Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
1.
J Environ Sci (China) ; 148: 283-297, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095165

ABSTRACT

In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.


Subject(s)
Environmental Restoration and Remediation , Environmental Restoration and Remediation/methods , Catalysis , Solar Energy , Sunlight , Semiconductors , Renewable Energy , Photochemical Processes
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125158, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39332181

ABSTRACT

Infection with gram-negative bacteria is the main source of the most serious infectious pathogens. Developing new antibacterial materials that break through their external membranes and stay in the bacterial body to result in an antibacterial effect is the key to achieving high efficiency against Gram-negative bacteria. A Gd-doped carbon dot (GRCD) was prepared using the approved therapeutic diagnostic agents Rose Bengal (RB) and gadolinium ions (Gd3+), which was used to resist Gram-negative bacteria (e.g. E. coli, Escherichia coli). GRCD not only showed strong antibacterial activity by destroying the external membranes of E. coli (inhibition rate against E. coli was 92.0 % at 20 µg/mL) but also bound to E. coli DNA and generated single oxygen (1O2) (quantum yield was 0.50) through visible light-driven catalysis, thus decomposing the DNA of E. coli and further enhancing the antibacterial performance of GRCD. Under visible light conditions, the inhibition rate against E. coli reached 95.8 % at a low concentration of 2.5 µg/mL, without obvious cytotoxicity to NIH3T3 cells. The use of GRCD in treating wound infections in mice caused by E. coli was quite good, without side reactions on the mice's essential organs. In this study, a new approach has been provided to the design and synthesis of carbon dot nanocomposites for use against Gram-negative bacteria.

3.
Heliyon ; 10(15): e35505, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39165952

ABSTRACT

This study explores the adsorption of indigo carmine dye using bio-combusted cerium oxide nanoparticles (CeO2 NPs). CeO2 NPs were synthesized using a bio-combustion method, and then subjected to structural, morphological, and optical characterization for thorough investigation. Structural investigation was carried out using X-ray diffraction (XRD), which revealed a cubic structure with evaluated average crystallite size of 11.55 nm. Later, the same was verified by employing W-H plot (13.57 nm). UV-Vis spectroscopy revealed an effective band gap of 3 eV suited for photocatalytic applications. The metal-oxygen phonon band at 986.32 cm-1 and 871.96 cm-1 is confirmed using Infrared Spectroscopy (FTIR). The morphological analysis was done using Transmission and Scanning Electron Microscopy (TEM and SEM), which revealed well-dispersed, aggregated structure enclosing spherical nanoparticles with an average size of ∼14 nm. The early precursors were validated using EDAX analysis and SEM. Optical characteristics were investigated using photoluminescence (PL), which revealed a large charge transfer band between 360 nm and 435 nm. The dye removal efficiency of CeO2 NPs was evaluated against Indigo Carmine dye using UV light. The results showed that the significantly adsorption, with more than 70 % removed after 150 min. Kinetic experiments revealed that the depreciation occurred via a pseudo-first-order reaction process. Furthermore, the impacts of certain factors such as dye dosage, pH, reusability, and scavenger on adsorption rate were explored and shown to be effective values for the adsorption process. This study emphasizes the potential of CeO2 NPs as excellent photocatalysts for environmental remediation, especially in dye removal applications.

4.
Adv Sci (Weinh) ; : e2406381, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206871

ABSTRACT

Traditional light-driven metal-organic-frameworks (MOFs)-based micromotors (MOFtors) are typically constrained to two-dimensional (2D) motion under ultraviolet or near-infrared light and often demonstrate instability and susceptibility to ions in high-saline environments. This limitation is particularly relevant to employing micromotors in water purification, as real wastewater is frequently coupled with high salinity. In response to these challenges, ultrastable MOFtors capable of three-dimensional (3D) motion under a broad spectrum of light through thermophoresis and electrophoresis are successfully synthesized. The MOFtors integrated photocatalytic porphyrin MOFs (PCN-224) with a photothermal component made of polypyrrole (PPy) by three distinct methodologies, resulting in micromotors with different motion behavior and catalytic performance. Impressively, the optimized MOFtors display exceptional maximum velocity of 1305 ± 327 µm s-1 under blue light and 2357 ± 453 µm s-1 under UV light. In harsh saline environments, these MOFtors are not only maintain high motility but also exhibit superior tetracycline hydrochloride (TCH) removal efficiency of 3578 ± 510 mg g-1, coupling with sulfate radical-based advanced oxidation processes and peroxymonosulfate. This research underscores the significant potential of highly efficient MOFtors with robust photocatalytic activity in effectively removing TCH in challenging saline conditions, representing a substantial advancement in applying MOFtors within real-world water treatment technologies.

5.
Bioresour Technol ; 410: 131232, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39117247

ABSTRACT

Applying low-cost substrate is critical for sustainable bioproduction. Co-culture of phototrophic and heterotrophic microorganisms can be a promising solution as they can use CO2 and light as feedstock. This study aimed to create a light-driven consortium using a marine cyanobacterium Synechococcus sp. PCC 7002 and an industrial yeast Yarrowia lipolytica. First, the cyanobacterium was engineered to accumulate and secrete sucrose by regulating the expression of genes involved in sucrose biosynthesis and transport, resulting in 4.0 g/L of sucrose secretion. Then, Yarrowia lipolytica was engineered to efficiently use sucrose and produce ß-caryophyllene that has various industrial applications. Then, co- and sequential-culture were optimized with different induction conditions and media compositions. A maximum ß-caryophyllene yield of 14.1 mg/L was obtained from the co-culture. This study successfully established an artificial light-driven consortium based on a marine cyanobacterium and Y. lipolytica, and provides a foundation for sustainable bioproduction from CO2 and light through co-culture systems.


Subject(s)
Coculture Techniques , Light , Polycyclic Sesquiterpenes , Synechococcus , Yarrowia , Coculture Techniques/methods , Polycyclic Sesquiterpenes/metabolism , Synechococcus/metabolism , Synechococcus/growth & development , Yarrowia/metabolism , Sucrose/metabolism , Sesquiterpenes/metabolism , Heterotrophic Processes , Autotrophic Processes
6.
ACS Nano ; 18(35): 24581-24590, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39137115

ABSTRACT

Nanofluidic ionic and molecular transport through atomically thin nanopore membranes attracts broad research interest from both scientific and industrial communities for environmental, healthcare, and energy-related technologies. To mimic the biological ion pumping functions, recently, light-induced and quantum effect-facilitated charge separation in heterogeneous 2D-material assemblies is proposed as the fourth type of driving force to achieve active and noninvasive transport of ionic species through synthetic membrane materials. However, to date, engineering versatile van der Waals heterostructures into 2D nanopore membranes remains largely unexplored. Herein, we fabricate single nanopores in heterobilayer transition metal dichalcogenide membranes with helium ion beam irradiation and demonstrate the light-driven ionic transport and molecular translocation phenomena through the atomically thin nanopores. Experimental and simulation results further elucidate the driving mechanism as the photoinduced near-pore electric potential difference due to type II band alignment of the semiconducting WS2 and MoS2 monolayers. The strength of the photoinduced localized electric field near the pore region can be approximately 1.5 times stronger than that of its counterpart under the conventional voltage-driven mode. Consequently, the light-driven mode offers better spatial resolution for single-molecule detection. Light-driven ionic and molecular transport through nanopores in van der Waals heterojunction membranes anticipates transformative working principles for next-generation biomolecular sequencing and gives rise to fascinating opportunities for light-to-chemical energy harvesting nanosystems.

7.
Adv Healthc Mater ; 13(24): e2303812, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39126173

ABSTRACT

Significant challenges have emerged in the development of biomimetic electronic interfaces capable of dynamic interaction with living organisms and biological systems, including neurons, muscles, and sensory organs. Yet, there remains a need for interfaces that can function on demand, facilitating communication and biorecognition with living cells in bioelectronic systems. In this study, the design and engineering of a responsive and conductive material with cell-instructive properties, allowing for the modification of its topography through light irradiation, resulting in the formation of "pop-up structures", is presented. A deformable substrate, composed of a bilayer comprising a light-responsive, azobenzene-containing polymer, pDR1m, and a conductive polymer, PEDOT:PSS, is fabricated and characterized. Moreover, the successful formation of supported lipid bilayers (SLBs) and the maintenance of integrity while deforming the pDR1m/PEDOT:PSS films represent promising advancements for future applications in responsive bioelectronics and neuroelectronic interfaces.


Subject(s)
Lipid Bilayers , Lipid Bilayers/chemistry , Electric Conductivity , Azo Compounds/chemistry , Polystyrenes/chemistry , Polymers/chemistry , Light , Thiophenes/chemistry , Bridged Bicyclo Compounds, Heterocyclic
8.
Small ; : e2403176, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949041

ABSTRACT

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

9.
J Photochem Photobiol B ; 258: 112976, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002191

ABSTRACT

Xanthorhodopsin (XR), a retinal-binding 7-transmembrane protein isolated from the eubacterium Salinibacter ruber, utilizes two chromophores (retinal and salinixanthin (SAL)) as an outward proton pump and energy-donating carotenoid. However, research on XR has been impeded owing to limitations in achieving heterogeneous expression of stable forms and high production levels of both wild-type and mutants. We successfully expressed wild-type and mutant XRs in Escherichia coli in the presence of K+. Achieving XR expression requires significant K+ and a low inducer concentration. In particular, we highlight the significance of Ser-159 in helix E located near Gly-156 (a carotenoid-binding position) as a critical site for XR expression. Our findings indicate that replacing Ser-159 with a smaller amino acid, alanine, can enhance XR expression in a manner comparable to K+, implying that Ser-159 poses a steric hindrance for pigment formation in XR. In the presence of K+, the proton pumping and photocycle of the wild-type and mutants were characterized and compared; the wild-type result suggests similar properties to the first reported XR isolation from the S. ruber membrane fraction. We propose that the K+ gradient across the cell membrane of S. ruber serves to uphold the membrane potential of the organism and plays a role in the expression of proteins, such as XR, as demonstrated in our study. Our findings deepen the understanding of adaptive protein expression, particularly in halophilic organisms. We highlight salt selection as a promising strategy for improving protein yield and functionality.


Subject(s)
Escherichia coli , Potassium , Rhodopsins, Microbial , Escherichia coli/genetics , Escherichia coli/metabolism , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/chemistry , Potassium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Mutation , Carotenoids/metabolism , Carotenoids/chemistry , Bacteroidetes/metabolism , Bacteroidetes/genetics , Proton Pumps/metabolism , Proton Pumps/genetics
10.
Small ; : e2403546, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967188

ABSTRACT

In this article, a novel strategy is presented to selectively separate a mixture of equally sized microparticles but differences in material composition and surface properties. The principle relies on a photosensitive surfactant, which makes particles under light illumination phoretically active. The latter hovers microparticles from a planar interface and together with a superimposed fluid flow, particles experience a drift motion characteristic to its interfacial properties. The drift motion is investigated as a function of applied wavelength, demonstrating that particles composed of different material show a unique spectrally resolved light-induced motion profile. Differences in those motion profile allow a selective fractioning of a desired particle from a complex particle mixture made out of more than two equally sized different particle types. Besides that, the influence of applied wavelength is systematically studied, and discussed the origin of the spectrally resolved chemical activity of microparticles from measured photo-isomerization rates.

11.
ACS Appl Mater Interfaces ; 16(31): 41281-41292, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39074383

ABSTRACT

Sulfur quantum dots (SQDs) are emerging fluorescent nanomaterials, whereas most of the methods for synthesizing SQDs are limited to thermal synthesis. In this study, we report the first case of a light-driven strategy for facile synthesis of SQDs and further applied the SQDs for fluorescence cell imaging. The light-driven synthesis strategy only utilized Na2S as the sulfur source and nano-TiO2 as the photosensitizer. Under ultraviolet illumination, the nano-TiO2 photosensitizer generated a large number of •O2- and •OH to oxidize S2- to Sx2- and further to elemental sulfur, which could be obtained as monodispersed SQDs after etching by H2O2. The prepared SQDs exhibit excellent tunable photoluminescence properties, superior stability, and a uniform small size, with particle diameters in the range of 0.5-4 nm, and the fluorescence absolute quantum yield is as high as 27.8%. Meanwhile, the prepared SQDs also exhibited extreme biocompatibility and stability, and we further applied it for intracellular imaging and Hg2+ sensing with satisfactory results. In comparison to the widely reported thermal synthesis, the light-driven synthesis method is greener and simpler, opening a new way for the preparation of biocompatible SQDs.

12.
Carbohydr Polym ; 342: 122358, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048190

ABSTRACT

With the increase of oily wastewater discharge and the growing demand for clean water supply, high throughput green materials for oil-water separation with anti-pollution and self-cleaning ability are urgently needed. Herein, the polysaccharide-based composite aerogels of CMC/SA@TiO2-MWCNTs (CSTM) with fast photo-driven self-cleaning ability have been prepared by a simple freeze-drying and ionic cross-linking strategy. The introduction of TiO2 /MWCNTs nanocomposites effectively improves the underwater oleophobic and mechanical properties of polysaccharide aerogels and enables their photo-driven self-cleaning ability for efficient oil-water separation and purification of complex oily wastewater. For immiscible oil-water mixtures, a high separation flux of about 7650 L m-2 h-1 and a separation efficiency of up to 99.9 % was obtained. For surfactant-stabilized oil-in-water emulsion, a flux of 3952 L m-2 h-1 was achieved with a separation efficiency of up to 99.3 %. More importantly, the excellent photoluminescent self-cleaning ability and low oil adhesion contribute to the high contamination resistance, excellent reusability, and robust durability of CSTM aerogel. With the advantages of simple preparation, remarkable performance, and recyclability, this aerogel is expected to provide a green, economical, and scalable solution for the purification of oily wastewater.

13.
Mikrochim Acta ; 191(7): 404, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38888740

ABSTRACT

The unprecedented navigation ability in micro/nanoscale and tailored functionality tunes micro/nanomotors as new target drug delivery systems, open up new horizons for biomedical applications. Herein, we designed a light-driven rGO/Cu2 + 1O tubular nanomotor for active targeting of cancer cells as a drug delivery system. The propulsion performance is greatly enhanced in real cell media (5% glucose cells isotonic solution), attributing to the introduction of oxygen vacancy and reduced graphene oxide (rGO) layer for separating photo-induced electron-hole pairs. The motion speed and direction can be readily modulated. Meanwhile, doxorubicin (DOX) can be loaded quickly on the rGO layer because of π-π bonding effect. The Cu2 + 1O matrix in the tiny robots not only serves as a photocatalyst to generate a chemical concentration gradient as the driving force but also acts as a nanomedicine to kill cancer cells as well. The strong propulsion of light-driven rGO/Cu2 + 1O nanomotors coupled with tiny size endow them with active transmembrane transport, assisting DOX and Cu2 + 1O breaking through the barrier of the cell membrane. Compared with non-powered nanocarrier and free DOX, light-propelled rGO/Cu2 + 1O nanomotors exhibit greater transmembrane transport efficiency and significant therapeutic efficacy. This proof-of-concept nanomotor design presents an innovative approach against tumor, enlarging the list of biomedical applications of light-driven micro/nanomotors to the superficial tissue treatment.


Subject(s)
Copper , Doxorubicin , Graphite , Light , Copper/chemistry , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , Graphite/chemistry , Drug Delivery Systems , Drug Carriers/chemistry , Drug Carriers/radiation effects , Cell Survival/drug effects , Drug Liberation , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor
14.
Heliyon ; 10(10): e31221, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813157

ABSTRACT

In this novel research, S-scheme Ag2CrO4/g-C3N4 heterojunctions were generated by sonochemical hybridization of different compositions of Ag2CrO4 nanoparticles [EVB = +2.21 eV] and g-C3N4 sheets [ECB = -1.3 eV] for destructing RhB dye under artificial solar radiation. The as-synthesized nanocomposites were subjected to X-ray diffraction [XRD], diffuse reflectance spectrum [DRS], X-ray photoelectron spectroscopy [XPS], N2-adsorption-desorption isotherm, photoluminescence [PL] and high resolution transmission electron microscope [HRTEM] analysis to explore the interfacial interactions between g-C3N4 sheets and Ag2CrO4 nanoparticles. Spherical Ag2CrO4 nanoparticles deposited homogeneously on the wrinkles points of g-C3N4 sheets at nearly equidistant from each other facilitating the uniform absorption of solar radiations. The absorbability of solar radiations was enhanced by introducing 20 wt % Ag2CrO4 on g-C3N4 sheets. The surface area of g-C3N4 sheets was reduced from 37.5 to 16.4 m2/g and PL signal intensity diminished by 80 % implying the successful interfacial interaction between Ag2CrO4 nanoparticles and g-C3N4 sheets. The photocatalytic performance of heterojunctions containing 20 % Ag2CrO4 and 80 % g-C3N4 destructed 96 % of RhB dye compared with 60 and 33 % removal on the surface of pristine g-C3N4 sheets and Ag2CrO4, respectively. Benzoquinone and ammonium oxalate are strongly scavenged the dye decomposition revealing the strong influence of valence band holes of Ag2CrO4 and superoxide radicals in destructing RhB dye under solar radiations. S-scheme charge transportation mechanism was suggested rather than type II heterojunction on the light of scavenger trapping experiments results and PL spectrum of terephthalic acid. Overall, this research work illustrated the manipulation of novel S-scheme heterojunction with efficient redox power for destructing various organic pollutants persisted in water resources.

15.
J Colloid Interface Sci ; 670: 86-95, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38759271

ABSTRACT

In this study, a directional loading of cadmium sulfide (CdS) nanoparticles (NPs) was achieved on the opposite edges of nickel metal-organic framework (Ni-MOF) nanosheets (NSs) by adjusting the weight ratio of CdS NPs in the reaction process to produce effective visible light photocatalysts. The close contact between the zero-dimensional (0D) and two-dimensional (2D) regions and the matching positions of the bands promoted charge separation and heterojunction formation. The optimal CdS NPs loading of composite material was 40 wt%. At this ratio, CdS NPs grew primarily at the opposite edges of the Ni-MOF NSs rather than on their surfaces. When lactic acid was used as the sacrificial agent, the hydrogen production rate of the 40 %-CdS/Ni-MOF heterojunction under visible light irradiation was 19.6 mmol h-1 g-1, making a 20-fold enhancement compared to the original CdS NPs sample (1.0 mmol h-1 g-1). The charge carriers generated in CdS NPs were transferred to Ni-MOF NSs through heterojunctions, where Ni-MOF NSs also served as cocatalysts to improve hydrogen production. The combination of the two materials improved the light absorption ability. In particular, the 40 %-CdS/Ni-MOF heterojunction exhibited good photostability, effectively preventing the photocorrosion of CdS NPs. This study introduces an approach for constructing efficient and stable photocatalysts for visible light-driven photocatalytic hydrogen production.

16.
ACS Appl Mater Interfaces ; 16(15): 19480-19495, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581369

ABSTRACT

Light-driven soft actuators based on photoresponsive materials can be used to mimic biological motion, such as hand movements, without involving rigid or bulky electromechanical actuations. However, to our knowledge, no robust photoresponsive material with desireable mechanical and biological properties and relatively simple manufacture exists for robotics and biomedical applications. Herein, we report a new visible-light-responsive thermoplastic elastomer synthesized by introducing photoswitchable moieties (i.e., azobenzene derivatives) into the main chain of poly(ε-caprolactone) based polyurethane urea (PAzo). A PAzo elastomer exhibits controllable light-driven stiffness softening due to its unique nanophase structure in response to light, while possessing excellent hyperelasticity (stretchability of 575.2%, elastic modulus of 17.6 MPa, and strength of 44.0 MPa). A bilayer actuator consisting of PAzo and polyimide films is developed, demonstrating tunable bending modes by varying incident light intensities. Actuation mechanism via photothermal and photochemical coupling effects of a soft-hard nanophase is demonstrated through both experimental and theoretical analyses. We demonstrate an exemplar application of visible-light-controlled soft "fingers" playing a piano on a smartphone. The robustness of the PAzo elastomer and its scalability, in addition to its excellent biocompatibility, opens the door to the development of reproducible light-driven wearable/implantable actuators and lightweight soft robots for clinical applications.


Subject(s)
Elastomers , Robotics , Elastomers/chemistry , Polyurethanes , Urea
17.
Biosens Bioelectron ; 256: 116274, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38599074

ABSTRACT

Exploring the photochemical (PEC) method induced by low-energy light source makes great significance to achieve high stability and accurate analysis. A sensing platform driven by near-infrared (NIR) light was designed by making the biochemically encoded carbon rich plasmonic hybrid (CPH) probe, the peptide@C-Mo2C. The inherent plasmonic effect of C-Mo2C CPH can directly absorb NIR light, thus starting effective electronic-hole pairs separation. Moreover, the photothermal effect of C-Mo2C CPH also promoted the reaction yield of photothermal catalyst reaction on sensing interface to assist the PEC signal amplification. In the presence of target trypsin, it cleaves the peptides, resulting in the release of peptide@C-Mo2C probe from interface, which leads to a relative decrease in PEC signal. More importantly, a self-calibration system consisting of two independent PEC test channels attempted to eliminate the influence of background signal and baseline drift. The test channel was used to specify the recognition target, while the blank channel was used as a reference. Therefore, the signal difference between two channels was recorded, so as to obtain results with less error and higher stability. In this NIR driven PEC sensor, the carbon rich probe with direct and efficient NIR light conversion promoted the sensitivity and a self-calibration system guaranteed the stability which provided innovative thoughts for developing ingenious PEC sensor.


Subject(s)
Biosensing Techniques , Carbon , Infrared Rays , Carbon/chemistry , Electrochemical Techniques , Peptides/chemistry , Trypsin/chemistry , Limit of Detection , Equipment Design
18.
ACS Synth Biol ; 13(4): 1355-1364, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38569139

ABSTRACT

Adenosine triphosphate (ATP)-producing modules energized by light-driven proton pumps are powerful tools for the bottom-up assembly of artificial cell-like systems. However, the maximum efficiency of such modules is prohibited by the random orientation of the proton pumps during the reconstitution process into lipid-surrounded nanocontainers. Here, we overcome this limitation using a versatile approach to uniformly orient the light-driven proton pump proteorhodopsin (pR) in liposomes. pR is post-translationally either covalently or noncovalently coupled to a membrane-impermeable protein domain guiding orientation during insertion into preformed liposomes. In the second scenario, we developed a novel bifunctional linker, trisNTA-SpyTag, that allows for the reversible connection of any SpyCatcher-containing protein and a HisTag-carrying protein. The desired protein orientations are verified by monitoring vectorial proton pumping and membrane potential generation. In conjunction with ATP synthase, highly efficient ATP production is energized by the inwardly pumping population. In comparison to other light-driven ATP-producing modules, the uniform orientation allows for maximal rates at economical protein concentrations. The presented technology is highly customizable and not limited to light-driven proton pumps but applicable to many membrane proteins and offers a general approach to overcome orientation mismatch during membrane reconstitution, requiring little to no genetic modification of the protein of interest.


Subject(s)
Adenosine Triphosphate , Liposomes , Liposomes/metabolism , Adenosine Triphosphate/metabolism , Light , Proton Pumps/metabolism , Membrane Proteins/metabolism
19.
J Control Release ; 369: 53-62, 2024 May.
Article in English | MEDLINE | ID: mdl-38513728

ABSTRACT

Therapeutic approaches for triple-negative breast cancer (TNBC) have been continuously advancing, but inadequate control over release behavior, insufficient tumor selectivity, and limited drug availability continue to impede therapeutic outcomes in nanodrug systems. In this study, we propose a general hydrophobic antineoplastic delivery system, termed spatiotemporally-controlled hydrophobic antineoplastic delivery system (SCHADS) for enhanced TNBC treatment. The key feature of SCHADS is the formation of metastable photosensitive-antineoplastic complexes (PACs) through the self-assembly of hydrophobic drugs driven by photosensitive molecules. With the further decoration of tumor-targeting peptides coupled with the EPR effect, the PACs tend to accumulate in the tumor site tremendously, promoting drug delivery efficiency. Meanwhile, the disassembly behavior of the metastable PACs could be driven by light on demand to achieve in situ drug release, thus promoting chemotherapeutics availability. Furthermore, the abundant ROS generated by the photosensitizer could effectively kill tumor cells, ultimately realizing an effective combination of photodynamic and chemotherapeutic therapy. As an exemplary presentation, chlorin e6 has been chosen to drive the formation of PACs with the system xc- inhibitor sorafenib. Compared with pure drug treatment, the PACs with the above-described preponderances exhibit superior therapeutic effects both in vitro and in vivo and circumvent the side effects due to off-target. By manipulating the laser irradiation, the PACs-treated cell death mechanism could be dynamically regulated, thus providing the potential to remedy intrinsic/acquired resistance of tumor. Collectively, this SCHADS achieves spatio-temporal control of the drug that greatly enhances the availability of anticarcinogen and realizes synergistic antitumor effect in TNBC treatment, even ultimately being extended to the treatment of other types of tumors.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions , Photosensitizing Agents , Porphyrins , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Female , Animals , Humans , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Porphyrins/administration & dosage , Porphyrins/chemistry , Chlorophyllides , Mice, Nude , Mice, Inbred BALB C , Photochemotherapy/methods , Sorafenib/administration & dosage , Sorafenib/pharmacology , Sorafenib/chemistry , Drug Liberation
20.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474608

ABSTRACT

Zn-doped MnCO3/carbon sphere (Zn-doped MnCO3/CS) composites were synthesized using a simple hydrothermal procedure. Among various samples (ZM-50, ZM-05, and ZMC-0), the ternary Zn-doped MnCO3/CS (ZMC-2) catalyst demonstrated excellent visible light-induced photocatalytic activity. This improvement comes from the Zn addition and the conductive CS, which facilitate electron movement and charge transport. The catalyst exhibited efficient degradation of methylene blue (MB) over a wide pH range, achieving a removal efficiency of 99.6% under visible light. Radical trapping experiments suggested that •OH and •O2- played essential roles in the mechanism of organic pollutant degradation. Moreover, the catalyst maintained good degradation performance after five cycles. This study offers valuable perspectives into the fabrication of carbon-based composites with promising photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL