Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Methods ; 229: 71-81, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909974

ABSTRACT

Identifying miRNA-disease associations (MDAs) is crucial for improving the diagnosis and treatment of various diseases. However, biological experiments can be time-consuming and expensive. To overcome these challenges, computational approaches have been developed, with Graph Convolutional Network (GCN) showing promising results in MDA prediction. The success of GCN-based methods relies on learning a meaningful spatial operator to extract effective node feature representations. To enhance the inference of MDAs, we propose a novel method called PGCNMDA, which employs graph convolutional networks with a learning graph spatial operator from paths. This approach enables the generation of meaningful spatial convolutions from paths in GCN, leading to improved prediction performance. On HMDD v2.0, PGCNMDA obtains a mean AUC of 0.9229 and an AUPRC of 0.9206 under 5-fold cross-validation (5-CV), and a mean AUC of 0.9235 and an AUPRC of 0.9212 under 10-fold cross-validation (10-CV), respectively. Additionally, the AUC of PGCNMDA also reaches 0.9238 under global leave-one-out cross-validation (GLOOCV). On HMDD v3.2, PGCNMDA obtains a mean AUC of 0.9413 and an AUPRC of 0.9417 under 5-CV, and a mean AUC of 0.9419 and an AUPRC of 0.9425 under 10-CV, respectively. Furthermore, the AUC of PGCNMDA also reaches 0.9415 under GLOOCV. The results show that PGCNMDA is superior to other compared methods. In addition, the case studies on pancreatic neoplasms, thyroid neoplasms and leukemia show that 50, 50 and 48 of the top 50 predicted miRNAs linked to these diseases are confirmed, respectively. It further validates the effectiveness and feasibility of PGCNMDA in practical applications.

2.
Sci Rep ; 14(1): 12761, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834687

ABSTRACT

Abundant researches have consistently illustrated the crucial role of microRNAs (miRNAs) in a wide array of essential biological processes. Furthermore, miRNAs have been validated as promising therapeutic targets for addressing complex diseases. Given the costly and time-consuming nature of traditional biological experimental validation methods, it is imperative to develop computational methods. In the work, we developed a novel approach named efficient matrix completion (EMCMDA) for predicting miRNA-disease associations. First, we calculated the similarities across multiple sources for miRNA/disease pairs and combined this information to create a holistic miRNA/disease similarity measure. Second, we utilized this biological information to create a heterogeneous network and established a target matrix derived from this network. Lastly, we framed the miRNA-disease association prediction issue as a low-rank matrix-complete issue that was addressed via minimizing matrix truncated schatten p-norm. Notably, we improved the conventional singular value contraction algorithm through using a weighted singular value contraction technique. This technique dynamically adjusts the degree of contraction based on the significance of each singular value, ensuring that the physical meaning of these singular values is fully considered. We evaluated the performance of EMCMDA by applying two distinct cross-validation experiments on two diverse databases, and the outcomes were statistically significant. In addition, we executed comprehensive case studies on two prevalent human diseases, namely lung cancer and breast cancer. Following prediction and multiple validations, it was evident that EMCMDA proficiently forecasts previously undisclosed disease-related miRNAs. These results underscore the robustness and efficacy of EMCMDA in miRNA-disease association prediction.


Subject(s)
Algorithms , Computational Biology , Genetic Predisposition to Disease , MicroRNAs , MicroRNAs/genetics , Humans , Computational Biology/methods , Breast Neoplasms/genetics
3.
BMC Cancer ; 24(1): 683, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840078

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) emerge in various organisms, ranging from viruses to humans, and play crucial regulatory roles within cells, participating in a variety of biological processes. In numerous prediction methods for miRNA-disease associations, the issue of over-dependence on both similarity measurement data and the association matrix still hasn't been improved. In this paper, a miRNA-Disease association prediction model (called TP-MDA) based on tree path global feature extraction and fully connected artificial neural network (FANN) with multi-head self-attention mechanism is proposed. The TP-MDA model utilizes an association tree structure to represent the data relationships, multi-head self-attention mechanism for extracting feature vectors, and fully connected artificial neural network with 5-fold cross-validation for model training. RESULTS: The experimental results indicate that the TP-MDA model outperforms the other comparative models, AUC is 0.9714. In the case studies of miRNAs associated with colorectal cancer and lung cancer, among the top 15 miRNAs predicted by the model, 12 in colorectal cancer and 15 in lung cancer were validated respectively, the accuracy is as high as 0.9227. CONCLUSIONS: The model proposed in this paper can accurately predict the miRNA-disease association, and can serve as a valuable reference for data mining and association prediction in the fields of life sciences, biology, and disease genetics, among others.


Subject(s)
MicroRNAs , Neural Networks, Computer , Humans , MicroRNAs/genetics , Genetic Predisposition to Disease , Computational Biology/methods , Colorectal Neoplasms/genetics , Lung Neoplasms/genetics , Algorithms
4.
J Cell Mol Med ; 28(9): e18345, 2024 May.
Article in English | MEDLINE | ID: mdl-38693850

ABSTRACT

Identifying the association between miRNA and diseases is helpful for disease prevention, diagnosis and treatment. It is of great significance to use computational methods to predict potential human miRNA disease associations. Considering the shortcomings of existing computational methods, such as low prediction accuracy and weak generalization, we propose a new method called SCPLPA to predict miRNA-disease associations. First, a heterogeneous disease similarity network was constructed using the disease semantic similarity network and the disease Gaussian interaction spectrum kernel similarity network, while a heterogeneous miRNA similarity network was constructed using the miRNA functional similarity network and the miRNA Gaussian interaction spectrum kernel similarity network. Then, the estimated miRNA-disease association scores were evaluated by integrating the outcomes obtained by implementing label propagation algorithms in the heterogeneous disease similarity network and the heterogeneous miRNA similarity network. Finally, the spatial consistency projection algorithm of the network was used to extract miRNA disease association features to predict unverified associations between miRNA and diseases. SCPLPA was compared with four classical methods (MDHGI, NSEMDA, RFMDA and SNMFMDA), and the results of multiple evaluation metrics showed that SCPLPA exhibited the most outstanding predictive performance. Case studies have shown that SCPLPA can effectively identify miRNAs associated with colon neoplasms and kidney neoplasms. In summary, our proposed SCPLPA algorithm is easy to implement and can effectively predict miRNA disease associations, making it a reliable auxiliary tool for biomedical research.


Subject(s)
Algorithms , Computational Biology , MicroRNAs , MicroRNAs/genetics , Humans , Computational Biology/methods , Genetic Predisposition to Disease , Gene Regulatory Networks
5.
Comput Biol Chem ; 110: 108085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754260

ABSTRACT

Since scientific investigations have demonstrated that aberrant expression of miRNAs brings about the incidence of numerous intricate diseases, precise determination of miRNA-disease relationships greatly contributes to the advancement of human medical progress. To tackle the issue of inefficient conventional experimental approaches, numerous computational methods have been proposed to predict miRNA-disease association with enhanced accuracy. However, constructing miRNA-gene-disease heterogeneous network by incorporating gene information has been relatively under-explored in existing computational techniques. Accordingly, this paper puts forward a technique to predict miRNA-disease association by applying autoencoder and implementing random walk on miRNA-gene-disease heterogeneous network(AE-RW). Firstly, we integrate association information and similarities between miRNAs, genes, and diseases to construct a miRNA-gene-disease heterogeneous network. Subsequently, we consolidate two network feature representations extracted independently via an autoencoder and a random walk procedure. Finally, deep neural network(DNN) are utilized to conduct association prediction. The experimental results demonstrate that the AE-RW model achieved an AUC of 0.9478 through 5-fold CV on the HMDD v3.2 dataset, outperforming the five most advanced existing models. Additionally, case studies were implemented for breast and lung cancer, further validated the superior predictive capabilities of our model.


Subject(s)
Computational Biology , MicroRNAs , MicroRNAs/genetics , Humans , Breast Neoplasms/genetics , Neural Networks, Computer , Lung Neoplasms/genetics , Gene Regulatory Networks , Genetic Predisposition to Disease/genetics , Female
6.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38801703

ABSTRACT

Micro ribonucleic acids (miRNAs) play a pivotal role in governing the human transcriptome in various biological phenomena. Hence, the accumulation of miRNA expression dysregulation frequently assumes a noteworthy role in the initiation and progression of complex diseases. However, accurate identification of dysregulated miRNAs still faces challenges at the current stage. Several bioinformatics tools have recently emerged for forecasting the associations between miRNAs and diseases. Nonetheless, the existing reference tools mainly identify the miRNA-disease associations in a general state and fall short of pinpointing dysregulated miRNAs within a specific disease state. Additionally, no studies adequately consider miRNA-miRNA interactions (MMIs) when analyzing the miRNA-disease associations. Here, we introduced a systematic approach, called IDMIR, which enabled the identification of expression dysregulated miRNAs through an MMI network under the gene expression context, where the network's architecture was designed to implicitly connect miRNAs based on their shared biological functions within a particular disease context. The advantage of IDMIR is that it uses gene expression data for the identification of dysregulated miRNAs by analyzing variations in MMIs. We illustrated the excellent predictive power for dysregulated miRNAs of the IDMIR approach through data analysis on breast cancer and bladder urothelial cancer. IDMIR could surpass several existing miRNA-disease association prediction approaches through comparison. We believe the approach complements the deficiencies in predicting miRNA-disease association and may provide new insights and possibilities for diagnosing and treating diseases. The IDMIR approach is now available as a free R package on CRAN (https://CRAN.R-project.org/package=IDMIR).


Subject(s)
Computational Biology , Gene Regulatory Networks , MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Computational Biology/methods , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Gene Expression Profiling , Female , Gene Expression Regulation, Neoplastic
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38605642

ABSTRACT

MicroRNAs (miRNAs) synergize with various biomolecules in human cells resulting in diverse functions in regulating a wide range of biological processes. Predicting potential disease-associated miRNAs as valuable biomarkers contributes to the treatment of human diseases. However, few previous methods take a holistic perspective and only concentrate on isolated miRNA and disease objects, thereby ignoring that human cells are responsible for multiple relationships. In this work, we first constructed a multi-view graph based on the relationships between miRNAs and various biomolecules, and then utilized graph attention neural network to learn the graph topology features of miRNAs and diseases for each view. Next, we added an attention mechanism again, and developed a multi-scale feature fusion module, aiming to determine the optimal fusion results for the multi-view topology features of miRNAs and diseases. In addition, the prior attribute knowledge of miRNAs and diseases was simultaneously added to achieve better prediction results and solve the cold start problem. Finally, the learned miRNA and disease representations were then concatenated and fed into a multi-layer perceptron for end-to-end training and predicting potential miRNA-disease associations. To assess the efficacy of our model (called MUSCLE), we performed 5- and 10-fold cross-validation (CV), which got average the Area under ROC curves of 0.966${\pm }$0.0102 and 0.973${\pm }$0.0135, respectively, outperforming most current state-of-the-art models. We then examined the impact of crucial parameters on prediction performance and performed ablation experiments on the feature combination and model architecture. Furthermore, the case studies about colon cancer, lung cancer and breast cancer also fully demonstrate the good inductive capability of MUSCLE. Our data and code are free available at a public GitHub repository: https://github.com/zht-code/MUSCLE.git.


Subject(s)
Colonic Neoplasms , Lung Neoplasms , MicroRNAs , Humans , Muscles , Learning , MicroRNAs/genetics , Algorithms , Computational Biology
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38622356

ABSTRACT

Identifying disease-associated microRNAs (miRNAs) could help understand the deep mechanism of diseases, which promotes the development of new medicine. Recently, network-based approaches have been widely proposed for inferring the potential associations between miRNAs and diseases. However, these approaches ignore the importance of different relations in meta-paths when learning the embeddings of miRNAs and diseases. Besides, they pay little attention to screening out reliable negative samples which is crucial for improving the prediction accuracy. In this study, we propose a novel approach named MGCNSS with the multi-layer graph convolution and high-quality negative sample selection strategy. Specifically, MGCNSS first constructs a comprehensive heterogeneous network by integrating miRNA and disease similarity networks coupled with their known association relationships. Then, we employ the multi-layer graph convolution to automatically capture the meta-path relations with different lengths in the heterogeneous network and learn the discriminative representations of miRNAs and diseases. After that, MGCNSS establishes a highly reliable negative sample set from the unlabeled sample set with the negative distance-based sample selection strategy. Finally, we train MGCNSS under an unsupervised learning manner and predict the potential associations between miRNAs and diseases. The experimental results fully demonstrate that MGCNSS outperforms all baseline methods on both balanced and imbalanced datasets. More importantly, we conduct case studies on colon neoplasms and esophageal neoplasms, further confirming the ability of MGCNSS to detect potential candidate miRNAs. The source code is publicly available on GitHub https://github.com/15136943622/MGCNSS/tree/master.


Subject(s)
Colonic Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Algorithms , Computational Biology/methods , Software , Colonic Neoplasms/genetics
9.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38517693

ABSTRACT

Numerous investigations increasingly indicate the significance of microRNA (miRNA) in human diseases. Hence, unearthing associations between miRNA and diseases can contribute to precise diagnosis and efficacious remediation of medical conditions. The detection of miRNA-disease linkages via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach. Here, we introduced a computational framework named ReHoGCNES, designed for prospective miRNA-disease association prediction (ReHoGCNES-MDA). This method constructs homogenous graph convolutional network with regular graph structure (ReHoGCN) encompassing disease similarity network, miRNA similarity network and known MDA network and then was tested on four experimental tasks. A random edge sampler strategy was utilized to expedite processes and diminish training complexity. Experimental results demonstrate that the proposed ReHoGCNES-MDA method outperforms both homogenous graph convolutional network and heterogeneous graph convolutional network with non-regular graph structure in all four tasks, which implicitly reveals steadily degree distribution of a graph does play an important role in enhancement of model performance. Besides, ReHoGCNES-MDA is superior to several machine learning algorithms and state-of-the-art methods on the MDA prediction. Furthermore, three case studies were conducted to further demonstrate the predictive ability of ReHoGCNES. Consequently, 93.3% (breast neoplasms), 90% (prostate neoplasms) and 93.3% (prostate neoplasms) of the top 30 forecasted miRNAs were validated by public databases. Hence, ReHoGCNES-MDA might serve as a dependable and beneficial model for predicting possible MDAs.


Subject(s)
MicroRNAs , Prostatic Neoplasms , Humans , Male , Algorithms , Computational Biology/methods , Databases, Genetic , MicroRNAs/genetics , Prospective Studies , Prostatic Neoplasms/genetics , Female
10.
BMC Bioinformatics ; 25(1): 139, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553698

ABSTRACT

BACKGROUND: MicroRNA (miRNA) has been shown to play a key role in the occurrence and progression of diseases, making uncovering miRNA-disease associations vital for disease prevention and therapy. However, traditional laboratory methods for detecting these associations are slow, strenuous, expensive, and uncertain. Although numerous advanced algorithms have emerged, it is still a challenge to develop more effective methods to explore underlying miRNA-disease associations. RESULTS: In the study, we designed a novel approach on the basis of deep autoencoder and combined feature representation (DAE-CFR) to predict possible miRNA-disease associations. We began by creating integrated similarity matrices of miRNAs and diseases, performing a logistic function transformation, balancing positive and negative samples with k-means clustering, and constructing training samples. Then, deep autoencoder was used to extract low-dimensional feature from two kinds of feature representations for miRNAs and diseases, namely, original association information-based and similarity information-based. Next, we combined the resulting features for each miRNA-disease pair and used a logistic regression (LR) classifier to infer all unknown miRNA-disease interactions. Under five and tenfold cross-validation (CV) frameworks, DAE-CFR not only outperformed six popular algorithms and nine classifiers, but also demonstrated superior performance on an additional dataset. Furthermore, case studies on three diseases (myocardial infarction, hypertension and stroke) confirmed the validity of DAE-CFR in practice. CONCLUSIONS: DAE-CFR achieved outstanding performance in predicting miRNA-disease associations and can provide evidence to inform biological experiments and clinical therapy.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Computational Biology/methods , Algorithms , Genetic Predisposition to Disease
11.
Noncoding RNA ; 10(1)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38392964

