Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.649
Filter
1.
Sci Rep ; 14(1): 23627, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384898

ABSTRACT

Digital Micromirror Devices, extensively employed in projection displays offer rapid, polarization-independent beam steering. However, they are constrained by microelectromechanical system limitations, resulting in reduced resolution, limited beam steering angle and poor stability, which hinder further performance optimization. Liquid Crystal on Silicon technology, employing liquid crystal (LC) and silicon chip technology, with properties of high resolution, high contrast and good stability. Nevertheless, its polarization-dependent issues lead to complex system and low efficiency in device applications. This paper introduces a hybrid integration of metallic metasurface with nematic LC, facilitating a polarization-independent beam steering device capable of large-angle deflections. Employing principles of geometrical phase and plasmonic resonances, the metallic metasurface, coupled with an electronically controlled LC, allows for dynamic adjustment, achieving a maximum deflection of ± 27.1°. Additionally, the integration of an LC-infused dielectric grating for dynamic phase modulation and the metasurface for polarization conversion ensures uniform modulation effects across all polarizations within the device. We verify the device's large-angle beam deflection capability and polarization insensitivity effect in simulations and propose an optimization scheme to cope with the low efficiency of individual diffraction stages.

2.
Article in English | MEDLINE | ID: mdl-39353172

ABSTRACT

Graphene oxide (GO) is a promising material widely utilized in advanced materials engineering, such as in the development of soft robotics, sensors, and flexible devices. Considering that GOs are often processed using solution-based methods, a comprehensive understanding of the fundamental characteristics of GO in dispersion states becomes crucial given their significant influence on the ultimate properties of the device. GOs inherently exhibit polydispersity in solution, which plays a critical role in determining the mechanical behavior and flowability. However, research in the domain of 2D colloids concerning the effects of GO's polydispersity on its rheological properties and microstructure is relatively scant. Consequently, gaining a comprehensive understanding of how GO's polydispersity affects these critical aspects remains a pressing concern. In this study, we aim to investigate the dispersions and structure of GOs and clarify the effect of polydispersity on the rheological properties and yielding behavior. Using a rheometer, polarized optical microscopy, and small-angle X-ray scattering, we found that higher polydispersity in the same average size leads to overall improved rheological properties and higher flowability during yielding. Thus, our study can be beneficial in the employment of polydispersity in the processing of GO such as 3D printing and fiber spinning.

3.
Chemistry ; : e202403140, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363714

ABSTRACT

Twisted grain boundary (TGB) phases exhibit highly frustrated and complex liquid crystal structures, and have attracted enormous interest because of their unique internal structure, textures and properties. However, among the few real concerns related to these interesting structures, applying them to prepare polymer-stabilized colored liquid crystal films has been challenging. Herein, the organic-inorganic hybrid silica (OIHS) films with a TGBA* structure were prepared using two organosilanes and one chiral additive under an acidic condition. The structural color of the films can be adjusted by varying the polycondensation temperature and the concentration of the chiral additive. A structurally colored pattern was prepared by the inject printing, which was suitably applied for decoration and anti-counterfeiting.

4.
Chemistry ; : e202403232, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382344

ABSTRACT

Amphiphilic supramolecular materials based on biodegradable cyclodextrins (CDs) have been known to self-assemble into different types of thermotropic liquid crystals, including smectic and hexagonal columnar mesophases. Previous studies on amphiphilic CDs bearing 14 aliphatic chains at the primary face and 7 oligoethylene glycol (OEG) chains at the secondary face showed that the stability of the mesophase can be rationally tuned through implemation of terminal functional groups to the OEG chains. Here, we report the syntheses of first examples of crown ether-functionalized amphiphilic cyclodextrins that unexpectedly form thermotropic bicontinuous cubic phases. This constitutes the first reported examples of cyclodextrins forming such phases, which are potentially capable of 3D ion transport. Lithium composites were made to assess lithium conduction in the material. XRD revealed the added lithium salt destabilizes the cubic phase in favour of the smectic phase. Solid-state NMR studies showed that these materials conduct lithium ions with a very low activation energy.

