Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 35(6): 1156-1167, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38709655

ABSTRACT

Cannabinoids and opioids are the most prominently used drugs in the world, with fentanyl being the main cause of drug overdose-related deaths. Monitoring drug use in groups as well as in individuals is an important forensic concern. Analytical methods, such as mass spectrometry (MS), have been found most useful for the identification of drug abuse on a small and large scale. Pulsed fiber laser 2D galvoscanner laser-generated nanomaterial (PFL 2D GS LGN) was obtained from monoisotopic silver-109. Nanomaterial was used for laser desorption/ionization mass spectrometry of selected illicit drug standards with standard high-resolution reflectron-based time-of-flight MALDI apparatus. Δ9-THC, 11-OH-THC, 11-COOH-THC, fentanyl, codeine, 6-monoacetylmorphine (6-MAM), heroin, tramadol, and methadone were chosen as test compounds. Illicit drugs were tested in a concentration range from 100 µg/mL to 10 pg/mL, equating to 50 µg to 50 fg per measurement spot. For all analyzed compounds, identification and quantification by silver-109-assisted laser desorption/ionization (LDI) MS was possible, with uncommon [M + 109Ag3]+ and [M - H]+ ions present for certain structures. The results of the quantitative analysis of drugs using silver-109 PFL 2D GS LGN for LDI MS are presented. Laser-generated NPs are proven to be useful for the analysis of selected drugs, with exceptionally good results for fentanyl monitoring in a broad range of concentrations.


Subject(s)
Illicit Drugs , Lasers , Metal Nanoparticles , Silver , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substance Abuse Detection , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Illicit Drugs/analysis , Illicit Drugs/chemistry , Silver/chemistry , Silver/analysis , Metal Nanoparticles/chemistry , Metal Nanoparticles/analysis , Substance Abuse Detection/methods , Humans , Fentanyl/analysis , Fentanyl/analogs & derivatives , Fentanyl/chemistry , Morphine Derivatives/analysis , Morphine Derivatives/chemistry , Cannabinoids/analysis , Cannabinoids/chemistry
2.
J Mass Spectrom ; 55(2): e4437, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31502334

ABSTRACT

The need for a reliable and accurate method to quantify dystrophin proteins in human skeletal muscle biopsies has become crucial in order to assess the efficacy of dystrophin replacement therapies in Duchenne muscular dystrophy as well as to gain insight into the relationship between dystrophin levels and disease severity in Becker's muscular dystrophy. Current methods to measure dystrophin such as western blot and immunofluorescence, while straightforward and simple, lack precision and sometimes specificity. Here, we standardized a targeted mass spectrometry method to determine the absolute amount of dystrophin in ng/mg of muscle using full-length 13 C6-Arg- and 13 C6,15 N2-Lys-labeled dystrophin and parallel reaction monitoring (PRM). The method was found to be reproducible with a limit of quantification as low as 30 pg of dystrophin protein per mg of total muscle proteins. The method was then tested to measure levels of dystrophin in muscle biopsies from a healthy donor and from Duchenne and Becker's muscular dystrophy patients.


Subject(s)
Dystrophin/analysis , Mass Spectrometry/methods , Muscle, Skeletal/chemistry , Biopsy , Cell Line , Humans , Linear Models , Muscle Fibers, Skeletal/chemistry , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Reproducibility of Results , Sensitivity and Specificity
3.
Molecules ; 24(20)2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31627265

ABSTRACT

Grb7 is an adapter protein, overexpressed in HER2+ve breast and other cancers, and identified as a therapeutic target. Grb7 promotes both proliferative and migratory cellular pathways through interaction of its SH2 domain with upstream binding partners including HER2, SHC, and FAK. Here we present the evaluation of a series of monocyclic and bicyclic peptide inhibitors that have been developed to specifically and potently target the Grb7 SH2-domain. All peptides tested were found to inhibit signaling in both ERK and AKT pathways in SKBR-3 and MDA-MB-231 cell lines. Proliferation, migration, and invasion assays revealed, however, that the second-generation bicyclic peptides were not more bioactive than the first generation G7-18NATE peptide, despite their higher in vitro affinity for the target. This was found not to be due to steric hindrance by the cell-permeability tag, as ascertained by ITC, but to differences in the ability of the bicyclic peptides to interact with and penetrate cellular membranes, as determined using SPR and mass spectrometry. These studies reveal that just small differences to amino acid composition can greatly impact the effectiveness of peptide inhibitors to their intracellular target and demonstrate that G7-18NATE remains the most effective peptide inhibitor of Grb7 developed to date.


Subject(s)
Antineoplastic Agents/pharmacology , Epithelial Cells/drug effects , GRB7 Adaptor Protein/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Peptides, Cyclic/pharmacology , Signal Transduction/drug effects , Amino Acid Sequence , Antineoplastic Agents/chemical synthesis , Binding Sites , Cell Line , Cell Line, Tumor , Cell Membrane Permeability , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , GRB7 Adaptor Protein/genetics , GRB7 Adaptor Protein/metabolism , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Peptides, Cyclic/chemical synthesis , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Phosphatidylserines/chemistry , Phosphatidylserines/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Structure-Activity Relationship , src Homology Domains/drug effects
4.
Tumour Biol ; 41(3): 1010428319827223, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30907281

ABSTRACT

Prostate cancer represents a major cause of cancer death in men worldwide. Novel non-invasive methods are still required for differentiation of non-aggressive from aggressive tumors. Recently, changes in prostate-specific antigen glycosylation pattern, such as core-fucosylation, have been described in prostate cancer. The objective of this study was to evaluate whether the core-fucosylation determinant of serum prostate-specific antigen may serve as refined marker for differentiation between benign prostate hyperplasia and prostate cancer or identification of aggressive prostate cancer. A previously developed liquid chromatography-mass spectrometry/mass spectrometry-based strategy was used for multiplex analysis of core-fucosylated prostate-specific antigen (fuc-PSA) and total prostate-specific antigen levels in sera from 50 benign prostate hyperplasia and 100 prostate cancer patients of different aggressiveness (Gleason scores, 5-10) covering the critical gray area (2-10 ng/mL). For identification of aggressive prostate cancer, the ratio of fuc-PSA to total prostate-specific antigen (%-fuc-PSA) yielded a 5%-8% increase in the area under the curve (0.60) compared to the currently used total prostate-specific antigen (area under the curve = 0.52) and %-free prostate-specific antigen (area under the curve = 0.55) tests. However, our data showed that aggressive prostate cancer (Gleason score > 6) and non-aggressive prostate cancer (Gleason score ≤ 6) could not significantly (p-value = 0.08) be differentiated by usage of %-fuc-PSA. In addition, both non-standardized fuc-PSA and standardized %-fuc-PSA had no diagnostic value for differentiation of benign prostate hyperplasia from prostate cancer. The %-fuc-PSA serum levels could not improve the differentiation of non-aggressive and aggressive prostate cancer compared to conventional diagnostic prostate cancer markers. Still, it is unclear whether these limitations come from the biomarker, the used patient cohort, or the imprecision of the applied method itself. Therefore, %-fuc-PSA should be further investigated, especially by more precise methods whether it could be clinically used in prostate cancer diagnosis.


Subject(s)
Biomarkers, Tumor/chemistry , Prostate-Specific Antigen/chemistry , Prostatic Hyperplasia/diagnosis , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Chromatography, Liquid , Diagnosis, Differential , Glycosylation , Humans , Male , Middle Aged , Neoplasm Grading , Prostate/pathology , Prostate-Specific Antigen/blood , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL