Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
Neuroscience ; 555: 83-91, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019391

ABSTRACT

Potentiation of metabotropic glutamate receptor subtype 5 (mGluR5) function produces antipsychotic-like and pro-cognitive effects in animal models of schizophrenia and can reverse cognitive deficits induced by N-methyl-D-aspartate type glutamate receptor (NMDAR) antagonists. However, it is currently unknown if mGluR5 positive allosteric modulators (PAMs) can modulate NMDAR antagonist-induced alterations in extracellular glutamate levels in regions underlying these cognitive and behavioral effects, such as the medial prefrontal cortex (mPFC). We therefore assessed the ability of the mGluR5 PAM, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), to reduce elevated extracellular glutamate levels induced by the NMDAR antagonist, dizocilpine (MK-801), in the mPFC. Male Sprague-Dawley rats were implanted with a guide cannula aimed at the mPFC and treated for ten consecutive days with MK-801 and CDPPB or their corresponding vehicles. CDPPB or vehicle was administered thirty minutes before MK-801 or vehicle each day. On the final day of treatment, in vivo microdialysis was performed, and samples were collected every thirty minutes to analyze extracellular glutamate levels. Compared to animals receiving only vehicle, administration of MK-801 alone significantly increased extracellular levels of glutamate in the mPFC. This effect was not observed in animals administered CDPPB before MK-801, nor in those administered CDPPB alone, indicating that CDPPB decreased extracellular glutamate release stimulated by MK-801. Results indicate that CDPPB attenuates MK-801 induced elevations in extracellular glutamate in the mPFC. This effect of CDPPB may underlie neurochemical adaptations associated with the pro-cognitive effects of mGluR5 PAMs in rodent models of schizophrenia.

2.
Cancers (Basel) ; 16(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39001514

ABSTRACT

Autoantibodies targeting the neuronal antigen metabotropic glutamate receptor 5 (mGluR5) have been identified in patients with Ophelia syndrome, which describes a co-occurrence of paraneoplastic limbic encephalitis and Hodgkin lymphoma (HL). Little data exist regarding frequency and function of mGluR5 in HL and its potential role in causing seropositive paraneoplastic disease. We studied a representative cohort of pediatric HL and NHL patients (n = 57) using immunohistochemistry and fluorescence staining to investigate mGluR5 expression. All lymphoma tissues displayed positive mGluR5 staining, with focus on Hodgkin-Reed-Sternberg (H-RS) cells. We did not detect any mGluR5 staining in tumor-free lymph nodes, which is consistent with the absence of GRM5 transcripts in RNA-sequencing data from non-malignant B and T cells. The frequent presence in pediatric lymphoma falls in line with reports of mGluR5 expression and associated tumor progression in other malignancies. We tested for correlation with clinical features, focusing on disease progression and neurological symptoms. Low mGluR5 expression in H-RS cells correlated with young patient age (<15 years) and positive histology for EBV infection. Paraneoplastic or neurological symptoms were found exclusively in HL patients. While an impact of mGluR5 on HL severity remains possible, a prognostic value of mGluR5 expression levels requires further investigation.

3.
Brain Res ; 1843: 149117, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977235

ABSTRACT

BACKGROUND: Clinical evidence suggests that Esketamine (ESK) is an effective treatment for depression. However, the effects of Esketamine in treating depression-like behavior induced by neuropathic pain is unclear. The underlying molecular mechanisms require further investigation to provide new therapeutic targets for the treatment of clinical neuropathic pain-related depression. METHODS: A neuropathic pain-related depression model was established in rats with spared nerve injury (SNI). Male Sprague-Dawley rats were randomly divided into four groups: Sham Group, SNI group, SNI + Normal Saline (NS) Group and SNI + ESK5mg/kg Group. Mechanical pain thresholds were measured to assess pain sensitivity in SNI rats. On the 14th day after surgery a forced swim test and sucrose preference test were used to evaluate the depressive-like behavior of rats in each group. Further, a proteomic analysis was used to quantify differentially expressed proteins. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed to explore the main protein targets of SNI in the medial prefrontal cortex. The expression of proteins was detected by Western blotting. RESULTS: A neuropathic pain-related depression model was established. Compared with the Sham group, the mechanical pain threshold was decreased significantly (13.2 ± 1.0 vs. 0.7 ± 0.01 g n = 8), while immobility on the forced swim test was also decreased (93.1 ± 7.4 vs. 169.5 ± 9.6 s n = 8), and sucrose preference rate was significantly increased (98.8 ± 0.3 vs. 73.1 ± 1.4n = 7) in SNI group rats. Compared with the SNI + NS group, the mechanical pain threshold was not statistically significant, while immobility on the forced swim test was clearly decreased (161.1 ± 11.6 vs. 77.9 ± 5.0 s n = 8), and sucrose preference rate was significantly increased (53.1 ± 8.9 vs. 96.1 ± 1.4n = 7) in SNI + ESK5mg/kg group rats. To further investigate the underlying mechanism, we employed proteomics to identify proteins exhibiting more than a 1.2-fold difference (P < 0.05) in expression levels within each group for subsequent analysis. Relative to the Sham group, 88 downregulated and 104 up-regulated proteins were identified in the SNI group, while 120 and 84 proteins were up- and down-regulated in the Esketamine treatment group compared with the SNI + NS group. Compared with Sham group, the expressions of mGluR5 and Homer1a were up-regulated in the medial prefrontal cortex (mPFC) in SNI group (mGluR5:0.97 ± 0.05 vs 1.47 ± 0.15, Homer1a:1.03 ± 0.06 vs 1.46 ± 0.16n = 6), and down-regulated after intervention with Esketamine (mGluR5:1.54 ± 0.11 vs 1.06 ± 0.07, Homer1a:1.51 ± 0.13 vs 1.12 ± 0.34n = 6). CONCLUSIONS: Low-dose Esketamine appeared to relieve depression-like behavior induced by neuropathic pain. The Homer1a-mGluR5 signaling pathway might be the mechanism of antidepressant effect of Esketamine.

4.
Front Endocrinol (Lausanne) ; 15: 1382861, 2024.
Article in English | MEDLINE | ID: mdl-38919484

ABSTRACT

Introduction: Gender incongruence (GI) is characterized by a marked incongruence between an individual's experienced/expressed gender and the assigned sex at birth. It includes strong displeasure about his or her sexual anatomy and secondary sex characteristics. In some people, this condition produces a strong distress with anxiety and depression named gender dysphoria (GD). This condition appears to be associated with genetic, epigenetics, hormonal as well as social factors. Given that L-glutamate is the major excitatory neurotransmitter in the central nervous system, also associated with male sexual behavior as well as depression, we aimed to determine whether metabotropic glutamate receptors are involved in GD. Methods: We analyzed 74 single nucleotide polymorphisms located at the metabotropic glutamate receptors (mGluR1, mGluR3, mGluR4, mGluR5, mGluR7 and mGluR8) in 94 transgender versus 94 cisgender people. The allele and genotype frequencies were analyzed by c2 test contrasting male and female cisgender and transgender populations. The strength of the associations was measured by binary logistic regression, estimating the odds ratio (OR) for each genotype. Measurement of linkage disequilibrium, and subsequent measurement of haplotype frequencies were also performed considering three levels of significance: P ≤ 0.05, P ≤ 0.005 and P ≤ 0.0005. Furthermore, false positives were controlled with the Bonferroni correction (P ≤ 0.05/74 = 0.00067). Results: After analysis of allele and genotypic frequencies, we found twenty-five polymorphisms with significant differences at level P ≤ 0.05, five at P ≤ 0.005 and two at P ≤ 0.0005. Furthermore, the only two polymorphisms (rs9838094 and rs1818033) that passed the Bonferroni correction were both related to the metabotropic glutamate receptor 7 (mGluR7) and showed significant differences for multiple patterns of inheritance. Moreover, the haplotype T/G [OR=0.34 (0.19-0.62); P<0.0004] had a lower representation in the transgender population than in the cisgender population, with no evidence of sex cross-interaction. Conclusion: We provide genetic evidence that the mGluR7, and therefore glutamatergic neurotransmission, may be involved in GI and GD.


Subject(s)
Polymorphism, Single Nucleotide , Receptors, Metabotropic Glutamate , Humans , Male , Receptors, Metabotropic Glutamate/genetics , Female , Adult , Transgender Persons , Gender Dysphoria/genetics , Genotype , Young Adult , Middle Aged , Linkage Disequilibrium
6.
Neuropharmacology ; 256: 110018, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38810925

ABSTRACT

Diets high in sucrose and fat are becoming more prevalent the world over, accompanied by a raised prevalence of cardiovascular diseases, cancers, diabetes, obesity, and metabolic syndrome. Clinical studies link unhealthy diets with the development of mental health disorders, particularly depression. Here, we investigate the effects of 12 days of sucrose consumption administered as 2 L of 25% sucrose solution daily for 12 days in Göttingen minipigs on the function of brain receptors involved in reward and motivation, regulating feeding, and pre- and post-synaptic mechanisms. Through quantitative autoradiography of cryostat sections containing limbic brain regions, we investigated the effects of sucrose restricted to a 1-h period each morning, on the specific binding of [3H]raclopride on dopamine D2/3 receptors, [3H]UCB-J at synaptic vesicle glycoprotein 2A (SV2A), [3H]MPEPγ at metabotropic glutamate receptor subtype 5 (mGluR5) and [3H]SR141716A at the cannabinoid receptor 1 (CB1). Compared to control diet animals, the sucrose group showed significantly lower [3H]UCB-J and [3H]MPEPγ binding in the prefrontal cortex. The sucrose-consuming minipigs showed higher hippocampal CB1 binding, but unaltered dopamine D2/3 binding compared to the control group. We found that the sucrose diet reduced the synaptic density marker while increasing CB1 binding in limbic brain structures, which may subserve maladaptive changes in appetite regulation and feeding. Further studies of the effects of diets and lifestyle habits on brain neuroreceptor and synaptic density markers are warranted.


Subject(s)
Sucrose , Swine, Miniature , Animals , Swine , Sucrose/administration & dosage , Male , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Cannabinoid/metabolism , Synapses/metabolism , Synapses/drug effects , Receptor, Cannabinoid, CB1/metabolism , Receptors, Dopamine D2/metabolism , Brain/metabolism , Brain/drug effects , Female , Receptors, Dopamine D3/metabolism
7.
Epilepsia ; 65(7): 2152-2164, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38804501

ABSTRACT

OBJECTIVES: Pathological forms of neural activity, such as epileptic seizures, modify the expression pattern of multiple proteins, leading to persistent changes in brain function. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which is critically involved in protein-synthesis-dependent synaptic plasticity underlying learning and memory. In the present study, we have investigated how the expression of ArcKR, a form of Arc in which the ubiquitination sites have been mutated, resulting in slowed Arc degradation, modifies group I metabotropic glutamate receptor-mediated long-term depression (G1-mGluR-LTD) following seizures. METHODS: We used a knock-in mice line that express ArcKR and two hyperexcitation models: an in vitro model, where hippocampal slices were exposed to zero Mg2+, 6 mM K+; and an in vivo model, where kainic acid was injected unilaterally into the hippocampus. In both models, field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 region of hippocampal slices in response to Schaffer collateral stimulation and G1-mGluR-LTD was induced chemically with the group 1 mGluR agonist DHPG. RESULTS: In the in vitro model, ArcKR expression enhanced the effects of seizure activity and increased the magnitude of G1-mGluR LTD, an effect that could be blocked with the mGluR5 antagonist MTEP. In the in vivo model, fEPSPs were significantly smaller in slices from ArcKR mice and were less contaminated by population spikes. In this model, the amount of G1-mGluR-LTD was significantly less in epileptic slices from ArcKR mice as compared to wildtype (WT) mice. SIGNIFICANCE: We have shown that expression of ArcKR, a form of Arc in which degradation is reduced, significantly modulates the magnitude of G1-mGluR-LTD following epileptic seizures. However, the effect of ArcKR on LTD depends on the epileptic model used, with enhancement of LTD in an in vitro model and a reduction in the kainate mouse model.


Subject(s)
Hippocampus , Kainic Acid , Mice, Transgenic , Neuronal Plasticity , Animals , Mice , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Kainic Acid/pharmacology , Seizures/physiopathology , Seizures/metabolism , Seizures/chemically induced , Seizures/genetics , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Epilepsy/physiopathology , Epilepsy/metabolism , Epilepsy/chemically induced , Epilepsy/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Male , Mice, Inbred C57BL , Long-Term Synaptic Depression/drug effects , Long-Term Synaptic Depression/physiology , Excitatory Amino Acid Agonists/pharmacology
8.
J Alzheimers Dis ; 99(2): 447-470, 2024.
Article in English | MEDLINE | ID: mdl-38669548

