Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Cell Commun Signal ; 18(2): e12021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946718

ABSTRACT

lncRNA ZFAS1 was identified to facilitate thyroid cancer, but its role in medullary thyroid carcinoma (MTC) remains unknown. This study aimed to unravel the potential function of this lncRNA in MTC by investigating the involvement of the lncRNA ZFAS1 in a ceRNA network that regulates MTC invasion. Proliferation, invasion, and migration of cells were evaluated using EdU staining and Transwell assays. Immunoprecipitation (IP) assays, dual-fluorescence reporter, and RNA IP assays were employed to examine the binding interaction among genes. Nude mice were used to explore the role of lncRNA ZFAS1 in MTC in vivo. ZFAS1 and EPAS1 were upregulated in MTC. Silencing ZFAS1 inhibited MTC cell proliferation and invasion under hypoxic conditions, which reduced EPAS1 protein levels. UCHL1 knockdown increased EPAS1 ubiquitination. ZFAS1 positively regulated UCHL1 expression by binding to miR-214-3p. Finally, silencing ZFAS1 significantly repressed tumor formation and metastasis in MTC. LncRNA ZFAS1 promotes invasion of MTC by upregulating EPAS1 expression via the miR-214-3p/UCHL1 axis.

2.
J Cancer ; 15(12): 3809-3824, 2024.
Article in English | MEDLINE | ID: mdl-38911365

ABSTRACT

Background: Emerging evidence has indicated that long noncoding RNAs (lncRNAs) are associated with the development and progression of several carcinomas, including hepatocellular carcinoma (HCC). However, the role of LINC01535 in HCC is still unknown. Materials and methods: In this study, RNA-seq, CCK-8, colony formation, wound healing, Transwell and tumor xenograft assays were used to explore the function of LINC01535 in the proliferation and metastasis of HCC in vitro and in vivo. Fluorescence in situ hybridization (FISH) assay, bioinformatics analysis, dual-luciferase assay, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis were used to reveal the interactions of LINC01535, miR-214-3p and VASP. Results: LINC01535 was overexpressed in HCC tissues and HCC cell lines. Gain- and loss-of-function studies revealed that LINC01535 could promote HCC cell proliferation, migration and invasion both in vitro and in vivo. In addition, upregulation of LINC01535 significantly decreased the expression of microRNA-214-3p (miR-214-3p), which was found closely associated with suppressing tumor progression. Moreover, VASP was identified as a direct downstream target gene of miR-214-3p. LINC01535 positively regulated VASP expression by sponging miR-214-3p, and VASP overexpression activated the PI3K/AKT signaling pathway and stimulated epithelial-to-mesenchymal transition (EMT) in HCC. Conclusions: Our study first found that LINC01535 promoted HCC progression by regulating its downstream target, the miR-214-3p/VASP axis, via the PI3K/AKT signaling pathway. The function and novel regulatory mechanism of LINC01535 may provide a valuable target for the diagnosis and treatment of HCC patients.

3.
Int Immunopharmacol ; 133: 112031, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38631219

ABSTRACT

BACKGROUND: Neuromedin B (Nmb) plays a pivotal role in the transmission of neuroinflammation, particularly during spinal cord ischemia-reperfusion injury (SCII). However, the detailed molecular mechanisms underlying this process remain elusive. METHODS: The SCII model was established by clamping the abdominal aorta of male Sprague-Dawley (SD) rats for 60 min. The protein expression levels of Nmb, Cav3.2, and IL-1ß were detected by Western blotting, while miR-214-3p expression was quantified by qRT-PCR. The targeted regulation between miR-214-3p and Nmb was investigated using a dual-luciferase reporter gene assay. The cellular localization of Nmb and Cav3.2 with cell-specific markers was visualized by immunofluorescence staining. The specific roles of miR-214-3p on the Nmb/Cav3.2 interactions in SCII-injured rats were explored by intrathecal injection of Cav3.2-siRNA, PD168368 (a specific NmbR inhibitor) and synthetic miR-214-3p agomir and antagomir in separate experiments. Additionally, hind-limb motor function was evaluated using the modified Tarlov scores. RESULTS: Compared to the Sham group, the protein expression levels of Nmb, Cav3.2, and the proinflammatory factor Interleukin(IL)-1ß were significantly elevated at 24 h post-SCII. Intrathecal injection of PD168368 and Cav3.2-siRNA significantly suppressed the expression of Cav3.2 and IL-1ß compared to the SCII group. The miRDB database and dual-luciferase reporter gene assay identified Nmb as a direct target of miR-214-3p. As expected, in vivo overexpression of miR-214-3p by agomir-214-3p pretreatment significantly inhibited the increases in Nmb, Cav3.2 and IL-1ß expression and improved lower limb motor function in SCII-injured rats, while antagomiR-214-3p pretreatment reversed these effects. CONCLUSIONS: Nmb protein levels positively correlated with Cav3.2 expression in SCII rats. Upregulating miR-214-3p ameliorated hind-limb motor function and protected against neuroinflammation via inhibiting the aberrant Nmb/Cav3.2 interactions and downstream IL-1ß release. These findings provide novel therapeutic targets for clinical prevention and treatment of SCII.


Subject(s)
Calcium Channels, T-Type , MicroRNAs , Neuroinflammatory Diseases , Reperfusion Injury , Spinal Cord Ischemia , Animals , Male , Rats , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Disease Models, Animal , Interleukin-1beta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Signal Transduction , Spinal Cord/metabolism , Spinal Cord Ischemia/metabolism , Spinal Cord Ischemia/genetics
4.
J Cancer Res Clin Oncol ; 150(4): 211, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662258

ABSTRACT

BACKGROUND: Circular ribose nucleic acids (circRNAs), an abundant type of noncoding RNAs, are widely expressed in eukaryotic cells and exert a significant impact on the initiation and progression of various disorders, including different types of cancer. However, the specific role of various circRNAs in colorectal cancer (CRC) pathology is still not fully understood. METHODS: The initial step involved the use of quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the expression levels of circRNAs and messenger RNA (mRNA) in CRC cell lines and tissues. Subsequently, functional analyses of circCOL1A1 knockdown were conducted in vitro and in vivo through cell counting kit (CCK)-8, colony formation and transwell assays, as well as xenograft mouse model of tumor formation. Molecular expression and interactions were investigated using luciferase reporter assays, Western blot analysis, RNA immunoprecipitation (RIP), and immunohistochemical staining. RESULTS: The RT-qPCR results revealed elevated levels of circCOL1A1 expressions in CRC tissues and cell lines as compared to the normal counterparts. In addition, circCOL1A1 expression level was found to be correlated with TNM stage, lymph node metastases, distant metastases, and invasion. Knockdown of circCOL1A1 resulted in impaired invasion, migration, and proliferation of CRC cells, and suppressed tumor generation in the animal model. We further demonstrated that circCOL1A1 could act as a sponge for miR-214-3p, suppressing miR-214-3p activity and leading to the upregulation of GLS1 protein to promote glutamine metabolism. CONCLUSION: These findings suggest that circCOL1A1 functions as an oncogenic molecule to promote CRC progression via miR-214-3p/GLS1 axis, hinting on the potential of circCOL1A1 as a therapeutic target for CRC.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Glutaminase , Glutamine , MicroRNAs , Neoplasm Invasiveness , RNA, Circular , Up-Regulation , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/metabolism , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , RNA, Circular/genetics , Xenograft Model Antitumor Assays
5.
Stem Cells Transl Med ; 13(5): 462-476, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38459853

ABSTRACT

Adipose stem cell (ASC)-based therapies provide an encouraging option for tissue repair and regeneration. However, the function of these cells declines with aging, which limits their clinical transformation. Recent studies have outlined the involvement of long non-coding RNAs in stem cell aging. Here, we reanalyzed our published RNA sequencing (RNA-seq) data profiling differences between ASCs from young and old donors and identified a lncRNA named double homeobox A pseudogene 10 (DUXAP10) as significantly accumulated in aged ASCs. Knocking down DUXAP10 promoted stem cell proliferation and migration and halted cell senescence and the secretion of proinflammatory cytokines. In addition, DUXAP10 was located in the cytoplasm and functioned as a decoy for miR-214-3p. miR-214-3p was downregulated in aged ASCs, and its overexpression rejuvenated aged ASCs and reversed the harm caused by DUXAP10. Furthermore, Ras Association Domain Family Member 5 (RASSF5) was the target of miR-214-3p and was upregulated in aged ASCs. Overexpressing DUXAP10 and inhibiting miR-214-3p both enhanced RASSF5 content in ASCs, while DUXAP10 knockdown promoted the therapeutic ability of aged ASCs for skin wound healing. Overall, this study offers new insights into the mechanism of age-related ASC dysfunction and names DUXAP10 and miR-214-3p as potential targets for energizing aged stem cells.


Subject(s)
Adipose Tissue , MicroRNAs , RNA, Long Noncoding , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Animals , Mice , Adipose Tissue/metabolism , Adipose Tissue/cytology , Stem Cells/metabolism , Stem Cells/cytology , Cellular Senescence , Rejuvenation/physiology , Cell Proliferation , Gene Knockdown Techniques
6.
BMC Cancer ; 24(1): 278, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429642

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer (BC). The circRNA-miRNA‒mRNA axis is a promising biomarker for the early diagnosis and prognosis of BC. However, the critical circRNA mediators involved in TNBC progression and the underlying regulatory mechanism involved remain largely unclear. METHODS: In this study, we carried out a circRNA microarray analysis of 6 TNBC patients and performed a gene ontology (GO) analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to characterize important circRNAs involved in TNBC progression. The interaction between circRNAs and miRNAs was determined by dual luciferase and RNA immunoprecipitation (RIP) assays. Moreover, Transwell, wound healing and Cell Counting Kit-8 (CCK8) assays were performed with altered circRNA or miRNA expression in MDA-MB-231 and BT-549 cells to investigate the roles of these genes in cell invasion, migration and proliferation. RESULTS: A total of 78 circRNAs were differentially expressed in TNBC tissues, and the hsa_circ_0045881 level was significantly decreased in TNBC tissues and cells. Lentivirus-mediated hsa_circ_0045881 overexpression in MDA-MB-231 and BT-549 cells significantly reduced cell invasion and migration capacity. Additionally, hsa_circ_0045881 interacted with miR-214-3p in MDA-MB-231 cells. miR-214-3p mimics in MDA-MB-231 and BT-549 cells significantly enhanced cell invasion, migration and proliferation, but the other combinations of inhibitors had opposite effects on cell activity. CONCLUSIONS: Our data indicated that the circRNA has_circ_0045881 plays key roles in TNBC progression and that hsa_circ_0045881 might act as a sponge for miR-214-3p to modulate its levels in TNBC cells, thereby regulating cell invasion, metastasis and proliferation. hsa_circ_004588 might be a potential prognostic marker and therapeutic target for TNBC.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , RNA, Circular/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , Bandages , Cell Line, Tumor
7.
Front Cell Neurosci ; 18: 1336439, 2024.
Article in English | MEDLINE | ID: mdl-38486710

ABSTRACT

Introduction: Demyelination is one of the hallmarks of multiple sclerosis (MS). While remyelination occurs during the disease, it is incomplete from the start and strongly decreases with its progression, mainly due to the harm to oligodendrocyte progenitor cells (OPCs), causing irreversible neurological deficits and contributing to neurodegeneration. Therapeutic strategies promoting remyelination are still very preliminary and lacking within the current treatment panel for MS. Methods: In a previous study, we identified 21 microRNAs dysregulated mostly in the CSF of relapsing and/or remitting MS patients. In this study we transfected the mimics/inhibitors of several of these microRNAs separately in an OPC cell line, called CG-4. We aimed (1) to phenotypically characterize their effect on OPC differentiation and (2) to identify corroborating potential mRNA targets via immunocytochemistry, RT-qPCR analysis, RNA sequencing, and Gene Ontology enrichment analysis. Results: We observed that the majority of 13 transfected microRNA mimics decreased the differentiation of CG-4 cells. We demonstrate, by RNA sequencing and independent RT-qPCR analyses, that miR-33-3p, miR-34c-5p, and miR-124-5p arrest OPC differentiation at a late progenitor stage and miR-145-5p at a premyelinating stage as evidenced by the downregulation of premyelinating oligodendrocyte (OL) [Tcf7l2, Cnp (except for miR-145-5p)] and mature OL (Plp1, Mbp, and Mobp) markers, whereas only miR-214-3p promotes OPC differentiation. We further propose a comprehensive exploration of their change in cell fate through Gene Ontology enrichment analysis. We finally confirm by RT-qPCR analyses the downregulation of several predicted mRNA targets for each microRNA that possibly support their effect on OPC differentiation by very distinctive mechanisms, of which some are still unexplored in OPC/OL physiology. Conclusion: miR-33-3p, miR-34c-5p, and miR-124-5p arrest OPC differentiation at a late progenitor stage and miR-145-5p at a premyelinating stage, whereas miR-214-3p promotes the differentiation of CG-4 cells. We propose several potential mRNA targets and hypothetical mechanisms by which each microRNA exerts its effect. We hereby open new perspectives in the research on OPC differentiation and the pathophysiology of demyelination/remyelination, and possibly even in the search for new remyelinating therapeutic strategies in the scope of MS.

8.
Mol Biol Rep ; 51(1): 412, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466466

ABSTRACT

PURPOSE: We investigated the role of lnc_AABR07044470.1 on the occurrence and development of acute ischemic stroke (AIS) and neuronal injury by targeting the miR-214-3p/PERM1 axis to find a novel clinical drug target and prediction and treatment of AIS. METHODS: The mouse AIS animal model was used in vivo experiments and hypoxia/reoxygenation cell model in vitro was established. Firstly, infarction volume and pathological changes of mouse hippocampal neurons were detected using HE staining. Secondly, rat primary neuron apoptosis was detected by flow cytometry assay. The numbers of neuron, microglia and astrocytes were detected using immunofluorescence (IF). Furthermore, binding detection was performed by bioinformatics database and double luciferase reporter assay. Lnc_AABR07044470.1 localization was performed using fluorescence in situ hybridization (FISH).Lnc_AABR07044470.1, miR-214-3pand PERM1mRNA expression was performed using RT-qPCR. NLRP3, ASC, Caspase-1 and PERM1 protein expression was performed using Western blotting. IL-1ß was detected by ELISA assay. RESULTS: Mouse four-vessel occlusion could easily establish the animal model, and AIS animal model had an obvious time-dependence. HE staining showed that, compared with the sham group, infarction volume and pathological changes of mouse hippocampal neurons were deteriorated in the model group. Furthermore, compared with the sham group, neurons were significantly reduced, while microglia and astrocytes were significantly activated. Moreover, the bioinformatics prediction and detection of double luciferase reporter confirmed the binding site of lnc_AABR07044470.1 to miR-214-3p and miR-214-3p to Perm1. lnc_AABR07044470.1 and PERM1 expression was significantly down-regulated and miR-214-3pexpression was significantly up-regulated in AIS animal model in vivo. At the same time, the expression of inflammasome NLRP3, ASC, Caspase-1 and pro-inflammatory factor IL-1ß was significantly up-regulated in vivo and in vitro. The over-expression of lnc_AABR07044470.1 and miR-214-3p inhibitor could inhibit the neuron apoptosis and the expression of inflammasome NLRP3, ASC, Caspase-1 and pro-inflammatory factor IL-1ß and up-regulate the expression of PERM1 in vitro. Finally, over-expression of lnc_AABR07044470.1 and miR-214-3p inhibitor transfected cell model was significant in relieving the AIS and neuronal injury. CONCLUSION: Lnc_AABR07044470.1 promotes inflammatory response to neuronal injury via miR-214-3p/PERM1 axis in AIS.


Subject(s)
Ischemic Stroke , MicroRNAs , RNA, Long Noncoding , Rats , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , In Situ Hybridization, Fluorescence , Apoptosis , Caspase 1/genetics , Caspase 1/metabolism , Neurons/metabolism , Infarction/metabolism , Infarction/pathology , Luciferases/genetics , Muscle Proteins/genetics
9.
Biol Direct ; 19(1): 20, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454507

ABSTRACT

CircLRIG1, a newly discovered circRNA, has yet to have its potential function and biological processes reported. This study explored the role of circLRIG1 in the development and progression of bladder carcinoma and its potential molecular mechanisms. Techniques such as qRT-PCR, Western blot, various cellular assays, and in vivo models were used to investigate mRNA and protein levels, cell behavior, molecular interactions, and tumor growth. The results showed that both circLRIG1 and LRIG1 were significantly reduced in bladder carcinoma tissues and cell lines. Low circLRIG1 expression was associated with poor patient prognosis. Overexpressing circLRIG1 inhibited bladder carcinoma cell growth, migration, and invasion, promoted apoptosis, and decreased tumor growth and metastasis in vivo. Importantly, circLRIG1 was found to sponge miR-214-3p, enhancing LRIG1 expression, and its overexpression also modulated protein levels of E-cadherin, N-cadherin, Vimentin, and LRIG1. Similar effects were observed with LRIG1 overexpression. Notably, a positive correlation was found between circLRIG1 and LRIG1 expression in bladder carcinoma tissues. Additionally, the tumor-suppressing effect of circLRIG1 was reversed by overexpressing miR-214-3p or silencing LRIG1. The study concludes that circLRIG1 suppresses bladder carcinoma progression by enhancing LRIG1 expression via sponging miR-214-3p, providing a potential strategy for early diagnosis and treatment of bladder carcinoma.


Subject(s)
Carcinoma , MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Carcinoma/genetics , Cell Movement , Gene Expression Regulation, Neoplastic , Membrane Glycoproteins/metabolism
10.
Mol Neurobiol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418757

ABSTRACT

Stroke stands as the second leading cause of death globally, surpassed only by ischemic heart disease. It accounts for 9% of total worldwide deaths. Given the swiftly evolving landscape, medical professionals and researchers are devoting increased attention to identifying more effective and safer treatments. Recent years have witnessed a focus on exosomes derived from mesenchymal stem cells cultivated under hypoxic conditions, referred to as Hypo-Exo. These specialized exosomes contain an abundance of components that facilitate the restoration of ischemic tissue, surpassing the content found in normal exosomes. Despite advancements, the precise role of Hypo-Exo in cases of cerebral ischemia remains enigmatic. Therefore, this study was designed to shed light on the potential efficacy of Hypo-Exo in stroke treatment. Our investigations unveiled promising outcomes, as the administration of Hypo-Exo led to improved behavioral deficits and reduced infarct areas in mice affected by ischemic conditions. Notably, these positive effects were hindered when Hypo-Exo loaded with anti-miR-214-3p were introduced, implying that the neuroprotective attributes of Hypo-Exo are reliant on miR-214-3p. This conclusion was substantiated by the high levels of miR-214-3p detected within Hypo-Exo. Furthermore, our examination of the ischemic penumbra zone revealed a gradual and sustained escalation in PTEN expression, a phenomenon effectively countered by Hypo-Exo treatment. Collectively, our findings suggest the existence of a regulatory pathway centered on miR-214-3p within Hypo-Exo. This pathway exerts a downregulating influence on the PTEN/Akt signaling pathway, thereby contributing to the amelioration of neurological function subsequent to ischemia-reperfusion events.

11.
J Orthop Surg Res ; 19(1): 2, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167456

ABSTRACT

BACKGROUND: Osteoarthritis is a chronic disease mainly involving the damage of articular cartilage and the whole articular tissue, which is the main cause of disability in the elderly. To explore more effective treatment measures, this study analyzed the regulatory role and molecular mechanism of lncRNA LINC00665 (LINC00665) in the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), providing a valuable theoretical basis for the pathogenesis and patient treatment of osteoarthritis. METHODS: Osteoarthritis tissues and healthy tissues were obtained from 52 patients with osteoarthritis and 34 amputated patients without osteoarthritis, and the levels of LINC00665 and miR-214-3p were assessed by RT-qPCR. BMSCs were cultured and induced chondrogenic differentiation. The proliferation ability of BMSCs was detected by CCK-8 method, and the apoptosis level of BMSCs was evaluated by flow cytometry. The content of proteoglycan-glycosaminoglycan (GAG) in cartilage matrix was determined by Alcian blue staining. In addition, the binding relationship between LINC00665 and miR-214-3p was verified by luciferase reporter assay, and the molecular mechanism was further analyzed. RESULTS: In osteoarthritis tissues, LINC00665 was elevated and miR-214-3p was down-regulated. With the chondrogenic differentiation of BMSCs, the level of GAG increased, and LINC00665 expression gradually decreased, while miR-214-3p level was on the contrary. After transfection of pcDNA3.1-LINC00665 in BMSCs, cell proliferation capacity was decreased, apoptosis rate was increased, and GAG content was reduced. Moreover, LINC00665 sponged miR-214-3p and negatively regulate its expression. Transfection of pcDNA3.1-LINC00665-miR-214-3p mimic changed the regulation of pcDNA3.1-LINC00665 on the viability and chondrogenic differentiation of BMSCs. CONCLUSIONS: Overexpression of lncRNA LINC00665 inhibited the proliferation and chondrogenic differentiation of BMSCs by targeting miR-214-3p. The LINC00665/miR-214-3p axis may improve joint damage and alleviate the progression of osteoarthritis.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , MicroRNAs , Osteoarthritis , RNA, Long Noncoding , Humans , Aged , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Chondrocytes/metabolism , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Osteoarthritis/metabolism , Cell Proliferation/genetics , Bone Marrow Cells/metabolism
12.
J Orthop Surg Res ; 19(1): 66, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218927

ABSTRACT

OBJECTIVE: We investigated the impact of the long noncoding RNA LINC00958 on cellular activity and oxidative stress in osteoarthritis (OA). METHODS: We performed bioinformatics analysis via StarBase and luciferase reporter assays to predict and validate the interactions between LINC00958 and miR-214-3p and between miR-214-3p and FOXM1. The expression levels of LINC00958, miR-214-3p, and FOXM1 were measured by qRT-PCR and western blotting. To assess effects on CHON-001 cells, we performed MTT proliferation assays, evaluated cytotoxicity with a lactate dehydrogenase (LDH) assay, and examined apoptosis through flow cytometry. Additionally, we measured the levels of apoptosis-related proteins, including BAX and BCL2, using western blotting. The secretion of inflammatory cytokines (IL-6, IL-8, and TNF-α) was measured using ELISA. RESULTS: Our findings confirmed that LINC00958 is a direct target of miR-214-3p. LINC00958 expression was upregulated but miR-214-3p expression was downregulated in both OA cells and IL-1ß-stimulated CHON-001 cells compared to the corresponding control cells. Remarkably, miR-214-3p expression was further reduced after miR-214-3p inhibitor treatment but increased following LINC00958-siRNA stimulation. Silencing LINC00958 significantly decreased its expression, and this effect was reversed by miR-214-3p inhibitor treatment. Notably, LINC00958-siRNA transfection alleviated the IL-1ß-induced inflammatory response, as evidenced by the increased cell viability, reduced LDH release, suppression of apoptosis, downregulated BAX expression, and elevated BCL2 levels. Moreover, LINC00958 silencing led to reduced secretion of inflammatory factors from IL-1ß-stimulated CHON-001 cells. The opposite results were observed in the miR-214-3p inhibitor-transfected groups. Furthermore, in CHON-001 cells, miR-214-3p directly targeted FOXM1 and negatively regulated its expression. CONCLUSION: Our findings suggest that downregulating LINC00958 mitigates IL-1ß-induced injury in CHON-001 cells through the miR-214-3p/FOXM1 axis. These results imply that LINC00958 plays a role in OA development and may be a valuable therapeutic target for OA.


Subject(s)
MicroRNAs , Osteoarthritis , Humans , MicroRNAs/metabolism , Chondrocytes/metabolism , bcl-2-Associated X Protein/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , RNA, Small Interfering , Apoptosis/genetics , Interleukin-1beta/metabolism , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism
13.
Biomed Pharmacother ; 171: 116123, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211424

ABSTRACT

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by dopaminergic neuron death in the substantia nigra, leading to motor dysfunction. Autophagy dysregulation has been implicated in PD pathogenesis. This study explores the role of miR-214-3p in PD, focusing on its impact on autophagy and dopaminergic neuron viability. Using in vitro and in vivo models, we demonstrate that miR-214-3p inhibits autophagy and promotes dopaminergic neuron apoptosis. Behavioral assessments and molecular analyses reveal exacerbation of PD symptoms upon miR-214-3p overexpression. Furthermore, mechanistic investigations identify ATG3 as a target, shedding light on miR-214-3p's regulatory role in autophagy. These findings enhance our understanding of PD pathogenesis and propose miR-214-3p as a potential biomarker and therapeutic target for modulating autophagy and neuronal survival in PD.


Subject(s)
MicroRNAs , Parkinson Disease , Humans , Animals , Mice , Parkinson Disease/pathology , Substantia Nigra/pathology , Apoptosis , Autophagy , Dopaminergic Neurons/pathology , Mice, Inbred C57BL
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1020931

ABSTRACT

Objective To investigate whether omeprazole(OME)can enhance the sensitivity of epithelial ovarian cancer(EOC)cells to cisplatin(DDP)by inhibition of autophagy and to elucidate its possible mechanism.Methods Color in situ hy-bridization(CISH)and immunohistochemistry were applied to detect the expression of miR-214-3p and autophagy specific mark-ers p62 in EOC tissues,respectively.Pearson analysis showed the correlation between miR-214-3p and p62 expression levels in EOC.The half concentration(IC50)of DDP was determined by CCK-8 method.The mRNA expressions of miR-214-3p and multi-drug resistance gene 1(MDR1),the protein levels of p-gp and p62 were measured by using real-time quantitative PCR(qRT-PCR)and Western blot,respectively.Results In 43 cases,the expressions of miR-214-3p and p62 were 53.5%(23/43)and 60.5%(26/43)in patients with ovarian carcinoma,respectively.miR-214-3p was downregulated in platinum-relatively resistant OC tissue(P<0.05).On the contrary,p62 was upregulated in platinum-relatively resistant OC tissue(P<0.01).In ovarian cancer,the negative expression of miR-214-3p was closely related with p62(r=0.238,P<0.05).After OME(150 μmol/L)pre-treatment,varying degrees of decrease was observed in cisplatin IC50 OV2008 and C13K cells,especially cisplatin resistant strain C13K(P<0.01).After DDP treatment,qRT-PCR results revealed that the expression of miR-214-3p was decreased,the mRNA and protein expressions of MDR1 were greatly increased,and the protein levels of p62 were increased in C13K and OV2008 cells,compared to the blank control C13K and OV2008 cells(all P<0.01).Compared with the blank control C13K and OV2008 cells,the IC50 of DDP was decreased after pretreatment with OME(150 μmol/L).The sensitivity of C13K and OV2008 cells to DDP was increased after OME(150 μmol/L)pretreatment,the relative expression of miR-214-3p was significantly increased,the expression of MDR1 protein and mRNA was decreased,and the expression of p62 protein was decreased(all P<0.05).Conclu-sion OME pretreatment might enhance the sensitivity of ovarian cancer cells to DDP by downregulating miR-214-3p mediated autophagy.

15.
J Ovarian Res ; 16(1): 219, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986114

ABSTRACT

BACKGROUND: Angiogenesis and metastasis contributes substantially to the poor outcome of patients with ovarian cancer. We aimed to explore the role and mechanisms of the long non-coding RNA NEAT1 (nuclear enriched abundant transcript 1) in regulating angiogenesis and metastasis of human ovarian cancer. NEAT1 expression in human ovarian cancer tissues and cell lines including SKOV-3 and A2780 was investigated through in situ hybridization. Gene knockdown and overexpressing were achieved through lentivirus infection, transfection of plasmids or microRNA mimics. Cell viability was measured with the cell counting kit-8 assay, while apoptosis was determined by flow cytometry. Cell migration and invasion were evaluated by transwell experiments, and protein expression was determined by western blot assays or immunohistochemistry. Duo-luciferase reporter assay was employed to confirm the interaction between NEAT1 and target microRNA. In vivo tumor growth was evaluated in nude mice with xenografted SKOV-3/A2780 cells, and blood vessel formation in tumor was examined by histological staining. RESULTS: NEAT1 was highly expressed in ovarian cancer tissues of patients and cell lines. MiR-214-3p was identified as a sponging target of NEAT1, and they antagonizedeach other in a reciprocal manner. NEAT1-overexpressing SKOV-3 and A2780 cells had significantly increased proliferation, reduced apoptosis, and augmented abilities of migration and invasion, while cells with NEAT1-knockdown displayed markedly attenuated traits of malignancies. Additionally, the levels of NEAT1 appeared to be positively correlated with the expression levels of angiogenesis-related molecules, including Semaphorin 4D (Sema4D), Sema4D receptor Plexin B1, T-lymphoma invasion and metastasis-inducing protein-1 (Tiam1), and Rho-like GTPases Rac1/2/3. In the xenograft mouse model, more NEAT1 expression resulted in faster in vivo tumor growth, more blood vessel formation in tumor tissues, as well as higher expression levels of angiogenesis-related molecules and CD31. CONCLUSIONS: NEAT1 promotes angiogenesis and metastasis in human ovarian cancer. NEAT1 and miR-214-3p are promising targets for developing therapeutics to treat human ovarian cancer.


Subject(s)
MicroRNAs , Ovarian Neoplasms , RNA, Long Noncoding , Humans , Female , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Mice, Nude , Ovarian Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics
16.
Adv Clin Exp Med ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747441

ABSTRACT

BACKGROUND: Human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes have been reported to be effective in the treatment of cancer. The miR-214-3p is a suppressor miRNA that has been extensively studied and has been proposed as a diagnostic and prognostic biomarker in some cancers. OBJECTIVES: The aim of this study was to investigate whether the regulatory mechanism of hucMSC-derived exosomal miR-214-3p with GLUT1 and ACLY affects the proliferation and apoptosis of gallbladder cancer (GBC) cells. MATERIAL AND METHODS: We found that the target genes of miR-214-3p on the TargetScan website contain GLUT1 and ACLY, and the targeting relationship was verified using luciferases. The GBC-SD cells overexpressing GLUT1 and ACLY were constructed to determine proliferation, apoptosis, migration, and other cellular activities. RESULTS: We identified hucMSCs and exosomes, and found that the exosomes contained miR-214-3p. Furthermore, TargetScan predicted that miR-214-3p had base interactions with ACLY. Dual luciferase assays showed that miR-214-3p could inhibit ACLY (p < 0.05). The results of quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot showed that exosomal miR-214-3p could inhibit the expression of ACLY and GLUT1 (p < 0.05). Exosomal miR-214-3p can inhibit the proliferation, cloning and migration of GBC-SD cells (p < 0.05). The apoptosis of GBC-SD cells was increased (p < 0.05). The GBC-SD cells overexpressing ACLY and GLUT1 could reverse the efficacy of miR-214-3p. CONCLUSIONS: Exosomal miR-214-3p can inhibit the downstream expression of ACLY and GLUT1. The ACLY and GLUT1 could affect the proliferation and apoptosis of GBC-SD cells.

17.
Biomater Res ; 27(1): 77, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563655

ABSTRACT

AIMS: Exosomes are known as nanovesicles that are naturally secreted, playing an essential role in stem-mediated cardioprotection. This study mainly focused on investigating if exosomes derived from miR-214 overexpressing mesenchymal stem cells (MSCs) show more valid cardioprotective ability in a rat model of acute myocardial infarction (AMI) and its potential mechanisms. METHODS: Exosomes were isolated from control MSCs (Ctrl-Exo) and miR-214 overexpressing MSCs (miR-214OE-Exo) and then they were delivered to cardiomyocytes and endothelial cells in vitro under hypoxia and serum deprivation (H/SD) condition or in vivo in an acutely infarcted Sprague-Dawley rat heart. Regulated genes and signal pathways by miR-214OE-Exo treatment were explored using western blot analysis and luciferase assay. RESULTS IN VITRO: , miR-214OE-Exo enhanced migration, tube-like formation in endothelial cells. In addition, miR-214OE-Exo ameliorated the survival of cardiomyocytes under H/SD. In the rat AMI model, compared to Ctrl-Exo, miR-214OE-Exo reduced myocardial apoptosis, and therefore reduced infarct size and improved cardiac function. Besides, miR-214OE-Exo accelerated angiogenesis in peri-infarct region. Mechanistically, we identified that exosomal miR-214-3p promoted cardiac repair via targeting PTEN and activating p-AKT signal pathway. CONCLUSION: Exosomes derived from miR-214 overexpressing MSCs have greatly strengthened the therapeutic efficacy for treatment of AMI by promoting cardiomyocyte survival and endothelial cell function.

18.
J Dermatol Sci ; 111(2): 32-42, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37442735

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is a highly invasive disease with the potential to metastasize and cause fatality. Therefore, it is crucial to understand the mechanism behind cSCC in order to devise effective strategies to combat this disease. OBJECTIVE: We investigated the function of circ_TNFRSF21/miR-214-3p/CHI3L1 axis in cSCC. METHODS: The features of circ_TNFRSF21 was characterized using Sanger sequencing, and RNase R/actinomycin D treatment. Genes and M1/M2 markers levels were assessed by qRT-PCR and IHC. The proliferation, migration, and invasion of cells were evaluated by CCK-8, colony formation, EdU incorporation, and transwell assays. Tumor growth and metastasis in vivo were evaluated by nude mouse xenograft model. Interactions of circ_TNFRSF21/miR-214-3p and miR-214-3p/CHI3L1 were validated by RNA immunoprecipitation and dual luciferase assay. RESULTS: Circ_TNFRSF21 and CHI3L1 expression were elevated in both human cSCC tissues and cells, whereas miR-214-3p was reduced. Circ_TNFRSF21 silencing or miR-214-3p overexpression suppressed cSCC cell proliferation, migration, invasion, and M2 macrophage polarization. Circ_TNFRSF21 functioned as a sponge for miR-214-3p while miR-214-3p directly targeted CHI3L1. Knockdown of miR-214-3p reversed the effects of circ_TNFRSF21 knockdown on cSCC development, while CHI3L1 upregulation reversed the effects of miR-214-3p overexpression. Furthermore, knockdown of circ_TNFRSF21 inhibited cSCC tumor growth and metastasis in vivo. CONCLUSION: Circ_TNFRSF21 plays a significant role in cSCC progression by enhancing cell proliferation, migration, invasion, and M2 macrophage polarization through inhibiting miR-214-3p and subsequent disinhibition of CHI3L1. These findings deepen our understanding of the molecular mechanism of cSCC and propose the circ_TNFRSF21/miR-214-3p/CHI3L1 axis as promising diagnosis markers or therapeutic targets for cSCC.


Subject(s)
Carcinoma, Squamous Cell , MicroRNAs , Skin Neoplasms , Animals , Mice , Humans , Skin Neoplasms/genetics , Cell Proliferation/genetics , Macrophages , MicroRNAs/genetics , Cell Line, Tumor , Chitinase-3-Like Protein 1 , Receptors, Tumor Necrosis Factor
19.
Cell Signal ; 109: 110793, 2023 09.
Article in English | MEDLINE | ID: mdl-37414107

ABSTRACT

Donor shortage is a major problem that limits liver transplantation availability. Steatotic donor liver presents a feasible strategy to solve this problem. However, severe ischemia-reperfusion injury (IRI) is an obstacle to the adoption of steatotic transplanted livers. Evidence from our prior studies indicated that bone marrow mesenchymal stem cells modified with heme oxygenase-1 (HMSCs) can attenuate non-steatotic liver IRI. However, the contribution of HMSCs in transplanted steatotic liver IRI is unclear. Here, HMSCs and their derived small extracellular vesicles (HM-sEVs) alleviated IRI in transplanted steatotic livers. After liver transplantation, there was significant enrichment of the differentially expressed genes in the glutathione metabolism and ferroptosis pathways, accompanied by ferroptosis marker upregulation. The HMSCs and HM-sEVs suppressed ferroptosis and attenuated IRI in the transplanted steatotic livers. MicroRNA (miRNA) microarray and validation experiments indicated that miR-214-3p, which was abundant in the HM-sEVs, suppressed ferroptosis by targeting cyclooxygenase 2 (COX2). In contrast, COX2 overexpression reversed this effect. Knockdown of miR-214-3p in the HM-sEVs diminished its ability to suppress ferroptosis and protect liver tissues/cells. The findings suggested that HM-sEVs suppressed ferroptosis to attenuate transplanted steatotic liver IRI via the miR-214-3p-COX2 axis.


Subject(s)
Extracellular Vesicles , Fatty Liver , Ferroptosis , Liver Transplantation , Mesenchymal Stem Cells , MicroRNAs , Reperfusion Injury , Humans , Liver Transplantation/adverse effects , Cyclooxygenase 2 , Bone Marrow , Living Donors , Liver , Reperfusion Injury/genetics , MicroRNAs/genetics
20.
Clin Breast Cancer ; 23(6): 620-627, 2023 08.
Article in English | MEDLINE | ID: mdl-37268524

ABSTRACT

BACKGROUND: Breast cancer has become the world's leading cancer, the leading killer of women's health, with a high mortality rate. With the development of medical technology, lncRNAs are widely used in the diagnosis and prognosis of various tumors, so finding new specific molecular markers and targets is the key to prolonging the survival time of breast cancer patients. MATERIALS AND METHODS: The expressions of lncRNA LINC01535 and miR-214-3p in breast cancer were detected by quantitative real-time PCR (qRT-PCR). The diagnostic significance of LINC01535 in breast cancer was assessed by ROC curve. The prognostic value of LINC01535 was verified by Kaplan-Meier method. The regulation of low expression of LINC01535 on proliferation and other biological abilities of breast cancer cells was determined by CCK-8 and Transwell method. The luciferase activity report assays indicated the relationship between LINC01535 and miR-214-3p. RESULTS: LINC01535 was elevated in breast cancer, which was negatively correlated with miR-214-3p, and miR-214-3p expression was decreased. LINC01535 proved to be promising in the diagnosis and prognosis of breast cancer. Low expression of LINC01535 targeting miR-214-3p had regulatory significance on tumor progression, lymph node metastasis and TNM stage. CONCLUSION: Silencing LINC01535 inhibited the proliferation capacity, migration level and invasion of breast cancer cells in vitro. LINC01535 was likely to be the focus of continued attention as a diagnostic and prognosis marker for breast cancer in the future.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Prognosis , Disease Progression , Biomarkers , Cell Movement , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL