Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 525
Filter
1.
J Comput Neurosci ; 52(3): 183-196, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39120822

ABSTRACT

Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) with unknown underlying mechanisms and highly variable responses across subjects. To investigate these issues, we developed a simple computational model. Our model consisted of two neurons linked by an excitatory synapse that incorporates two mechanisms: short-term plasticity (STP) and spike-timing-dependent plasticity (STDP). We applied a variable-amplitude current through I-clamp with a TBS time pattern to the pre- and post-synaptic neurons, simulating synaptic plasticity. We analyzed the results and provided an explanation for the effects of TBS, as well as the variability of responses to it. Our findings suggest that the interplay of STP and STDP mechanisms determines the direction of plasticity, which selectively affects synapses in extended neurons and underlies functional effects. Our model describes how the timing, number, and intensity of pulses delivered to neurons during rTMS contribute to induced plasticity. This not only successfully explains the different effects of intermittent TBS (iTBS) and continuous TBS (cTBS), but also predicts the results of other protocols such as 10 Hz rTMS. We propose that the variability in responses to TBS can be attributed to the variable span of neuronal thresholds across individuals and sessions. Our model suggests a biologically plausible mechanism for the diverse responses to TBS protocols and aligns with experimental data on iTBS and cTBS outcomes. This model could potentially aid in improving TBS and rTMS protocols and customizing treatments for patients, brain areas, and brain disorders.


Subject(s)
Computer Simulation , Models, Neurological , Neuronal Plasticity , Neurons , Theta Rhythm , Transcranial Magnetic Stimulation , Theta Rhythm/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Humans , Synapses/physiology , Action Potentials/physiology , Animals
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000331

ABSTRACT

Arsenic-containing hydrocarbons (AsHCs) are common in marine organisms. However, there is little research on their effects on the central nervous system's advanced activities, such as cognition. Bidirectional synaptic plasticity dynamically regulates cognition through the balance of long-term potentiation (LTP) and long-term depression (LTD). However, the effects of AsHCs on bidirectional synaptic plasticity and the underlying molecular mechanisms remain unexplored. This study provides the first evidence that 15 µg As L-1 AsHC 360 enhances bidirectional synaptic plasticity, occurring during the maintenance phase rather than the baseline phase. Further calcium gradient experiments hypothesize that AsHC 360 may enhance bidirectional synaptic plasticity by affecting calcium ion levels. The enhancement of bidirectional synaptic plasticity by 15 µg As L-1 AsHC 360 holds significant implications in improving cognitive function, treating neuro-psychiatric disorders, promoting neural recovery, and enhancing brain adaptability.


Subject(s)
Arsenic , Hippocampus , Neuronal Plasticity , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiology , Arsenic/pharmacology , Arsenic/toxicity , Neuronal Plasticity/drug effects , Long-Term Potentiation/drug effects , Hydrocarbons/pharmacology , Calcium/metabolism , Rats , Male , Long-Term Synaptic Depression/drug effects
3.
J Neurosci ; 44(35)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39054067

ABSTRACT

The anterior cingulate cortex (ACC) is a key cortical region for pain perception and emotion. Different forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), have been reported in the ACC. Synaptic tagging of LTP plays an important role in hippocampus-related associative memory. In this study, we demonstrate that synaptic tagging of LTD is detected in the ACC of adult male and female mice. This form of tagged LTD requires the activation of metabotropic glutamate receptor subtype 1 (mGluR1). The induction of tagged LTD is time-related with the strongest tagged LTD appearing when the interval between two independent stimuli is 30 min. Inhibitors of mGluR1 blocked the induction of tagged LTD; however, blocking N-methyl-d-aspartate receptors did not affect the induction of tagged LTD. Nimodipine, an inhibitor of L-type voltage-gated calcium channels, also blocked tagged LTD. In an animal model of amputation, we found that tagged LTD was either reduced or completely blocked. Together with our previous report of tagged LTP in the ACC, this study strongly suggests that excitatory synapses in the adult ACC are highly plastic. The biphasic tagging of synaptic transmission provides a new form of heterosynaptic plasticity in the ACC which has functional and pathophysiological significance in phantom pain.


