high heterogeneity of some of the analyses and inability to perform certain subanalyses. Our results unequivocally support the benefit of EGFR-TKI rechallenge in EGFR-mutated NSCLC patients progressing on TKI treatment after a TKI-free interval. These findings may be especially valuable in areas where access to novel therapeutic drugs and clinical trials is limited.

16.
Mol Cell Endocrinol ; 592: 112296, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38844096

ABSTRACT

Ovarian cancer (OC) adjusts energy metabolism in favor of its progression and dissemination. Because melatonin (Mel) has antitumor actions, we investigated its impact on energy metabolism and kinase signaling in OC cells (SKOV-3 and CAISMOV-24). Cells were divided into control and Mel-treated groups, in the presence or absence of the antagonist luzindole. There was a decrease in the levels of HIF-1α, G6PDH, GAPDH, PDH, and CS after Mel treatment even in the presence of luzindole in both OC cells. Mel treatment also reduced the activity of OC-related enzymes including PFK-1, G6PDH, LDH, CS, and GS whereas PDH activity was increased. Lactate and glutamine levels dropped after Mel treatment. Mel further promoted a reduction in the concentrations of CREB, JNK, NF-kB, p-38, ERK1/2, AKT, P70S6K, and STAT in both cell lines. Mel reverses Warburg-type metabolism and possibly reduces glutaminolysis, thereby attenuating various oncogenic molecules associated with OC progression and invasion.


Subject(s)
Energy Metabolism , Melatonin , Ovarian Neoplasms , Signal Transduction , Humans , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Energy Metabolism/drug effects , Melatonin/pharmacology , Cell Line, Tumor , Signal Transduction/drug effects , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Oncogenes
17.
Oncologist ; 29(9): 764-767, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-38832711

ABSTRACT

Comprehensive genomic profiling is highly recommended for treatment decision in nonsquamous, non-small cell lung cancer (NSCLC). However, rare genomic alterations are still being unveiled, with scarce data to guide therapy. Herein, we describe the treatment journey of a 56-year-old, never-smoker Caucasian woman with a metastatic NSCLC harboring a CD47-MET fusion, initially classified as a variant of unknown significance. She had undergone 3 lines of therapy over the course of 3 years, including chemotherapy, immunotherapy, and anti-angiogenic therapy. After reanalysis of her next-generation sequencing data in our service, the fusion was reclassified as likely oncogenic. The patient was started with fourth-line capmatinib, with a good tolerance so far and a complete metabolic response in the active sites of disease, currently ongoing for 18 months. In conclusion, we highlight the sensitivity of a novel MET fusion to capmatinib and emphasize the need for comprehensive panels in NSCLC and molecular tumor board discussions with specialized centers when rare findings arise.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Proto-Oncogene Proteins c-met , Humans , Female , Middle Aged , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-met/genetics , Acrylamides/therapeutic use , Benzamides/therapeutic use , Oncogene Proteins, Fusion/genetics , Triazines/therapeutic use , Imidazoles
18.
Proteins ; 92(11): 1276-1286, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38884545

ABSTRACT

Histidine kinases (HKs) are a central part of bacterial environmental-sensing two-component systems. They provide their hosts with the ability to respond to a wide range of physical and chemical signals. HKs are multidomain proteins consisting of at least a sensor domain, dimerization and phosphorylation domain (DHp), and a catalytic domain. They work as homodimers and the existence of two different autophosphorylation mechanisms (cis and trans) has been proposed as relevant for pathway specificity. Although several HKs have been intensively studied, a precise sequence-to-structure explanation of why and how either cis or trans phosphorylation occurs is still unavailable nor is there any evolutionary analysis on the subject. In this work, we show that AlphaFold can accurately determine whether an HK dimerizes in a cis or trans structure. By modeling multiple HKs we show that both cis- and trans-acting HKs are common in nature and the switch between mechanisms has happened multiple times in the evolutionary history of the family. We then use AlphaFold modeling to explore the molecular determinants of the phosphorylation mechanism. We conclude that it is the difference in lengths of the helices surrounding the DHp loop that determines the mechanism. We also show that very small changes in these helices can cause a mechanism switch. Despite this, previous evidence shows that for a particular HK the phosphorylation mechanism is conserved. This suggests that the phosphorylation mechanism participates in system specificity and mechanism switching provides these systems with a way to diverge.


Subject(s)
Evolution, Molecular , Histidine Kinase , Models, Molecular , Phosphorylation , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Histidine Kinase/genetics , Protein Kinases/chemistry , Protein Kinases/metabolism , Protein Multimerization , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
19.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38931411

ABSTRACT

Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.

20.
Biomedicines ; 12(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927370

ABSTRACT

A relevant challenge for the treatment of patients with neoplasia is the development of resistance to chemo-, immune-, and radiotherapies. Although the causes of therapy resistance are poorly understood, evidence suggests it relies on compensatory mechanisms that cells develop to replace specific intracellular signaling that should be inactive after pharmacological inhibition. One such mechanism involves integrins, membrane receptors that connect cells to the extracellular matrix and have a crucial role in cell migration. The blockage of one specific type of integrin is frequently compensated by the overexpression of another integrin dimer, generally supporting cell adhesion and migration. In particular, integrin αvß3 is a key receptor involved in tumor resistance to treatments with tyrosine kinase inhibitors, immune checkpoint inhibitors, and radiotherapy; however, the specific inhibition of the αvß3 integrin is not enough to avoid tumor relapse. Here, we review the role of integrin αvß3 in tumor resistance to therapy and the mechanisms that have been proposed thus far. Despite our focus on the αvß3 integrin, it is important to note that other integrins have also been implicated in drug resistance and that the collaborative action between these receptors should not be neglected.

SELECTION OF CITATIONS
SEARCH DETAIL