Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38998928

ABSTRACT

In conventional lithium-ion batteries (LIBs), the active lithium from the lithium-containing cathode is consumed by the formation of a solid electrolyte interface (SEI) at the anode during the first charge, resulting in irreversible capacity loss. Prelithiation additives can provide additional active lithium to effectively compensate for lithium loss. Lithium oxalate is regarded as a promising ideal cathode prelithiation agent; however, the electrochemical decomposition of lithium oxalate is challenging. In this work, a hollow and porous composite microsphere was prepared using a mixture of lithium oxalate, Ketjen Black and transition metal oxide catalyst, and the formulation was optimized. Owing to the compositional and structural merits, the decomposition voltage of lithium oxalate in the microsphere was reduced to 3.93 V; when being used as an additive, there is no noticeable side effect on the performance of the cathode material. With 4.2% of such an additive, the first discharge capacity of the LiFePO4‖graphite full cell increases from 139.1 to 151.9 mAh g-1, and the coulombic efficiency increases from 88.1% to 96.3%; it also facilitates the formation of a superior SEI, leading to enhanced cycling stability. This work provides an optimized formula for developing an efficient prelithiation agent for LIBs.

2.
Angew Chem Int Ed Engl ; 63(17): e202400132, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38409997

ABSTRACT

Li-CO2 batteries have received significant attention owing to their advantages of combining greenhouse gas utilization and energy storage. However, the high kinetic barrier between gaseous CO2 and the Li2CO3 product leads to a low operating voltage (<2.5 V) and poor energy efficiency. In addition, the reversibility of Li2CO3 has always been questioned owing to the introduction of more decomposition paths caused by its higher charging plateau. Here, a novel "trinity" Li-CO2 battery system was developed by synergizing CO2, soluble redox mediator (2,2,6,6-tetramethylpiperidoxyl, as TEM RM), and reduced graphene oxide electrode to enable selective conversion of CO2 to Li2C2O4. The designed Li-CO2 battery exhibited an output plateau reaching up to 2.97 V, higher than the equilibrium potential of 2.80 V for Li2CO3, and an ultrahigh round-trip efficiency of 97.1 %. The superior performance of Li-CO2 batteries is attributed to the TEM RM-mediated preferential growth mechanism of Li2C2O4, which enhances the reaction kinetics and rechargeability. Such a unique design enables batteries to cope with sudden CO2-deficient environments, which provides an avenue for the rationally design of CO2 conversion reactions and a feasible guide for next-generation Li-CO2 batteries.

3.
ACS Appl Mater Interfaces ; 15(46): 53342-53350, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37939266

ABSTRACT

We demonstrate here a simple liquid electrolyte soluble Cu-compound, viz., cupric chloride (CuCl2) as an alternative electrocatalyst for nonaqueous Li-CO2 batteries. The key point behind the selection of CuCl2 is that the theoretical potential of Li-CO2 batteries (≈2.8 V; Li+|Li) lies within the Cu1+|Cu0 redox couple (2.3-3.3 V; Li+|Li). The presence of CuCl2 in the liquid electrolyte near to the carbon nanotubes (≡ coelectrocatalyst)-loaded porous-CO2 cathode led to efficient electrocatalysis of CO2 and superior Li-CO2 battery performance. The cell overpotential in the presence of CuCl2 is 0.65 V, which is less than half compared to the one without it (≈1.7 V). Extensive investigations precisely elucidate the electrocatalytic mediation of CuCl2 with the redox characteristics of CO2. Additionally, only in the presence of CuCl2, the existence of Li-oxalate (Li2C2O4) is detected, which is a seldomly reported intermediate preceding the formation of Li2CO3.

4.
Nanomicro Lett ; 14(1): 149, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869171

ABSTRACT

The energy density of commercial lithium (Li) ion batteries with graphite anode is reaching the limit. It is believed that directly utilizing Li metal as anode without a host could enhance the battery's energy density to the maximum extent. However, the poor reversibility and infinite volume change of Li metal hinder the realistic implementation of Li metal in battery community. Herein, a commercially viable hybrid Li-ion/metal battery is realized by a coordinated strategy of symbiotic anode and prelithiated cathode. To be specific, a scalable template-removal method is developed to fabricate the porous graphite layer (PGL), which acts as a symbiotic host for Li ion intercalation and subsequent Li metal deposition due to the enhanced lithiophilicity and sufficient ion-conducting pathways. A continuous dissolution-deintercalation mechanism during delithiation process further ensures the elimination of dead Li. As a result, when the excess plating Li reaches 30%, the PGL could deliver an ultrahigh average Coulombic efficiency of 99.5% for 180 cycles with a capacity of 2.48 mAh cm-2 in traditional carbonate electrolyte. Meanwhile, an air-stable recrystallized lithium oxalate with high specific capacity (514.3 mAh g-1) and moderate operating potential (4.7-5.0 V) is introduced as a sacrificial cathode to compensate the initial loss and provide Li source for subsequent cycles. Based on the prelithiated cathode and initial Li-free symbiotic anode, under a practical-level 3 mAh capacity, the assembled hybrid Li-ion/metal full cell with a P/N ratio (capacity ratio of LiNi0.8Co0.1Mn0.1O2 to graphite) of 1.3 exhibits significantly improved capacity retention after 300 cycles, indicating its great potential for high-energy-density Li batteries.

5.
Article in English | MEDLINE | ID: mdl-35639111

ABSTRACT

Anode-free lithium metal batteries (AFLMBs) have been extensively studied due to their intrinsic high energy and safety without a metallic Li anode in cell design. Yet, the dendrite and dead-Li buildup continuously consumes the active Li upon cycling, leading to the poor lifespan of AFLMBs. Here, we introduce lithium oxalate into the cathode as an electrode additive providing a Li reservoir to extend the lifespan of AFLMBs. The AFLMB using 20% lithium oxalate and a LiNi0.3Co0.3Mn0.3O2 composite cathode exhibits >80 and 40% capacity retention after 50 and 100 cycles, respectively, outperforming the poor cycle life of fewer than 20 cycles obtained from the cell using a pure LiNi0.3Co0.3Mn0.3O2 cathode. Surprisingly, the average Coulombic efficiency of AFLMBs is found to improve as the amount of lithium oxalate increases in the composite cathode. This abnormal phenomenon could be attributed to the as-formed carbon dioxide after the first activation cycle forming a Li2CO3-rich solid-electrolyte interphase and improving the Li deposition and stripping efficiency. The findings in this work provide a new strategy to delay the capacity roll-over of AFLMBs from an electrode engineering perspective, which can be coupled with other approaches such as functional electrolytes synergistically to further improve the cycle life of AFLMBs for practical application.

SELECTION OF CITATIONS
SEARCH DETAIL