Subject(s)
Gyrus Cinguli , Long-Term Synaptic Depression , Mice, Inbred C57BL , Animals , Gyrus Cinguli/physiology , Gyrus Cinguli/drug effects , Mice , Long-Term Synaptic Depression/physiology , Long-Term Synaptic Depression/drug effects , Male , Female , Synapses/physiology , Synapses/drug effects , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects
4.
Article in English | MEDLINE | ID: mdl-38859788

ABSTRACT

BACKGROUND: Neurotrophins are essential factors for neural growth and function; they play a crucial role in neurodegenerative diseases where their expression levels are altered. Our previous research has demonstrated changes in synaptic plasticity and neurotrophin expression levels in a pharmacological model of Huntington's disease induced by 3-nitropropionic acid (3-NP). In the 3- NP-induced HD model, corticostriatal Long Term Depression (LTD) was impaired, but neurotrophin-3 (NT-3) restored striatal LTD. This study delves into the NT-3-induced signaling pathways involved in modulating and restoring striatal synaptic plasticity in cerebral slices from 3-NPinduced striatal degeneration in mice in vivo. METHODS: Phospholipase C (PLC), phosphatidylinositol-3-kinase (PI3K), and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways activated by NT-3 were analyzed by means of field electrophysiological recordings in brain slices from control and 3-NP treated in the presence of specific inhibitors of the signaling pathways. RESULTS: Using specific inhibitors, PLC, PI3K, and MEK/ERK signaling pathways contribute to NT3-mediated plasticity modulation in striatal tissue slices recorded from control animals. However, in the neurodegeneration model induced by 3-NP, the recovery of striatal LTD induced by NT-3 was prevented only by the PLC inhibitor. Moreover, the PLC signaling pathway appeared to trigger downstream activation of the endocannabinoid system, evidenced by AM 251, an inhibitor of the CB1 receptor, also hindered NT-3 plasticity recovery. CONCLUSION: Our finding highlights the specific involvement of the PLC pathway in the neuroprotective effects of NT-3 in mitigating synaptic dysfunction under neurodegenerative conditions.

5.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230237, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853570

ABSTRACT

The synaptic tagging and capture (STC) hypothesis lays the framework on the synapse-specific mechanism of protein synthesis-dependent long-term plasticity upon synaptic induction. Activated synapses will display a transient tag that will capture plasticity-related products (PRPs). These two events, tag setting and PRP synthesis, can be teased apart and have been studied extensively-from their electrophysiological and pharmacological properties to the molecular events involved. Consequently, the hypothesis also permits interactions of synaptic populations that encode different memories within the same neuronal population-hence, it gives rise to the associativity of plasticity. In this review, the recent advances and progress since the experimental debut of the STC hypothesis will be shared. This includes the role of neuromodulation in PRP synthesis and tag integrity, behavioural correlates of the hypothesis and modelling in silico. STC, as a more sensitive assay for synaptic health, can also assess neuronal aberrations. We will also expound how synaptic plasticity and associativity are altered in ageing-related decline and pathological conditions such as juvenile stress, cancer, sleep deprivation and Alzheimer's disease. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Brain , Memory , Neuronal Plasticity , Synapses , Synapses/physiology , Humans , Neuronal Plasticity/physiology , Brain/physiology , Memory/physiology , Animals , Models, Neurological
6.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230218, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853569

ABSTRACT

We introduce and summarize reviews and research papers by speakers at a discussion meeting on 'Long-term potentiation: 50 years on' held at the Royal Society, London, on 20-21 November 2023. The meeting followed earlier discussion meetings marking the 30th and 40th anniversaries of the discovery of long-term potentiation. These new contributions give an overview of current research and controversies in a vibrant branch of neuroscience with important implications for our understanding of the neurobiological basis of many forms of learning and memory and a wide spectrum of neurological and cognitive disorders.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Long-Term Potentiation , Long-Term Potentiation/physiology , Humans , Animals , History, 20th Century , Learning , Memory/physiology , History, 21st Century
7.
J Neurosci ; 44(32)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38942470

ABSTRACT

NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g., d-serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results might be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of long-term depression (LTD) induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker MK801. Conversely, a saturating concentration of d-serine completely inhibited LTD and spine shrinkage induced by glutamate binding in the presence of MK801 or Mg2+ Using a Förster resonance energy transfer (FRET)-based assay in cultured neurons, we further found that d-serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d-serine availability serves to modulate NMDAR signaling and synaptic plasticity even when the NMDAR is blocked by magnesium.


Subject(s)
Hippocampus , Receptors, N-Methyl-D-Aspartate , Serine , Signal Transduction , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Mice , Male , Female , Serine/metabolism , Serine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Inbred C57BL , Long-Term Synaptic Depression/drug effects , Long-Term Synaptic Depression/physiology , Glutamic Acid/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neurons/drug effects , Neurons/metabolism
8.
Neuron ; 112(16): 2708-2720.e9, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38878768

ABSTRACT

NMDA receptors (NMDARs) are ionotropic receptors crucial for brain information processing. Yet, evidence also supports an ion-flux-independent signaling mode mediating synaptic long-term depression (LTD) and spine shrinkage. Here, we identify AETA (Aη), an amyloid-ß precursor protein (APP) cleavage product, as an NMDAR modulator with the unique dual regulatory capacity to impact both signaling modes. AETA inhibits ionotropic NMDAR activity by competing with the co-agonist and induces an intracellular conformational modification of GluN1 subunits. This favors non-ionotropic NMDAR signaling leading to enhanced LTD and favors spine shrinkage. Endogenously, AETA production is increased by in vivo chemogenetically induced neuronal activity. Genetic deletion of AETA production alters NMDAR transmission and prevents LTD, phenotypes rescued by acute exogenous AETA application. This genetic deletion also impairs contextual fear memory. Our findings demonstrate AETA-dependent NMDAR activation (ADNA), characterizing AETA as a unique type of endogenous NMDAR modulator that exerts bidirectional control over NMDAR signaling and associated information processing.


Subject(s)
Amyloid beta-Protein Precursor , Receptors, N-Methyl-D-Aspartate , Signal Transduction , Animals , Humans , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Dendritic Spines/metabolism , Fear/physiology , Hippocampus/metabolism , Long-Term Synaptic Depression/physiology , Long-Term Synaptic Depression/drug effects , Memory/physiology , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/physiology , Rats
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230224, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853547

ABSTRACT

Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1-4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Long-Term Potentiation , Long-Term Synaptic Depression , Neuronal Plasticity , Synapses , Animals , Dendritic Spines/physiology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Models, Neurological , Neuronal Plasticity/physiology , Synapses/physiology
10.
J Neurotrauma ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38818799

ABSTRACT

Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.

11.
Epilepsia ; 65(7): 2152-2164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38804501

ABSTRACT

OBJECTIVES: Pathological forms of neural activity, such as epileptic seizures, modify the expression pattern of multiple proteins, leading to persistent changes in brain function. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which is critically involved in protein-synthesis-dependent synaptic plasticity underlying learning and memory. In the present study, we have investigated how the expression of ArcKR, a form of Arc in which the ubiquitination sites have been mutated, resulting in slowed Arc degradation, modifies group I metabotropic glutamate receptor-mediated long-term depression (G1-mGluR-LTD) following seizures. METHODS: We used a knock-in mice line that express ArcKR and two hyperexcitation models: an in vitro model, where hippocampal slices were exposed to zero Mg2+, 6 mM K+; and an in vivo model, where kainic acid was injected unilaterally into the hippocampus. In both models, field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 region of hippocampal slices in response to Schaffer collateral stimulation and G1-mGluR-LTD was induced chemically with the group 1 mGluR agonist DHPG. RESULTS: In the in vitro model, ArcKR expression enhanced the effects of seizure activity and increased the magnitude of G1-mGluR LTD, an effect that could be blocked with the mGluR5 antagonist MTEP. In the in vivo model, fEPSPs were significantly smaller in slices from ArcKR mice and were less contaminated by population spikes. In this model, the amount of G1-mGluR-LTD was significantly less in epileptic slices from ArcKR mice as compared to wildtype (WT) mice. SIGNIFICANCE: We have shown that expression of ArcKR, a form of Arc in which degradation is reduced, significantly modulates the magnitude of G1-mGluR-LTD following epileptic seizures. However, the effect of ArcKR on LTD depends on the epileptic model used, with enhancement of LTD in an in vitro model and a reduction in the kainate mouse model.


Subject(s)
Hippocampus , Kainic Acid , Mice, Transgenic , Neuronal Plasticity , Animals , Mice , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Kainic Acid/pharmacology , Seizures/physiopathology , Seizures/metabolism , Seizures/chemically induced , Seizures/genetics , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Epilepsy/physiopathology , Epilepsy/metabolism , Epilepsy/chemically induced , Epilepsy/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Male , Mice, Inbred C57BL , Long-Term Synaptic Depression/drug effects , Long-Term Synaptic Depression/physiology , Excitatory Amino Acid Agonists/pharmacology
13.
Neuromodulation ; 27(5): 881-886, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38551547

ABSTRACT

OBJECTIVE: Dorsal root ganglion stimulation (DRG-S) is a novel therapy to treat chronic pain. It has shown efficacy when delivered intermittently, suggesting a delayed washout effect exists. To measure the washout period, and to determine whether there are differences in washout times among different types of treated pain, we measured the time for pain to return at the end of the patients' one-week DRG stimulation trials. MATERIALS AND METHODS: Patients who completed a successful DRG-S trial were included. The times until 25% (t25) and 90% (t90) of baseline pain level returned were recorded. The patients were divided into neuropathic, nociceptive, and mixed pain groups for subgroup comparison. t25 and t90 were plotted in the entire cohort and subgroups using reverse Kaplan-Meier plots (failure curves) and compared using a log-rank test. RESULTS: In total, 29 consecutive patients were included. Median t25 and t90 times were 7.1 and 19.5 hours, respectively. Median (interquartile range) times were longest for the nociceptive pain group (n = 17) and shortest for the neuropathic pain group (n = 6), with the mixed-pain group (n = 6) in between (t25: 7.1 [1.7-19.4], 3.40 [1.4-8.4], and 5.7 [0.8-17.6]; t90, 22.0 [10.7-71.0], 7.6 [3.6-19.8], and 20.9 [14.2-31.2], respectively). t90 times differed significantly by pain type (p = 0.040). CONCLUSIONS: This study showed a prolonged washout period after cessation of DRG-S therapy. Washout times vary according to pain type. The observed effects are possibly due to long-term depression of pain signaling and could allow the implementation of alternative stimulation strategies with DRG-S. Further investigations evaluating DRG-S washout times are warranted.


Subject(s)
Ganglia, Spinal , Neuralgia , Spinal Cord Stimulation , Humans , Ganglia, Spinal/physiology , Male , Female , Middle Aged , Aged , Neuralgia/therapy , Spinal Cord Stimulation/methods , Adult , Chronic Pain/therapy , Treatment Outcome , Pain Measurement/methods , Time Factors
14.
Neurosci Lett ; 826: 137733, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38492880

ABSTRACT

Etomidate (ET) is a widely used intravenous imidazole general anesthetic, which depresses the cerebellar neuronal activity by modulating various receptors activity and synaptic transmission. In this study, we investigated the effects of ET on the cerebellar climbing fiber-Purkinje cells (CF-PC) plasticity in vitro in mice using whole-cell recording technique and pharmacological methods. Our results demonstrated that CF tetanic stimulation produced a mGluR1-dependent long-term depression (LTD) of CF-PC excitatory postsynaptic currents (EPSCs), which was enhanced by bath application of ET (10 µM). Blockade of mGluR1 receptor with JNJ16259685, ET triggered the tetanic stimulation to induce a CF-PC LTD accompanied with an increase in paired-pulse ratio (PPR). The ET-triggered CF-PC LTD was abolished by extracellular administration of an N-methyl-(D)-aspartate (NMDA) receptor antagonist, D-APV, as well as by intracellular blockade of NMDA receptors activity with MK801. Furthermore, blocking cannabinoids 1 (CB1) receptor with AM251 or chelating intracellular Ca2+ with BAPTA, ET failed to trigger the CF-PC LTD. Moreover, the ET-triggered CF-PC LTD was abolished by inhibition of protein kinase A (PKA), but not by inhibition of protein kinase C inhibiter. The present results suggest that ET acts on postsynaptic NMDA receptor resulting in an enhancement of the cerebellar CF-PC LTD through CB1 receptor/PKA cascade in vitro in mice. These results provide new evidence and possible mechanism for ET anesthesia to affect motor learning and motor coordination by regulating cerebellar CF-PC LTD.


Subject(s)
Etomidate , Mice , Animals , Etomidate/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Long-Term Synaptic Depression/physiology , Synapses/physiology , Cerebellum/physiology , Neuronal Plasticity/physiology , Purkinje Cells/physiology , Synaptic Transmission , Anesthetics, Intravenous/pharmacology
15.
J Affect Disord ; 354: 702-711, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38537760

ABSTRACT

BACKGROUND: Military missions, especially those involving combat exposure, are associated with an increased risk of depression. Understanding the long-term course of depressive symptoms post-deployment is important to improve decision-making regarding deployment and mental health policies in the military. This study investigates trajectories of depressive symptoms in the Dutch army, exploring the influence of factors such as demographics, early-life trauma, posttraumatic stress disorder (PTSD) symptoms, and deployment stressors. METHODS: A cohort of 1032 military men and women deployed to Afghanistan (2005-2008) was studied from pre- to 10 years post-deployment. Depressive and PTSD symptoms were assessed using the Symptom CheckList-90 and the Self-Rating Inventory for PTSD. Demographics, early trauma, and deployment experiences were collected at baseline and after deployment, respectively. Latent Class Growth Analysis was used to explore heterogeneity in trajectories of depressive symptoms over time. RESULTS: Four trajectories were found: resilient (65%), intermediate-stable (20%), symptomatic-chronic (9%), and late-onset-increasing (6%). The resilient group experienced fewer deployment stressors, while the symptomatic-chronic group reported more early life traumas. Trajectories with elevated depressive symptoms consistently demonstrated higher PTSD symptoms. LIMITATIONS: Potential nonresponse bias and missing information due to the longitudinal design and extensive follow-up times. CONCLUSIONS: This study identified multiple trajectories of depressive symptoms in military personnel up to 10 years post-deployment, associated with early trauma, deployment stressors, adverse life events and PTSD symptoms. The prevalence of the resilient trajectory suggests a substantial level of resilience among deployed military personnel. These findings provide valuable insights and a foundation for further research.


Subject(s)
Military Personnel , Resilience, Psychological , Stress Disorders, Post-Traumatic , Male , Humans , Female , Military Personnel/psychology , Depression/epidemiology , Prospective Studies , Stress Disorders, Post-Traumatic/psychology , Afghan Campaign 2001- , Risk Factors
16.
Cell Rep ; 43(4): 113839, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38507409

ABSTRACT

Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.


Subject(s)
Calcineurin , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Homeostasis , Synapses , Animals , Synapses/metabolism , Synapses/physiology , Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Long-Term Synaptic Depression/physiology , Neurons/metabolism , Neurons/physiology , Mice
17.
Proc Natl Acad Sci U S A ; 121(7): e2311709121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38324573

ABSTRACT

Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Neuronal Plasticity , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neuronal Plasticity/physiology , Long-Term Potentiation/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
18.
J Biol Chem ; 300(3): 105744, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354781

ABSTRACT

Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.


Subject(s)
DNA, Mitochondrial , Hippocampus , Long-Term Synaptic Depression , Toll-Like Receptor 9 , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Hippocampus/metabolism , Immunity, Innate , N-Methylaspartate/pharmacology , N-Methylaspartate/metabolism , Neurons/metabolism , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , RNA, Small Interfering/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , HEK293 Cells
19.
Brain Neurosci Adv ; 8: 23982128231223579, 2024.
Article in English | MEDLINE | ID: mdl-38298523

ABSTRACT

The modulation of synaptic efficacy by group I metabotropic glutamate receptors is dysregulated in several neurodevelopmental and neurodegenerative disorders impacting cognitive function. The progression and severity of these and other disorders are affected by biological sex, and differences in metabotropic glutamate receptor signalling have been implicated in this effect. In this study, we have examined whether there are any sex-dependent differences in a form of long-term depression of synaptic responses that is triggered by application of the group I metabotropic glutamate receptor agonist 3,5-dihydroxyphenylglycine (DHPG). We studied DHPG-induced long-term depression at the Schaffer collateral-commissural pathway in area CA1 of hippocampal slices prepared from three separate age groups of Sprague Dawley rats. In both juvenile (2-week-old) and young adult (3-month-old) rats, there were no differences between sexes in the magnitude of long-term depression. However, in older adult (>1-year-old) rats, DHPG-induced long-term depression was greater in males. In contrast, there were no differences between sexes with respect to basal synaptic transmission or paired-pulse facilitation in any age group. The specific enhancement of metabotropic glutamate receptor-dependent long-term depression in older adult males, but not females, reinforces the importance of considering sex as a factor in the study and treatment of brain disorders.

20.
J Neurosci ; 44(11)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38316559

ABSTRACT

Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.


Subject(s)
Transcranial Direct Current Stimulation , Visual Cortex , Male , Female , Mice , Animals , Thalamus/physiology , Neuronal Plasticity/physiology , Visual Cortex/physiology , Synapses
SELECTION OF CITATIONS
SEARCH DETAIL