5.
Colloids Surf B Biointerfaces ; 245: 114211, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39260276

ABSTRACT

Tau is a protein found in the central nervous system (CNS) and is involved in stabilizing microtubules in axons. Given the link between Tau levels in the body and Alzheimer's disease (AD), there is a demand for straightforward and precise strategies to detect Tau in body fluids. In this study, we report liquid crystal (LC)-based sensors for the real-time detection of Tau protein, a well-known AD biomarker. The sensor uses a detection method based on the orientation change of the LC because of the competitive biomolecular interaction between Tau and Tau aptamers with the cationic polymer poly-L-lysine (PLL). Tau and its aptamers form stable complexes through electrostatic interactions. Owing to the consumption of the aptamer, the positively charged PLL fails to interact with the aptamer but binds to the negatively charged 1.2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG). The PLL and DOPG complex alters the orientation of the LC to ensure a planar anchoring of the 4-cyano-4'-pentylbiphenyl (5CB)/aqueous interface; this anchoring intensifies with increasing Tau concentration, thus enabling the observation of a bright optical image. Our LC-based sensor demonstrated a low detection limit of 2.77 pg/mL in phosphate buffered saline (PBS) and 10.86 pg/mL and 19.31 pg/mL in human serum and plasma, respectively. Moreover, it is anticipated to be suitable for point-of-care diagnosis of AD because it does not require specialized analytical equipment and only requires microliters of sample.

6.
Materials (Basel) ; 17(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39274820

ABSTRACT

This review explores the integration of graphene and liquid crystals to advance sensor technologies across multiple domains, with a focus on recent developments in thermal and infrared sensing, flexible actuators, chemical and biological detection, and environmental monitoring systems. The synergy between graphene's exceptional electrical, optical, and thermal properties and the dynamic behavior of liquid crystals leads to sensors with significantly enhanced sensitivity, selectivity, and versatility. Notable contributions of this review include highlighting key advancements such as graphene-doped liquid crystal IR detectors, shape-memory polymers for flexible actuators, and composite hydrogels for environmental pollutant detection. Additionally, this review addresses ongoing challenges in scalability and integration, providing insights into current research efforts aimed at overcoming these obstacles. The potential for multi-modal sensing, self-powered devices, and AI integration is discussed, suggesting a transformative impact of these composite sensors on various sectors, including health, environmental monitoring, and technology. This review demonstrates how the fusion of graphene and liquid crystals is pushing the boundaries of sensor technology, offering more sensitive, adaptable, and innovative solutions to global challenges.

7.
Molecules ; 29(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275123

ABSTRACT

The reverse-mode smart windows, which usually fabricated by polymer stabilized liquid crystal (PSLC), are more practical for scenarios where high transparency is a priority for most of the time. However, the polymer stabilized cholesteric liquid crystal (PSCLC) film exhibits poor spacing stability due to the mobility of CLC molecules during the bending deformation. In this work, a reverse-mode PSCLC flexible film with excellent bending resistance was fabricated by the construction of polymer spacer columns. The effect of the concentration of the polymerizable monomer C6M and chiral dopant R811 on the electro-optical properties and polymer microstructure of the film were studied. The sample B2 containing 3 wt% of C6M and 3 wt% R811 presented the best electro-optical performance. The electrical switch between transparent and opaque state of the flexible PSCLC film after bending not only indicated the excellent electro-optical switching performance, but also demonstrated the outstanding bending resistance of the sample with polymer spacer columns, which makes the PSCLC film containing polymer spacer columns have a great potential to be applied in the field of flexible devices.

8.
Angew Chem Int Ed Engl ; : e202417149, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39282737

ABSTRACT

Stimuli-responsive circularly polarized luminescence (CPL) materials based on cholesteric liquid crystal (CLC) platforms show great promise for applications in information encryption and anticounterfeiting. In this study, we constructed a mercury ion-responsive CPL system in CLCs by controlling the conjugation degree of axially chiral binaphthyl derivatives. Two chiral binaphthyl derivatives (R/S-1 and R/S-2) were initially used as chiral dopants to demonstrate that CPL inversion (glum values from 0.5/-0.44 to -0.53/0.48) in CLCs could be achieved by modulating the conjugation degree of the chiral binaphthyls. Based on this concept, the thioacetal binaphthyl R-2S was developed and used as a mercury-responsive chiral dopant in CLCs. Under Hg ion treatment, the CPL sign inverted (glum value changed from 0.22 to -0.29) due to the transformation of the thioacetal into an aldehyde group. Additionally, the mercury ion-responsive CPL material was applied in information encryption.

9.
J Hazard Mater ; 480: 135894, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303619

ABSTRACT

The widespread occurrence of liquid crystal monomers (LCMs) in the environment has raised concerns about their persistence, bioaccumulation, and toxicity (PBT). Here we review the lifecycle of environmental LCMs, focusing on their occurrences, emission sources, human exposure routes, and toxicity. Industrial emissions from Liquid Crystal Display (LCD) manufacturing and e-waste recycling are the primary point sources of LCMs. In addition, emissions from LCD products, air conditioning units, wastewater treatment plants, and landfills contribute to environmental occurrence of LCMs as secondary sources. Dietary routes were identified as the primary exposure pathways to humans. E-waste dismantling workers and infants/children are vulnerable populations to LCMs exposure. Exposure to LCMs has been shown to potentially induce oxidative stress, metabolic disorders, and endocrine disruption. Accumulation of LCMs in the brain and liver tissues of exposed animals highlights the need for toxicokinetic studies.

10.
Proc Natl Acad Sci U S A ; 121(39): e2407914121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39269770

ABSTRACT

Liquid-liquid phase separation, whereby two liquids spontaneously demix, is ubiquitous in industrial, environmental, and biological processes. While isotropic fluids are known to condense into spherical droplets in the binodal region, these dynamics are poorly understood for structured fluids. Here, we report the unique observation of condensate networks, which spontaneously assemble during the demixing of a mesogen from a solvent. Condensing mesogens form rapidly elongating filaments, rather than spheres, to relieve distortion of an internal smectic mesophase. As filaments densify, they collapse into bulged discs, lowering the elastic free energy. Additional distortion is relieved by retraction of filaments into the discs, which are straightened under tension to form a ramified network. Understanding and controlling these dynamics may provide different avenues to direct pattern formation or template materials.

11.
ACS Appl Mater Interfaces ; 16(39): 52945-52957, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39287937

ABSTRACT

In this paper, we give an overview of novel main-chain azobenzene-based fluorinated poly(arylene ether)s with different content of azo groups, aiming at providing a better understanding of the link between a number of N═N bonds and the macroscopic response of the material. We discuss chemical synthesis and molecular structure and report on a comprehensive analysis of the polymer properties, thermal behavior, and mechanical strength. We show that a higher content of azobenzene moieties reduces the mechanical strength of the polymer materials. On the other hand, polymers with a higher content of azobenzene demonstrate higher values of induced birefringence due to a larger number of azobenzene in the trans form. The photoisomerization constants of all polymers fall within a very close range. The minor variations are attributed to the number of azobenzene groups in the polymer composition and the conformational arrangements of the polymer chain packing. The developed light-sensitive polymers were employed for dynamic control and manipulation of the liquid crystal orientation by polarization of the incident light. After the double irradiation of the substrates using appropriate photomasks, we made patterned cells that consist of domains with different high-resolution liquid crystal director orientations.

12.
ACS Appl Mater Interfaces ; 16(40): 54282-54291, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39323228

ABSTRACT

Organic electrochemical transistors (OECTs) have emerged as attractive devices for bioelectronics, wearable electronics, soft robotics, and energy storage devices. The electrolyte, being a fundamental component of OECTs, plays a crucial role in their performance. Recently, it has been demonstrated that ionic liquid crystal elastomers (iLCEs) can be used as a solid electrolyte for OECTs. Their capabilities, however, have only been shown for relatively large size substrate-free OECTs. Here, we study the influence of the different alignments of iLCEs on steady state and transient behavior of OECTs using a lateral geometry with source, drain, and gate in the same plane. We achieve excellent electrical response with an ON/OFF switching ratio of >105 and minimal leakage current. The normalized maximum transconductance gm/w of the most sensitive iLCE was found to be 33 S m-1, which is one of the highest among all solid-state-based OECTs reported so far. Additionally, iLCEs show high stability and can be removed and reattached multiple times to the same OECT device without decreasing performance.

13.
Nanomedicine ; 62: 102786, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39341480

ABSTRACT

The low oral bioavailability of puerarin (Pur) affects its efficacy. Preparation of puerarin cubic liquid crystal nanoparticles (Pur-Cub) enhances the protective effect of Pur against ischemic stroke (IS) by increasing its bioavailability. The average particle size, PDI, and zeta potential of Pur-Cub were 274.70 ± 16.20 nm, 0.24 ± 0.05 and -25.30 ± 2.34 mV, respectively. Polarized light microscopy (PLM) and Small angle X-ray diffraction (SAXS) identified Pur-Cub as a cubic phase (Pn3m). The in vitro release of Pur-Cub was fast and then slow, in accordance with the biphasic kinetic equation. Pur-Cub increased the penetration of Pur in the intestine (mainly the duodenum) and significantly improved the bioavailability of Pur in the blood (304.16 %) and its distribution in the brain (1.69-fold) compared to Pur suspension. Pur-Cub narrowed down cerebral infarcts and significantly reduced levels of TNF-α, IL-1ß, and IL-6 in a rat model of middle cerebral artery occlusion (MCAO).

14.
J Colloid Interface Sci ; 678(Pt B): 287-300, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39245019

ABSTRACT

Antibiotics are essential for treating infections and reducing risks during medical interventions. However, many commonly used antibiotics lack the physiochemical properties for an efficient oral administration when treating systemic infection. Instead, we are reliant on intravenous delivery, which presents complications outside of clinical settings. Developing novel formulations for oral administration is a potential solution to this problem. We engineered hexosome and cubosome liquid crystal nanoparticles (LCNPs) characterized by small-angle X-ray scattering and cryogenic transmission electron microscopy, and could encapsulate the antibiotics vancomycin (VAN) and clarithromycin (CLA) with high loading efficiencies. By rationally choosing stable lipid building blocks, the loaded LCNPs demonstrated excellent resilience against enzymatic degradation in an in vitro gut model LCNP stability is crucial as premature antibiotic leakage can negatively impact the gut microbiota. In screens against the representative gut bacteria Enterococcus faecalis and Escherichia coli, our LCNPs provided a protective effect. Furthermore, we explored co-administration and dual loading strategies of VAN and CLA, and demonstrated effective loading, stability and protection for E. faecalis and E. coli. This work represents a proof of concept for the early-stage development of antibiotic-loaded LCNPs to treat systemic infection via oral administration, opening opportunities for combination antibiotic therapies.