ABSTRACT

Biological research has demonstrated the significance of identifying miRNA-disease associations in the context of disease prevention, diagnosis, and treatment. However, the utilization of experimental approaches involving biological subjects to infer these associations is both costly and inefficient. Consequently, there is a pressing need to devise novel approaches that offer enhanced accuracy and effectiveness. Presently, the predominant methods employed for predicting disease associations rely on Graph Convolutional Network (GCN) techniques. However, the Graph Convolutional Network algorithm, which is locally aggregated, solely incorporates information from the immediate neighboring nodes of a given node at each layer. Consequently, GCN cannot simultaneously aggregate information from multiple nodes. This constraint significantly impacts the predictive efficacy of the model. To tackle this problem, we propose a novel approach, based on HyperGCN and Sørensen-Dice loss (HGSMDA), for predicting associations between miRNAs and diseases. In the initial phase, we developed multiple networks to represent the similarity between miRNAs and diseases and employed GCNs to extract information from diverse perspectives. Subsequently, we draw into HyperGCN to construct a miRNA-disease heteromorphic hypergraph using hypernodes and train GCN on the graph to aggregate information. Finally, we utilized the Sørensen-Dice loss function to evaluate the degree of similarity between the predicted outcomes and the ground truth values, thereby enabling the prediction of associations between miRNAs and diseases. In order to assess the soundness of our methodology, an extensive series of experiments was conducted employing the Human MicroRNA Disease Database (HMDD v3.2) as the dataset. The experimental outcomes unequivocally indicate that HGSMDA exhibits remarkable efficacy when compared to alternative methodologies. Furthermore, the predictive capacity of HGSMDA was corroborated through a case study focused on colon cancer. These findings strongly imply that HGSMDA represents a dependable and valid framework, thereby offering a novel avenue for investigating the intricate association between miRNAs and diseases.

12.
J Comput Biol ; 31(3): 241-256, 2024 03.
Article in English | MEDLINE | ID: mdl-38377572

ABSTRACT

More and more studies have shown that microRNAs (miRNAs) play an indispensable role in the study of complex diseases in humans. Traditional biological experiments to detect miRNA-disease associations are expensive and time-consuming. Therefore, it is necessary to propose efficient and meaningful computational models to predict miRNA-disease associations. In this study, we aim to propose a miRNA-disease association prediction model based on sparse learning and multilayer random walks (SLMRWMDA). The miRNA-disease association matrix is decomposed and reconstructed by the sparse learning method to obtain richer association information, and at the same time, the initial probability matrix for the random walk with restart algorithm is obtained. The disease similarity network, miRNA similarity network, and miRNA-disease association network are used to construct heterogeneous networks, and the stable probability is obtained based on the topological structure features of diseases and miRNAs through a multilayer random walk algorithm to predict miRNA-disease potential association. The experimental results show that the prediction accuracy of this model is significantly improved compared with the previous related models. We evaluated the model using global leave-one-out cross-validation (global LOOCV) and fivefold cross-validation (5-fold CV). The area under the curve (AUC) value for the LOOCV is 0.9368. The mean AUC value for 5-fold CV is 0.9335 and the variance is 0.0004. In the case study, the results show that SLMRWMDA is effective in inferring the potential association of miRNA-disease.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Algorithms , Area Under Curve , Computational Biology/methods , Genetic Predisposition to Disease
13.
Mol Ther Nucleic Acids ; 35(1): 102139, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38384447

ABSTRACT

MicroRNAs (miRNAs) play a crucial role in the prevention, prognosis, diagnosis, and treatment of complex diseases. Existing computational methods primarily focus on biologically relevant molecules directly associated with miRNA or disease, overlooking the fact that the human body is a highly complex system where miRNA or disease may indirectly correlate with various types of biomolecules. To address this, we propose a novel prediction model named MHGTMDA (miRNA and disease association prediction using heterogeneous graph transformer based on molecular heterogeneous graph). MHGTMDA integrates biological entity relationships of eight biomolecules, constructing a relatively comprehensive heterogeneous biological entity graph. MHGTMDA serves as a powerful molecular heterogeneity map transformer, capturing structural elements and properties of miRNAs and diseases, revealing potential associations. In a 5-fold cross-validation study, MHGTMDA achieved an area under the receiver operating characteristic curve of 0.9569, surpassing state-of-the-art methods by at least 3%. Feature ablation experiments suggest that considering features among multiple biomolecules is more effective in uncovering miRNA-disease correlations. Furthermore, we conducted differential expression analyses on breast cancer and lung cancer, using MHGTMDA to further validate differentially expressed miRNAs. The results demonstrate MHGTMDA's capability to identify novel MDAs.

14.
Comput Biol Med ; 169: 107904, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181611

ABSTRACT

miRNAs are a class of small non-coding RNA molecules that play important roles in gene regulation. They are crucial for maintaining normal cellular functions, and dysregulation or dysfunction of miRNAs which are linked to the onset and advancement of multiple human diseases. Research on miRNAs has unveiled novel avenues in the realm of the diagnosis, treatment, and prevention of human diseases. However, clinical trials pose challenges and drawbacks, such as complexity and time-consuming processes, which create obstacles for many researchers. Graph Attention Network (GAT) has shown excellent performance in handling graph-structured data for tasks such as link prediction. Some studies have successfully applied GAT to miRNA-disease association prediction. However, there are several drawbacks to existing methods. Firstly, most of the previous models rely solely on concatenation operations to merge features of miRNAs and diseases, which results in the deprivation of significant modality-specific information and even the inclusion of redundant information. Secondly, as the number of layers in GAT increases, there is a possibility of excessive smoothing in the feature extraction process, which significantly affects the prediction accuracy. To address these issues and effectively complete miRNA disease prediction tasks, we propose an innovative model called Multiplex Adaptive Modality Fusion Graph Attention Network (MAMFGAT). MAMFGAT utilizes GAT as the main structure for feature aggregation and incorporates a multi-modal adaptive fusion module to extract features from three interconnected networks: the miRNA-disease association network, the miRNA similarity network, and the disease similarity network. It employs adaptive learning and cross-modality contrastive learning to fuse more effective miRNA and disease feature embeddings as well as incorporates multi-modal residual feature fusion to tackle the problem of excessive feature smoothing in GATs. Finally, we employ a Multi-Layer Perceptron (MLP) model that takes the embeddings of miRNA and disease features as input to anticipate the presence of potential miRNA-disease associations. Extensive experimental results provide evidence of the superior performance of MAMFGAT in comparison to other state-of-the-art methods. To validate the significance of various modalities and assess the efficacy of the designed modules, we performed an ablation analysis. Furthermore, MAMFGAT shows outstanding performance in three cancer case studies, indicating that it is a reliable method for studying the association between miRNA and diseases. The implementation of MAMFGAT can be accessed at the following GitHub repository: https://github.com/zixiaojin66/MAMFGAT-master.


Subject(s)
Learning , MicroRNAs , Humans , Neural Networks, Computer , Computational Biology , Algorithms
15.
Interdiscip Sci ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286905

ABSTRACT

miRNAs are important regulators for many crucial biological processes. Many recent studies have shown that miRNAs are closely related to various human diseases and can be potential biomarkers or therapeutic targets for some diseases, such as cancers. Therefore, accurately predicting miRNA-disease associations is of great importance for understanding and curing diseases. However, how to efficiently utilize the characteristics of miRNAs and diseases and the information on known miRNA-disease associations for prediction is still not fully explored. In this study, we propose a novel computational method for predicting miRNA-disease associations. The proposed method combines the graph convolutional network and the hypergraph convolutional network. The graph convolutional network is utilized to extract the information from miRNA-similarity data as well as disease-similarity data. Based on the representations of miRNAs and diseases learned by the graph convolutional network, we further use the hypergraph convolutional network to capture the complex high-order interactions in the known miRNA-disease associations. We conduct comprehensive experiments with different datasets and predictive tasks. The results show that the proposed method consistently outperforms several other state-of-the-art methods. We also discuss the influence of hyper-parameters and model structures on the performance of our method. Some case studies also demonstrate that the predictive results of the method can be verified by independent experiments.

16.
BMC Bioinformatics ; 25(1): 22, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216907

ABSTRACT

BACKGROUND: MiRNAs are involved in the occurrence and development of many diseases. Extensive literature studies have demonstrated that miRNA-disease associations are stratified and encompass ~ 20% causal associations. Computational models that predict causal miRNA-disease associations provide effective guidance in identifying novel interpretations of disease mechanisms and potential therapeutic targets. Although several predictive models for miRNA-disease associations exist, it is still challenging to discriminate causal miRNA-disease associations from non-causal ones. Hence, there is a pressing need to develop an efficient prediction model for causal miRNA-disease association prediction. RESULTS: We developed DNI-MDCAP, an improved computational model that incorporated additional miRNA similarity metrics, deep graph embedding learning-based network imputation and semi-supervised learning framework. Through extensive predictive performance evaluation, including tenfold cross-validation and independent test, DNI-MDCAP showed excellent performance in identifying causal miRNA-disease associations, achieving an area under the receiver operating characteristic curve (AUROC) of 0.896 and 0.889, respectively. Regarding the challenge of discriminating causal miRNA-disease associations from non-causal ones, DNI-MDCAP exhibited superior predictive performance compared to existing models MDCAP and LE-MDCAP, reaching an AUROC of 0.870. Wilcoxon test also indicated significantly higher prediction scores for causal associations than for non-causal ones. Finally, the potential causal miRNA-disease associations predicted by DNI-MDCAP, exemplified by diabetic nephropathies and hsa-miR-193a, have been validated by recently published literature, further supporting the reliability of the prediction model. CONCLUSIONS: DNI-MDCAP is a dedicated tool to specifically distinguish causal miRNA-disease associations with substantially improved accuracy. DNI-MDCAP is freely accessible at http://www.rnanut.net/DNIMDCAP/ .


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Reproducibility of Results , Genetic Predisposition to Disease , Computational Biology , Algorithms
17.
Comput Biol Chem ; 108: 107992, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056378

ABSTRACT

Most existing graph neural network-based methods for predicting miRNA-disease associations rely on initial association matrices to pass messages, but the sparsity of these matrices greatly limits performance. To address this issue and predict potential associations between miRNAs and diseases, we propose a method called strengthened hypergraph convolutional autoencoder (SHGAE). SHGAE leverages multiple layers of strengthened hypergraph neural networks (SHGNN) to obtain robust node embeddings. Within SHGNN, we design a strengthened hypergraph convolutional network module (SHGCN) that enhances original graph associations and reduces matrix sparsity. Additionally, SHGCN expands node receptive fields by utilizing hyperedge features as intermediaries to obtain high-order neighbor embeddings. To improve performance, we also incorporate attention-based fusion of self-embeddings and SHGCN embeddings. SHGAE predicts potential miRNA-disease associations using a multilayer perceptron as the decoder. Across multiple metrics, SHGAE outperforms other state-of-the-art methods in five-fold cross-validation. Furthermore, we evaluate SHGAE on colon and lung neoplasms cases to demonstrate its ability to predict potential associations. Notably, SHGAE also performs well in the analysis of gastric neoplasms without miRNA associations.


Subject(s)
MicroRNAs , MicroRNAs/genetics , Algorithms , Neural Networks, Computer , Computational Biology/methods
18.
Anal Biochem ; 687: 115431, 2024 04.
Article in English | MEDLINE | ID: mdl-38123111

ABSTRACT

[S U M M A R Y] Many miRNA-disease association prediction models incorporate Gaussian interaction profile kernel similarity (GIPS). However, the GIPS fails to consider the specificity of the miRNA-disease association matrix, where matrix elements with a value of 0 represent miRNA and disease relationships that have not been discovered yet. To address this issue and better account for the impact of known and unknown miRNA-disease associations on similarity, we propose a method called vector projection similarity-based method for miRNA-disease association prediction (VPSMDA). In VPSMDA, we introduce three projection rules and combined with logistic functions for the miRNA-disease association matrix and propose a vector projection similarity measure for miRNAs and diseases. By integrating the vector projection similarity matrix with the original one, we obtain the improved miRNA and disease similarity matrix. Additionally, we construct a weight matrix using different numbers of neighbors to reduce the noise in the similarity matrix. In performance evaluation, both LOOCV and 5-fold CV experiments demonstrate that VPSMDA outperforms seven other state-of-the-art methods in AUC. Furthermore, in a case study, VPSMDA successfully predicted 10, 9, and 10 out of the top 10 associations for three important human diseases, respectively, and these predictions were confirmed by recent biomedical resources.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Genetic Predisposition to Disease , Algorithms , Models, Genetic , Area Under Curve , Computational Biology/methods
19.
Interdiscip Sci ; 16(1): 176-191, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38099958

ABSTRACT

Since the identification of microRNAs (miRNAs), empirical research has demonstrated their crucial involvement in the functioning of organisms. Investigating miRNAs significantly bolsters efforts related to averting, diagnosing, and treating intricate human maladies. Yet, exploring every conceivable miRNA-disease association consumes significant resources and time within conventional wet experiments. On the computational front, forecasting potential miRNA-disease connections serves as a valuable source of preliminary insights for medical investigators. As a result, we have developed a novel matrix factorization model known as Hessian-regularized [Formula: see text] nonnegative matrix factorization in combination with deep learning for predicting associations between miRNAs and diseases, denoted as [Formula: see text]-NMF-DF. In particular, we introduce a novel iterative fusion approach to integrate all similarities. This method effectively diminishes the sparsity of the initial miRNA-disease associations matrix. Additionally, we devise a mixed model framework that utilizes deep learning, matrix decomposition, and singular value decomposition to capture and depict the intricate nonlinear features of miRNA and disease. The prediction performance of the six matrix factorization methods is improved by comparison and analysis, similarity matrix fusion, data preprocessing, and parameter adjustment. The AUC and AUPR obtained by the new matrix factorization model under fivefold cross validation are comparative or better with other matrix factorization models. Finally, we select three diseases including lung tumor, bladder tumor and breast tumor for case analysis, and further extend the matrix factorization model based on deep learning. The results show that the hybrid algorithm combining matrix factorization with deep learning proposed in this paper can predict miRNAs related to different diseases with high accuracy.


Subject(s)
Deep Learning , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Algorithms , ROC Curve , Computational Biology/methods , Genetic Predisposition to Disease
20.
Methods ; 221: 73-81, 2024 01.
Article in English | MEDLINE | ID: mdl-38123109

ABSTRACT

Research indicates that miRNAs present in herbal medicines are crucial for identifying disease markers, advancing gene therapy, facilitating drug delivery, and so on. These miRNAs maintain stability in the extracellular environment, making them viable tools for disease diagnosis. They can withstand the digestive processes in the gastrointestinal tract, positioning them as potential carriers for specific oral drug delivery. By engineering plants to generate effective, non-toxic miRNA interference sequences, it's possible to broaden their applicability, including the treatment of diseases such as hepatitis C. Consequently, delving into the miRNA-disease associations (MDAs) within herbal medicines holds immense promise for diagnosing and addressing miRNA-related diseases. In our research, we propose the SGAE-MDA model, which harnesses the strengths of a graph autoencoder (GAE) combined with a semi-supervised approach to uncover potential MDAs in herbal medicines more effectively. Leveraging the GAE framework, the SGAE-MDA model exactly integrates the inherent feature vectors of miRNAs and disease nodes with the regulatory data in the miRNA-disease network. Additionally, the proposed semi-supervised learning approach randomly hides the partial structure of the miRNA-disease network, subsequently reconstructing them within the GAE framework. This technique effectively minimizes network noise interference. Through comparison against other leading deep learning models, the results consistently highlighted the superior performance of the proposed SGAE-MDA model. Our code and dataset can be available at: https://github.com/22n9n23/SGAE-MDA.


Subject(s)
MicroRNAs , MicroRNAs/genetics , Algorithms , Computational Biology/methods , Supervised Machine Learning , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...