ABSTRACT

 Mounting evidence indicates that a physiological function of amyloid-ß (Aß) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aß and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aß-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aß and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aß and inhibiting its assembly into toxic oligomers. Conversely, Aß oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aß-orchestrated plasticity, in which sleep is not only induced by Aß but is also required for Aß-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Neuronal Plasticity , Synapses , Humans , Neuronal Plasticity/physiology , Alzheimer Disease/metabolism , Animals , Amyloid beta-Peptides/metabolism , Synapses/physiology , Synapses/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Brain/metabolism , Neurons/metabolism , Neurons/physiology
9.
Alzheimers Dement ; 20(6): 3876-3888, 2024 06.
Article in English | MEDLINE | ID: mdl-38634334

ABSTRACT

INTRODUCTION: Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the pathophysiological mechanism of Alzheimer's disease (AD). METHODS: Ten cognitively impaired (CI) individuals and 10 healthy controls (HCs) underwent [18F]SynVesT-1 and [18F]PSS232 positron emission tomography (PET)/magnetic resonance to assess synaptic density and mGluR5 availability. The associations between mGluR5 availability and synaptic density were examined. A mediation analysis was performed to investigate the possible mediating effects of mGluR5 availability and synaptic loss on the relationship between amyloid deposition and cognition. RESULTS: CI patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and cognition. CONCLUSIONS: Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD and are closely linked. HIGHLIGHTS: Cognitively impaired patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and global cognition. With further research, modulating mGluR5 availability might be a potential therapeutic strategy for improving synaptic function in AD.


Subject(s)
Cognitive Dysfunction , Positron-Emission Tomography , Receptor, Metabotropic Glutamate 5 , Humans , Receptor, Metabotropic Glutamate 5/metabolism , Male , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Female , Aged , Alzheimer Disease/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Magnetic Resonance Imaging , Synapses/metabolism , Synapses/pathology , Middle Aged , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology
10.
Cell Rep ; 43(4): 114056, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38581678

ABSTRACT

Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.


Subject(s)
Autistic Disorder , Disease Models, Animal , Estrogen Receptor alpha , Mice, Knockout , Neocortex , PTEN Phosphohydrolase , Receptor, Metabotropic Glutamate 5 , Animals , Female , Male , Mice , Autistic Disorder/metabolism , Autistic Disorder/physiopathology , Autistic Disorder/genetics , Autistic Disorder/pathology , Estrogen Receptor alpha/metabolism , Mice, Inbred C57BL , Neocortex/metabolism , Neocortex/pathology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Pyramidal Cells/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Social Behavior
11.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38657042

ABSTRACT

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Subject(s)
Endocytosis , Long-Term Synaptic Depression , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Receptors, AMPA , Receptors, Metabotropic Glutamate , Receptors, AMPA/metabolism , Animals , Phosphorylation , Endocytosis/physiology , Long-Term Synaptic Depression/physiology , Receptors, Metabotropic Glutamate/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Rats , Tyrosine/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Synapses/metabolism , Mice , Humans , Neurons/metabolism
12.
Heliyon ; 10(8): e29483, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644842

ABSTRACT

Methylene blue (MB) was found to exert neuroprotective effect on different brain diseases, such as ischemic stroke. This study assessed the MB effects on ischemia induced brain edema and its role in the inhibition of aquaporin 4 (AQP4) and metabotropic glutamate receptor 5 (mGluR5) expression. Rats were exposed 1 h transient middle cerebral artery occlusion (tMCAO), and MB was injected intravenously following reperfusion (3 mg/kg). Magnetic resonance imaging (MRI) and 2,3,5-triphenyltetrazolium chloride (TTC) staining was performed 48 h after the onset of tMCAO to evaluate the brain infarction and edema. Brain tissues injuries as well as the glial fibrillary acidic protein (GFAP), AQP4 and mGluR5 expressions were detected. Oxygen and glucose deprivation/reoxygenation (OGD/R) was performed on primary astrocytes (ASTs) to induce cell swelling. MB was administered at the beginning of reoxygenation, and the perimeter of ASTs was measured by GFAP immunofluorescent staining. 3,5-dihydroxyphenylglycine (DHPG) and fenobam were given at 24 h before OGD to examine their effects on MB functions on AST swelling and AQP4 expression. MB remarkably decreased the volumes of T2WI and ADC lesions, as well as the cerebral swelling. Consistently, MB treatment significantly decreased GFAP, mGluR5 and AQP4 expression at 48 h after stroke. In the cultivated primary ASTs, OGD/R and DHPG significantly increased ASTs volume as well as AQP4 expression, which was reversed by MB and fenobam treatment. The obtained results highlight that MB decreases the post-ischemic brain swelling by regulating the activation of AQP4 and mGluR5, suggesting potential applications of MB on clinical ischemic stroke treatment.