15.
J Colloid Interface Sci ; 678(Pt C): 1213-1222, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39342866

ABSTRACT

Chiral co-assembly strategy has proven effective in increasing the dissymmetry factor (gEL) of the emitting layers (EMLs) in circularly polarized organic light-emitting diodes (CP-OLEDs). Therefore, it is crucial to investigate the molecular structures that facilitate chiral co-assembly for further amplification of circularly polarized electroluminescence (CP-EL) signals. In this study, three types of achiral conjugated liquid crystal (LC) polymers (PFPh, PFNa and PFPy) and chiral binaphthyl-based polymer inducers (R/S-FO) were synthesized to construct corresponding chiral co-assemblies (R/S-FO)0.1-(PFPh/Na/Py)0.9 as EMLs for CP-OLEDs through strong intermolecular π-π stacking interactions. Interestingly, these resulting chiral co-assembled EMLs exhibited tunable CP-EL behaviors caused by the different conjugation linkers of LC polymers. Among them, the deep blue devices based on (R/S-FO)0.1-(PFNa)0.9 emitted the strongest CP-EL signals (|gEL| = 0.014, Lmax = 3039 cd m-2, CEmax = 1.16 cd A-1). It is attributed to the formation of ordered helical nanofibers facilitated by the excellent intermolecular compatibility due to the same naphthyl moieties in PFNa and R/S-FO. This study provides novel perspectives for developing high-performance CP-EL materials in chiral co-assembly systems.

16.
Angew Chem Int Ed Engl ; : e202414970, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39348462

ABSTRACT

Lipid nanoparticles have important applications as biomedical delivery platforms and broader engineering biology applications in artificial cell technologies. These emerging technologies often require changes in the shape and topology of biological or biomimetic membranes. Here we show that topologically-active lyotropic liquid crystal nanoparticles (LCNPs) can trigger such transformations in the membranes of giant unilamellar vesicles (GUVs). Monoolein (MO) LCNPs, cubosomes with an internal nanostructure of space group Im3m incorporate into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) GUVs creating excess membrane area with stored curvature stress. Using time-resolved fluorescence confocal and lattice light sheet microscopy, we observe and characterise various life-like dynamic events in these GUVs, including growth, division, tubulation, membrane budding and fusion. Our results shed new light on the interactions of LCNPs with bilayer lipid membranes, providing insights relevant to how these nanoparticles might interact with cellular membranes during drug delivery and highlighting their potential as minimal triggers of topological transitions in artificial cells.

17.
Int J Biol Macromol ; 280(Pt 2): 135883, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307494

ABSTRACT

Cellulose nanocrystal (CNC) is a sustainable bio-nanomaterial. The distinctive left-handed polarization properties render cellulose nanocrystal a promising candidate for optical film. Due to eco-friendliness, reliability, mildness and simplicity, the oxalate hydrolysis method stands out among various preparation methods for CNC. This study delved into the liquid crystal phase behavior of oxalated cellulose nanocrystal derived from pulp, and discovered the influences of CNC concentration and pH on suspension stability and phase transition, and evaluated its optical properties. The results demonstrated that oxalated CNC presented two different liquid crystal phases, the nematic phase and the cholesteric phase. The stability mechanism of CNC suspension and the regulatory principle of the liquid crystal phase transition were revealed. A novel CNC film-forming technology, the multilayer spin-coating technique, was developed for cellulose nanocrystal optical films. Driven by centrifugal force, cellulose nanocrystals were induced to self-assembly and formed the optical film with circular dichroism and structural color. This simple and efficient film-forming technology promised rapid processing (1 h) and controllable film structure and optical properties compared to traditional technologies. This work provided a theoretical understanding and practical prospects for integrating oxalated cellulose nanocrystal into sustainable advanced optical film materials.

18.
ACS Appl Bio Mater ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316777

ABSTRACT

Varicose vein therapy has historically relied significantly on invasive surgical procedures, which frequently resulted in poor compliance among patients. The tendency could stem from the past use of abrasive surgical procedures and a lack of documented drug-induced animal models. To address this challenge, we envisaged an innovative approach for animal model development that uses niacin-induced recurrent flushing. And to further treat the condition, we used liquid crystal nanoparticles (LCNPs) as carriers for the antiangiogenic, cardio protective, and anti-inflammatory drug molsidomine. After the successful initiation of reticular perforant varicose veins, the animals were administered and treated with molsidomine-loaded liquid crystal nanoparticles (MD-LCNPs) that were simultaneously synthesized via a straightforward homogenization method. The preparation of MD-LCNPs involved inducing the disruption of a cubic-phase gel of glyceryl monostearate (GMS) by Milli-Q water in the presence of a Tween-80. Characterization of MD-LCNPs encompassed an assessment of their physicochemical properties. Microscopic studies revealed monodispersity with an average size of 195 ± 55.94 nm. In vitro evaluations demonstrated commendable antioxidant potential, excellent swelling behavior, and sustained release behavior of MD-LCNPs. Furthermore, MD-LCNPs exhibited nontoxicity toward cells, with minimal generation of reactive oxygen species (ROS) or nitric oxide (NO). Histopathological and hematological analysis indicated the efficacy of MD-LCNPs in ameliorating niacin-induced varicose veins, the absence of detrimental and toxic effects on blood cells and visceral organs, and safety for intravenous administration. Following the administration of nanoparticles, the formulation demonstrated appropriate levels of prostaglandins (PGDs), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and vascular endothelial growth factor (VEGF). This substantiates the formulation's suitability for the treatment and management of varicose veins. In conclusion, our work shows an efficient method that induces varicose veins in rodents, and also a promising nanocarrier-based drug delivery approach using MD-LCNPs for effective and safe varicose vein therapy.

19.
Gels ; 10(9)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39330152

ABSTRACT

The microstructure of bone consists of nano-hydroxyapatite (nano-HA) crystals aligned within the interspaces of collagen fibrils. To emulate this unique microstructure of bone, this work applied two biomimetic techniques to obtain bone-like microstructures in vitro, that is, combining the construction of collagen liquid crystal hydrogel (CLCH) with the application of a polymer-induced liquid precursor (PILP) mineralization process. Upon the elevation of pH, the collagen macromolecules within the collagen liquid crystal (CLC) were activated to self-assemble into CLCH, whose fibrils packed into a long and dense fiber bundle in high orientation, emulating the dense-packed matrix of bone. We demonstrated that the fibrillar mineralization of CLCH, leading to a bone-like nanostructured inorganic material part, can be achieved using the PILP crystallization process to pre-mineralize the dense collagen substrates of CLCH with CaCO3, immediately followed by the in situ mineral phase transformation of CaCO3 into weak-crystalline nano-HA. The combination of CLCH with the biomineralization process of PILP, together with the mineral phase transformation, achieved the in vitro simulation of the nanostructures of both the organic extracellular matrix (ECM) and inorganic ECM of bone. This design would constitute a novel idea for the design of three-dimension biomimetic bone-like material blocks for clinical needs.

20.
Angew Chem Int Ed Engl ; : e202411121, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218793

ABSTRACT

Traditionally used phenylethylamine iodide (PEAI) and its derivatives, such as ortho-fluorine o-F-PEAI, in interfacial modification, are beneficial for perovskite solar cell (PSC) efficiency but vulnerable to heat stability above 85 °C due to ion migration. To address this issue, we propose a composite interface modification layer incorporating the discotic liquid crystal 2,3,6,7,10,11-hexa(pentoxy)triphenylene (HAT5) into o-F-PEAI. The triphenyl core in HAT5 promotes π-π stacking self-assembly and enhances its interaction with o-F-PEAI, forming an oriented columnar phase that improves hole extraction along the one-dimensional direction. HAT5 repairs structural defects in the interfacial layer and retains the layered structure to inhibit ion migration after annealing. Ultimately, our approach increases the efficiency of solar cells from 23.36% to 25.02%. The thermal stability of the devices retains 80.1% of their initial efficiency after aging at 85 °C for 1008 hours without encapsulation. Moreover, the optimized PSCs maintained their initial efficiency of 82.4% after aging under one sunlight exposure for 1008 hours. This study provides a novel strategy using composite materials for interface modification to enhance the thermal and light stability of semiconductor devices.

SELECTION OF CITATIONS
SEARCH DETAIL