13.
Psychopharmacology (Berl) ; 241(7): 1399-1415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38459971

ABSTRACT

RATIONALE: Ketamine produces dissociative, psychomimetic, anxiolytic, antidepressant, and anesthetic effects in a dose dependent manner. It has a complex mechanism of action that involve alterations in other glutamate receptors. The metabotropic glutamate receptor 5 (mGluR5) has been investigated in relation to the psychotic and anesthetic properties of ketamine, while its role in mediating the therapeutic effects of ketamine remains unknown. OBJECTIVES: We investigated the role of mGluR5 on the antidepressant, anxiolytic and fear memory-related effects of ketamine in adult male Wistar rats. METHODS: Two sets of experiments were conducted. We first utilized the positive allosteric modulator CDPPB to investigate how acute mGluR5 activation regulates the therapeutic effects of ketamine (10 mg/kg). We then tested the synergistic antidepressant effect of mGluR5 antagonism and ketamine by combining MTEP with a sub-effective dose of ketamine (1 mg/kg). Behavioral despair, locomotor activity, anxiety-like behavior, and fear memory were respectively assessed in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and auditory fear conditioning. RESULTS: Enhancing mGluR5 activity via CDPPB occluded the antidepressant effect of ketamine without changing locomotor activity. Furthermore, concomitant administration of MTEP and ketamine exhibited a robust synergistic antidepressant effect. The MTEP + ketamine treatment, however, blocked the anxiolytic effect observed by sole administration of MTEP or the low dose ketamine. CONCLUSIONS: These findings suggest that suppressed mGluR5 activity is required for the antidepressant effects of ketamine. Consequently, the antagonism of mGluR5 enhances the antidepressant effectiveness of low dose ketamine, but eliminates its anxiolytic effects.


Subject(s)
Anti-Anxiety Agents , Antidepressive Agents , Ketamine , Rats, Wistar , Receptor, Metabotropic Glutamate 5 , Animals , Ketamine/pharmacology , Ketamine/administration & dosage , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors , Male , Rats , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/administration & dosage , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Pyridines/pharmacology , Pyridines/administration & dosage , Fear/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Drug Synergism , Dose-Response Relationship, Drug , Memory/drug effects , Benzamides/pharmacology , Benzamides/administration & dosage , Thiazoles/pharmacology , Thiazoles/administration & dosage , Depression/drug therapy , Anxiety/drug therapy , Pyrazoles
14.
J Labelled Comp Radiopharm ; 67(4): 155-164, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369901

ABSTRACT

The radioligand [18F]FPEB, used for PET imaging of the brain's metabotropic glutamate receptor subtype 5 (mGluR5), undergoes a thorough validation process to ensure its safety, efficacy, and quality for clinical use. The process starts by optimizing the synthesis of [18F]FPEB to achieve high radiochemical yield and purity. This study focuses on optimizing the radiolabeling process using an aryl-chloro precursor and validating the GMP production for clinical applications. Fully automated radiolabeling was achieved via one-step nucleophilic substitution reaction. [18F]FPEB was produced and isolated in high radioactivity and radiochemical purity. Throughout the validation process, thorough quality control measures are implemented. Radiopharmaceutical batch release criteria are established, including testing for physical appearance, filter integrity, pH, radiochemical purity, molar activity, radiochemical identity, chemical impurity, structural identity, stability, residual solvent, sterility, and endotoxin levels. In conclusion, the validation of [18F]FPEB involved a comprehensive process of synthesis optimization, quality control, which ensure the safety, efficacy, and quality of [18F]FPEB, enabling its reliable use in clinical PET. Here, we successfully radiolabeled and validated [18F]FPEB using aryl-chloro precursor according to GMP production for clinical application.


Subject(s)
Nitriles , Pyridines , Radiopharmaceuticals , Positron-Emission Tomography/methods , Radiochemistry
15.
Mol Brain ; 17(1): 9, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360671

ABSTRACT

One of the main hallmarks of Parkinson's disease (PD) is abnormal alpha-synuclein (α-syn) aggregation which forms the main component of intracellular Lewy body inclusions. This short report used preformed α-syn fibrils, as well as an A53T mutant α-syn adenovirus to mimic conditions of pathological protein aggregation in dopaminergic human derived SH-SY5Y neural cells. Since there is evidence that the mTOR pathway and glutamatergic signaling each influence protein aggregation, we also assessed the impact of the mTOR inhibitor, rapamycin and the mGluR5 allosteric modulator, CTEP. We found that both rapamycin and CTEP induced a significant reduction of α-syn fibrils in SH-SY5Y cells and this effect was associated with a reduction in mTOR signaling and enhancement in autophagic pathway factors. These data support the possibility that CTEP (or rapamycin) might be a useful pharmacological approach to target abnormal α-syn accumulation by promoting intracellular degradation or enhanced clearance.


Subject(s)
Parkinson Disease , Receptor, Metabotropic Glutamate 5 , TOR Serine-Threonine Kinases , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Sirolimus/pharmacology , Receptor, Metabotropic Glutamate 5/metabolism
16.
Pharmacol Res ; 200: 107081, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278430

ABSTRACT

Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.


Subject(s)
Ketamine , Humans , Animals , Ketamine/pharmacology , Ketamine/therapeutic use , Depression/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Receptors, N-Methyl-D-Aspartate , Brain-Derived Neurotrophic Factor/metabolism , Mammals/metabolism
17.
Neuropeptides ; 104: 102409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244260

ABSTRACT

N-methyl-D-aspartic acid receptors (NMDARs) are the most studied receptors in mammalian brains. Their role in depression, cognition, schizophrenia, learning and memorization, Alzheimer's disease, and more is well documented. In the search for new drug candidates in depression, intensive studies have been conducted. Compounds that act by influencing NMDARs have been particularly intensively investigated following the success of ketamine in clinics. Unfortunately, the side effects associated with ketamine do not allow it to be useful in all cases. Therefore, it is important to learn about new unknown mechanisms related to NMDAR activation and study the impact of changes in the excitatory synapse environment on this receptor. Both direct and intermediary influence on NMDARs via mGluRs and COX-2 are effective. Our prior studies showed that both mGluRs ligands and COX-2 inhibitors are potent in depression-like and cognitive studies through mutual interactions. The side effects associated with imipramine administration, e.g., memory impairment, were improved when inhibiting COX-2. Therefore, this study is a trial that involves searching for modifications in NMDARs in mouse brains after prolonged treatment with MTEP (mGluR5 antagonist), NS398 (COX-2 inhibitor), or imipramine (tricyclic antidepressant). The prefrontal cortex (PFC) and hippocampus (HC) were selected for PCR and Western blot analyses. Altered expression of Gin2a or Grin2b genes after treatment was found. The observed effects were more potent when COX-2 was inhibited. The finding described here may be vital when searching for new drugs acting via NMDARs without the side effects related to cognition.


Subject(s)
Ketamine , Mice , Animals , Cyclooxygenase 2/metabolism , Ketamine/pharmacology , Imipramine/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus , Mammals/metabolism
18.
Exp Neurol ; 374: 114691, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224942

ABSTRACT

Blood-brain barrier (BBB) impairment and glutamate release are two pathophysiological features of traumatic brain injury (TBI), contributing to secondary brain damage and neuroinflammation. However, our knowledge of BBB integrity damage and dysfunction are still limited due to the diverse and fluctuating expression of glutamate receptors after trauma. Here, we confirmed the downregulation of metabotropic glutamate receptor 5 (mGluR5) on microvascular endothelial cell within the acute phase of TBI, and the recovered mGluR5 levels on BBB was positively associated with blood perfusion and neurological recovery. In whole body mGluR5-knockout mice, BBB dysfunction and neurological deficiency were exacerbated after TBI compared with wild type mice. In terms of mechanism, the amino acid sequence 201-259 of cytoskeletal protein Alpha-actinin-1 (ACTN1) interacted with mGluR5, facilitating mGluR5 translocation from cytoplasmic compartment to plasma membrane in endothelial cells. Activation of plasma membrane mGluR5 triggers the PLC/PKCµ/c-Jun signaling pathway, leading to increased expression of the tight junction-actin cytoskeleton connecting protein zonula occludens-1 (ZO-1). Our findings uncover a novel mechanism mediated by membrane and cytoplasmic mGluR5 in endothelial cell integrity maintenance and repair, providing the potential therapeutic target for TBI treatment targeting at mGluR5 and mGluR5/ACTN1 complex in BBB.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Animals , Mice , Blood-Brain Barrier/metabolism , Brain Injuries/metabolism , Brain Injuries, Traumatic/metabolism , Endothelial Cells/metabolism , Mice, Knockout , Receptor, Metabotropic Glutamate 5/metabolism
19.
Front Immunol ; 14: 1283331, 2023.
Article in English | MEDLINE | ID: mdl-38146365

ABSTRACT

TNF-α is essential for induction and maintenance of inflammatory responses and its dysregulation is associated with susceptibility to various pathogens that infect the central nervous system. Activation of both microglia and astrocytes leads to TNF-α production, which in turn triggers further activation of these cells. Astrocytes have been implicated in the pathophysiology of a wide range of neurodegenerative diseases with either harmful or protective roles, as these cells are capable of secreting several inflammatory factors and also promote synapse elimination and remodeling. These responses are possible because they sense their surroundings via several receptors, including the metabotropic glutamate receptor 5 (mGluR5). Under neuroinflammatory conditions, mGluR5 activation in astrocytes can be neuroprotective or have the opposite effect. In the current study, we investigated the role of mGluR5 in hiPSC-derived astrocytes subjected to pro-inflammatory stimulation by recombinant TNF-α (rTNF-α). Our results show that mGluR5 blockade by CTEP decreases the secreted levels of pro-inflammatory cytokines (IL-6 and IL-8) following short rTNF-α stimulation, although this effect subsides with time. Additionally, CTEP enhances synaptoneurosome phagocytosis by astrocytes in both non-stimulated and rTNF-α-stimulated conditions, indicating that mGluR5 blockade alone is enough to drive synaptic material engulfment. Finally, mGluR5 antagonism as well as rTNF-α stimulation augment the expression of the reactivity marker SERPINA3 and reduces the expression of synaptogenic molecules. Altogether, these data suggest a complex role for mGluR5 in human astrocytes, since its blockade may have beneficial and detrimental effects under inflammatory conditions.


Subject(s)
Astrocytes , Induced Pluripotent Stem Cells , Phagocytosis , Receptor, Metabotropic Glutamate 5 , Humans , Astrocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
Front Behav Neurosci ; 17: 1244075, 2023.
Article in English | MEDLINE | ID: mdl-37908201

ABSTRACT

Introduction: Accumulating evidence highlights the key role of adult neurogenesis events in environmental challenges, cognitive functions and mood regulation. Abnormal hippocampal neurogenesis has been implicated in anxiety-like behaviors and social impairments, but the possible mechanisms remain elusive. Methods: The present study questioned the contribution of altered excitation/inhibition as well as excessive neuroinflammation in regulating the neurogenic processes within the Social Decision-Making (SDM) network, using an adult zebrafish model displaying NMDA receptor hypofunction after sub-chronic MK-801 administration. For this, the alterations in cell proliferation and newborn cell densities were evaluated using quantitative 5-Bromo-2'-Deoxyuridine (BrdU) methodology. Results: In short-term survival experiments. MK-801-treated zebrafish displayed decreased cell proliferation pattern within distinct neurogenic zones of telencephalic and preoptic SDM nodes, in parallel to the social withdrawal and anxiety-like comorbidity. BrdU+ cells co-expressed the pro-inflammatory marker IL-1ß solely in MK-801-treated zebrafish, indicating a role of inflammation. Following the cessation of drug treatment, significant increases in the BrdU+ cell densities were accompanied by the normalization of the social and anxiety-like phenotype. Importantly, most labeled cells in neurogenic zones showed a radial glial phenotype while a population of newborn cells expressed the early neuronal marker TOAD or mGLuR5, the latter suggesting the possible involvement of metabotropic glutamate receptor 5 in neurogenic events. Discussion: Overall, our results indicate the role of radial glial cell proliferation in the overlapping pathologies of anxiety and social disorders, observed in many neuropsychiatric disorders and possibly represent potential novel targets for amelioration of these symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL