Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters











Publication year range
1.
Biochem Biophys Res Commun ; 734: 150628, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39232457

ABSTRACT

Microautophagy degrades cargos in the vacuole by direct engulfment of the vacuolar membrane. Micronucleophagy selectively degrades a portion of the nucleus in budding yeast. The vacuole contacts the nucleus via the nucleus-vacuole junction (NVJ), and in micronucleophagy a portion of the nucleus containing nucleolar proteins is made to protrude into the vacuole at the NVJ, followed by abscission and degradation. Microautophagy and micronucleophagy are induced by inactivation of target of rapamycin complex 1 (TORC1) protein kinase after nutrient starvation. Here, we show that the VAMP-associated proteins (VAPs) Scs2 and its paralog Scs22 are required for NVJ integrity and micronucleophagic degradation of nucleolar proteins. On the other hand, nucleolar dynamics prerequisite for micronucleophagy were not impaired in VAP mutant cells. Finally, yeast VAPs were critical for viability during prolonged nutrient starvation. This study sheds light on the emerging role of VAP in adaptation in responses to nutrient starvation.

2.
Front Mol Biosci ; 11: 1427542, 2024.
Article in English | MEDLINE | ID: mdl-39234568

ABSTRACT

Cellular protein homeostasis (proteostasis) plays an essential role in regulating the folding, sequestration, and turnover of misfolded proteins via a network of chaperones and clearance factors. Previous work has shown that misfolded proteins are spatially sequestered into membrane-less compartments in the cell as part of the proteostasis process. Soluble misfolded proteins in the cytoplasm are trafficked into the juxtanuclear quality control compartment (JUNQ), and nuclear proteins are sequestered into the intranuclear quality control compartment (INQ). However, the mechanisms that control the formation, localization, and degradation of these compartments are unknown. Previously, we showed that the JUNQ migrates to the nuclear membrane adjacent to the INQ at nucleus-vacuole junctions (NVJ), and the INQ moves through the NVJ into the vacuole for clearance in an ESCRT-mediated process. Here we have investigated what mechanisms are involved in the formation, migration, and clearance of the JUNQ. We find Hsp70s Ssa1 and Ssa2 are required for JUNQ localization to the NVJ and degradation of cytoplasmic misfolded proteins. We also confirm that sequestrases Btn2 and Hsp42 sort misfolded proteins to the JUNQ or IPOD, respectively. Interestingly, proteins required for piecemeal microautophagy of the nucleus (PMN) (i.e., Nvj1, Vac8, Atg1, and Atg8) drive the formation and clearance of the JUNQ. This suggests that the JUNQ migrates to the NVJ to be cleared via microautophagy.

3.
Biochem Biophys Res Commun ; 736: 150515, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128268

ABSTRACT

Heat shock cognate protein 70 (Hsc70/HSPA8) belongs to the Hsp70 family of molecular chaperones. The fundamental functions of Hsp70 family molecular chaperones depend on ATP-dependent allosteric regulation of binding and release of hydrophobic polypeptide substrates. Hsc70 is also involved in various other cellular functions including selective pathways of protein degradation: chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI), in which Hsc70 recruits substrate proteins containing a KFERQ-like pentapeptide motif from the cytosol to lysosomes and late endosomes, respectively. However, whether the interaction between Hsc70 and the pentapeptide motif is direct or mediated by other molecules has remained unknown. In the present study, we introduced a photo-crosslinker near the KFERQ motif in a CMA/eMI model substrate and successfully detected its crosslinking with Hsc70, revealing the direct interaction between Hsc70 and the KFERQ motif for the first time. In addition, we demonstrated that the loss of the Hsc70 ATPase activity by the D10 N mutation appreciably reduced the crosslinking efficiency. Our present results suggested that the ATP allostery of Hsc70 is involved in the direct interaction of Hsc70 with the KFERQ-like pentapeptide.

4.
J Biol Chem ; 300(8): 107582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39025453

ABSTRACT

The Ccr4-Not complex contains the poorly understood Not4 ubiquitin ligase that functions in transcription, mRNA decay, translation, proteostasis, and endolysosomal nutrient signaling. To gain further insight into the in vivo functions of the ligase, we performed quantitative proteomics in Saccharomyces cerevisiae using yeast cells lacking Not4, or cells overexpressing wild-type Not4 or an inactive Not4 mutant. Herein, we provide evidence that balanced Not4 activity maintains ribosomal protein (RP) homeostasis independent of changes to RP mRNA or known Not4 ribosomal substrates. Intriguingly, we also find that Not4 loss activates 40S ribosomal autophagy independently of canonical Atg7-dependent macroautophagy, indicating that microautophagy is responsible. We previously demonstrated that Ccr4-Not stimulates the target of rapamycin complex 1 (TORC1) signaling, which activates RP expression and inhibits autophagy, by maintaining vacuole V-ATPase H+ pump activity. Importantly, combining Not4 deficient cells with a mutant that blocks vacuole H+ export fully restores RP expression and increases 40S RP autophagy efficiency. In contrast, restoring TORC1 activity alone fails to rescue either process, indicating that Not4 loss disrupts additional endolysosomal functions that regulate RP expression and 40S autophagy. Analysis of the Not4-regulated proteome reveals increases in endolysosomal and autophagy-related factors that functionally interact with Not4 to control RP expression and affect 40S autophagy. Collectively, our data indicate that balanced Ccr4-Not ubiquitin ligase signaling maintains RP homeostasis and inhibits 40S autophagy via the ligase's emerging role as an endolysosomal regulator.


Subject(s)
Autophagy , Homeostasis , Ribosomal Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Ribonucleases
5.
FEBS Lett ; 598(1): 48-58, 2024 01.
Article in English | MEDLINE | ID: mdl-37857501

ABSTRACT

The discovery of microautophagy, the direct engulfment of cytoplasmic material by the lysosome, dates back to 1966 in a morphological study of mammalian cells by Christian de Duve. Since then, studies on microautophagy have shifted toward the elucidation of the physiological significance of the process. However, in contrast to macroautophagy, studies on the molecular mechanisms of microautophagy have been limited. Only recent studies revealed that ATG proteins involved in macroautophagy are also operative in several types of microautophagy and that ESCRT proteins, responsible for the multivesicular body pathway, play a central role in most microautophagy processes. In this review, we summarize our current knowledge on the function of ATG and ESCRT proteins in microautophagy.


Subject(s)
Autophagy , Microautophagy , Animals , Autophagy/physiology , Lysosomes/metabolism , Cytosol/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Mammals/metabolism
6.
J Exp Bot ; 75(5): 1234-1251, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37978884

ABSTRACT

Autophagy is an evolutionarily conserved eukaryotic intracellular degradation process. Although the molecular mechanisms of plant autophagy share similarities with those in yeast and mammals, certain unique mechanisms have been identified. Recent studies have highlighted the importance of autophagy during vegetative growth stages as well as in plant-specific developmental processes, such as seed development, germination, flowering, and somatic reprogramming. Autophagy enables plants to adapt to and manage severe environmental conditions, such as nutrient starvation, high-intensity light stress, and heat stress, leading to intracellular remodeling and physiological changes in response to stress. In the past, plant autophagy research lagged behind similar studies in yeast and mammals; however, recent advances have greatly expanded our understanding of plant-specific autophagy mechanisms and functions. This review summarizes current knowledge and latest research findings on the mechanisms and roles of plant autophagy with the objective of improving our understanding of this vital process in plants.


Subject(s)
Autophagy , Saccharomyces cerevisiae , Animals , Autophagy/physiology , Plants/genetics , Plants/metabolism , Mammals
7.
J Biol Chem ; 300(1): 105496, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013088

ABSTRACT

The yeast vacuole membrane can phase separate into ordered and disordered domains, a phenomenon that is required for micro-lipophagy under nutrient limitation. Despite its importance as a biophysical model and physiological significance, it is not yet resolved if specific lipidome changes drive vacuole phase separation. Here we report that the metabolism of sphingolipids (SLs) and their sorting into the vacuole membrane can control this process. We first developed a vacuole isolation method to identify lipidome changes during the onset of phase separation in early stationary stage cells. We found that early stationary stage vacuoles are defined by an increased abundance of putative raft components, including 40% higher ergosterol content and a nearly 3-fold enrichment in complex SLs (CSLs). These changes were not found in the corresponding whole cell lipidomes, indicating that lipid sorting is associated with domain formation. Several facets of SL composition-headgroup stoichiometry, longer chain lengths, and increased hydroxylations-were also markers of phase-separated vacuole lipidomes. To test SL function in vacuole phase separation, we carried out a systematic genetic dissection of their biosynthetic pathway. The abundance of CSLs controlled the extent of domain formation and associated micro-lipophagy processes, while their headgroup composition altered domain morphology. These results suggest that lipid trafficking can drive membrane phase separation in vivo and identify SLs as key mediators of this process in yeast.


Subject(s)
Membranes , Saccharomyces cerevisiae , Sphingolipids , Vacuoles , Membranes/metabolism , Phase Separation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sphingolipids/chemistry , Sphingolipids/genetics , Sphingolipids/metabolism , Vacuoles/metabolism , Vacuoles/ultrastructure , Lipidomics , Microscopy, Fluorescence
8.
J Nippon Med Sch ; 91(1): 2-9, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-37271546

ABSTRACT

Autophagy is a self-digestive process that is conserved in eukaryotic cells and responsible for maintaining cellular homeostasis through proteolysis. By this process, cells break down their own components in lysosomes. Autophagy can be classified into three categories: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Macroautophagy involves membrane elongation and microautophagy involves membrane internalization, and both pathways undergo selective or non-selective processes that transport cytoplasmic components into lysosomes to be degraded. CMA, however, involves selective incorporation of cytosolic materials into lysosomes without membrane deformation. All three categories of autophagy have attracted much attention due to their involvement in various biological phenomena and their relevance to human diseases, such as neurodegenerative diseases and cancer. Clarification of the molecular mechanisms behind these processes is key to understanding autophagy and recent studies have made major progress in this regard, especially for the mechanisms of initiation and membrane elongation in macroautophagy and substrate recognition in microautophagy and CMA. Furthermore, it is becoming evident that the three categories of autophagy are related to each other despite their implementation by different sets of proteins and the involvement of completely different membrane dynamics. In this review, recent progress in macroautophagy, microautophagy, and CMA are summarized.


Subject(s)
Chaperone-Mediated Autophagy , Neurodegenerative Diseases , Humans , Microautophagy , Macroautophagy , Autophagy , Neurodegenerative Diseases/metabolism
9.
Trends Cell Biol ; 34(7): 606-616, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38104013

ABSTRACT

Autophagy is a self-catabolic process through which cellular components are delivered to lysosomes for degradation. There are three types of autophagy, i.e., macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy. In macroautophagy, a portion of the cytoplasm is wrapped by the autophagosome, which then fuses with lysosomes and delivers the engulfed cytoplasm for degradation. In CMA, the translocation of cytosolic substrates to the lysosomal lumen is directly across the limiting membrane of lysosomes. In microautophagy, lytic organelles, including endosomes or lysosomes, take up a portion of the cytoplasm directly. Although macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become evident that microautophagy plays a variety of cellular roles from yeast to mammals. Here we review the very recent updates of microautophagy. In particular, we focus on the feature of the degradative substrates and the molecular machinery that mediates microautophagy.


Subject(s)
Lysosomes , Microautophagy , Lysosomes/metabolism , Animals , Humans , Mammals/metabolism , Autophagy , Autophagosomes/metabolism
10.
Cell Rep ; 42(12): 113529, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38060380

ABSTRACT

Chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI) are pathways for selective degradation of cytosolic proteins in lysosomes and late endosomes, respectively. These autophagic processes share as a first step the recognition of the same five-amino-acid motif in substrate proteins by the Hsc70 chaperone, raising the possibility of coordinated activity of both pathways. In this work, we show the existence of a compensatory relationship between CMA and eMI and identify a role for the chaperone protein Bag6 in triage and internalization of eMI substrates into late endosomes. Association and dynamics of Bag6 at the late endosome membrane change during starvation, a stressor that, contrary to other autophagic pathways, causes a decline in eMI activity. Collectively, these results show a coordinated function of eMI with CMA, identify the interchangeable subproteome degraded by these pathways, and start to elucidate the molecular mechanisms that facilitate the switch between them.


Subject(s)
Chaperone-Mediated Autophagy , Microautophagy , Autophagy , Endosomes/metabolism , Lysosomes/metabolism , Molecular Chaperones/metabolism
11.
Autophagy ; : 1-13, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37999993

ABSTRACT

LC3 lipidation plays an important role in the regulation of macroautophagy and LC3-associated microautophagy. The E1-like enzyme ATG7 is one of the core components that are directly involved in LC3 lipidation reaction. Here, we provide evidence showing that acetylation of ATG7 tightly controls its enzyme activity to regulate the induction of macroautophagy and LC3-associated microautophagy. Mechanistically, acetylation of ATG7 disrupts its interaction with the E2-like enzyme ATG3, leading to an inhibition of LC3 lipidation in vitro and in vivo. Functionally, in response to various different stimuli, cellular ATG7 undergoes deacetylation to induce macroautophagy and LC3-associated microautophagy, which are necessary for cells to eliminate cytoplasmic DNA and degrade lysosome membrane proteins, respectively. Taken together, these findings reveal that ATG7 acetylation acts as a critical rheostat in controlling LC3 lipidation and related cellular processes.Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy-related; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; CREBBP/CBP: CREB binding protein; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EP300/p300: E1A binding protein p300; IFNB1: interferon beta 1; ISD: interferon stimulatory DNA; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; NAM: nicotinamide; PE: phosphatidylethanolamine; PTM: post-translational modification; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SIRT: sirtuin; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TSA: trichostatin A; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild-type.

12.
EMBO Rep ; 24(12): e57300, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37987447

ABSTRACT

Lysosomes are degradative organelles and signaling hubs that maintain cell and tissue homeostasis, and lysosomal dysfunction is implicated in aging and reduced longevity. Lysosomes are frequently damaged, but their repair mechanisms remain unclear. Here, we demonstrate that damaged lysosomal membranes are repaired by microautophagy (a process termed "microlysophagy") and identify key regulators of the first and last steps. We reveal the AGC kinase STK38 as a novel microlysophagy regulator. Through phosphorylation of the scaffold protein DOK1, STK38 is specifically required for the lysosomal recruitment of the AAA+ ATPase VPS4, which terminates microlysophagy by promoting the disassembly of ESCRT components. By contrast, microlysophagy initiation involves non-canonical lipidation of ATG8s, especially the GABARAP subfamily, which is required for ESCRT assembly through interaction with ALIX. Depletion of STK38 and GABARAPs accelerates DNA damage-induced cellular senescence in human cells and curtails lifespan in C. elegans, respectively. Thus, microlysophagy is regulated by STK38 and GABARAPs and could be essential for maintaining lysosomal integrity and preventing aging.


Subject(s)
Caenorhabditis elegans , Microautophagy , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Lysosomes/metabolism , Intracellular Membranes/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Autophagy , Microtubule-Associated Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
13.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762105

ABSTRACT

The heat shock factor 1 (HSF1)-mediated stress response pathway and autophagy processes play important roles in the maintenance of proteostasis. Autophagy processes are subdivided into three subtypes: macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy. Recently, molecular chaperones and co-factors were shown to be involved in the selective degradation of substrates by these three autophagy processes. This evidence suggests that autophagy processes are regulated in a coordinated manner by the HSF1-mediated stress response pathway. Recently, various studies have demonstrated that proteostasis pathways including HSF1 and autophagy are implicated in longevity. Furthermore, they serve as therapeutic targets for aging-related diseases such as cancer and neurodegenerative diseases. In the future, these studies will underpin the development of therapies against various diseases.


Subject(s)
Autophagy , Chaperone-Mediated Autophagy , Macroautophagy , Microautophagy , Longevity
14.
Cells ; 12(16)2023 08 12.
Article in English | MEDLINE | ID: mdl-37626866

ABSTRACT

The putative phospholipase Atg15 is required for the intravacuolar lysis of autophagic bodies and MVB vesicles. Intracellular membrane lysis is a highly sophisticated mechanism that is not fully understood. The amino-terminal transmembrane domain of Atg15 contains the sorting signal for entry into the MVB pathway. By replacing this domain, we generated chimeras located in the cytosol, the vacuole membrane, and the lumen. The variants at the vacuole membrane and in the lumen were highly active. Together with the absence of Atg15 from the phagophore and autophagic bodies, this suggests that, within the vacuole, Atg15 can lyse vesicles where it is not embedded. In-depth topological analyses showed that Atg15 is a single membrane-spanning protein with the amino-terminus in the cytosol and the rest, including the active site motif, in the ER lumen. Remarkably, only membrane-embedded Atg15 variants affected growth when overexpressed. The growth defects depended on its active site serine 332, showing that it was linked to the enzymatic activity of Atg15. Interestingly, the growth defects were independent of vacuolar proteinase A and vacuolar acidification.


Subject(s)
Autophagy , Saccharomyces cerevisiae , Autophagosomes , Cell Death , Cell Movement , Fungal Proteins , Membrane Proteins
15.
J Biochem ; 174(6): 483-490, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37562849

ABSTRACT

The cGAS-STING innate immune pathway has recently emerged as a critical driver of inflammation in a variety of settings, such as virus infection, cellular stress and tissue damage. The pathway detects microbial and host-derived double-stranded DNA (dsDNA) in the cytosol, and triggers the production of the type I interferons through the activation of IRF3. The detailed mechanistic and biochemical understanding of the pathway has enabled the development of pharmacological agents for the treatment of chronic inflammation and cancer. STING is an endoplasmic reticulum (ER)-localized transmembrane protein. Upon emergence of cytosolic dsDNA, STING exits the ER and migrates sequentially to the Golgi, recycling endosomes and lysosomes. Importantly, the intracellular translocation of STING is essential for the activation and inactivation of the STING signalling. In this review, I summarize the recent insights into the regulators of the membrane traffic of STING and STING-associated autoinflammatory diseases.


Subject(s)
Membrane Proteins , Signal Transduction , Humans , Signal Transduction/physiology , Membrane Proteins/metabolism , Protein Transport , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA/metabolism , Inflammation , Immunity, Innate
16.
Elife ; 122023 04 18.
Article in English | MEDLINE | ID: mdl-37070813

ABSTRACT

The ubiquitin-binding NBR1 autophagy receptor plays a prominent role in recognizing ubiquitylated protein aggregates for vacuolar degradation by macroautophagy. Here, we show that upon exposing Arabidopsis plants to intense light, NBR1 associates with photodamaged chloroplasts independently of ATG7, a core component of the canonical autophagy machinery. NBR1 coats both the surface and interior of chloroplasts, which is then followed by direct engulfment of the organelles into the central vacuole via a microautophagy-type process. The relocalization of NBR1 into chloroplasts does not require the chloroplast translocon complexes embedded in the envelope but is instead greatly enhanced by removing the self-oligomerization mPB1 domain of NBR1. The delivery of NBR1-decorated chloroplasts into vacuoles depends on the ubiquitin-binding UBA2 domain of NBR1 but is independent of the ubiquitin E3 ligases SP1 and PUB4, known to direct the ubiquitylation of chloroplast surface proteins. Compared to wild-type plants, nbr1 mutants have altered levels of a subset of chloroplast proteins and display abnormal chloroplast density and sizes upon high light exposure. We postulate that, as photodamaged chloroplasts lose envelope integrity, cytosolic ligases reach the chloroplast interior to ubiquitylate thylakoid and stroma proteins which are then recognized by NBR1 for autophagic clearance. This study uncovers a new function of NBR1 in the degradation of damaged chloroplasts by microautophagy.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Autophagy/physiology , Carrier Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Ubiquitin/metabolism , Membrane Proteins/metabolism , Chloroplasts/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
17.
Autophagy ; 19(5): 1611-1613, 2023 05.
Article in English | MEDLINE | ID: mdl-36760098

ABSTRACT

Light is essential for plant growth, but excessive light energy produces reactive oxygen species (ROS), which can seriously damage cells. Mutants defective in ATG (autophagy related) genes show light intensity-dependent leaf damage and ROS accumulation. We found that autophagy is one of the crucial systems in protecting plants from ROS-induced damage by removing oxidative peroxisomes. Damaged peroxisomes are targeted by the PtdIns3P marker and specifically engulfed by phagophores labeled by ATG18a-GFP. Under high-intensity light, huge peroxisome aggregates are induced and captured by vacuolar membranes. Research provides a deeper understanding of plant stress response to light irradiation.


Subject(s)
Autophagy , Macroautophagy , Autophagy/physiology , Reactive Oxygen Species/metabolism , Oxidative Stress , Plants , Peroxisomes/metabolism
18.
Trends Biochem Sci ; 48(3): 216-228, 2023 03.
Article in English | MEDLINE | ID: mdl-36280494

ABSTRACT

Aggrephagy describes the selective lysosomal transport and turnover of cytoplasmic protein aggregates by macro-autophagy. In this process, protein aggregates and conglomerates are polyubiquitinated and then sequestered by autophagosomes. Soluble selective autophagy receptors (SARs) are central to aggrephagy and physically bind to both ubiquitin and the autophagy machinery, thus linking the cargo to the forming autophagosomal membrane. Because the accumulation of protein aggregates is associated with cytotoxicity in several diseases, a better molecular understanding of aggrephagy might provide a conceptual framework to develop therapeutic strategies aimed at delaying the onset of these pathologies by preventing the buildup of potentially toxic aggregates. We review recent advances in our knowledge about the mechanism of aggrephagy.


Subject(s)
Autophagy , Protein Aggregates , Sequestosome-1 Protein/metabolism , Autophagosomes , Lysosomes/metabolism
19.
Autophagy ; 19(1): 204-223, 2023 01.
Article in English | MEDLINE | ID: mdl-35506243

ABSTRACT

Mutations in DNAJC5/CSPα are associated with adult neuronal ceroid lipofuscinosis (ANCL), a dominant-inherited neurodegenerative disease featuring lysosome-derived autofluorescent storage materials (AFSMs) termed lipofuscin. Functionally, DNAJC5 has been implicated in chaperoning synaptic proteins and in misfolding-associated protein secretion (MAPS), but how DNAJC5 dysfunction causes lipofuscinosis and neurodegeneration is unclear. Here we report two functionally distinct but coupled chaperoning activities of DNAJC5, which jointly regulate lysosomal homeostasis: While endolysosome-associated DNAJC5 promotes ESCRT-dependent microautophagy, a fraction of perinuclear and non-lysosomal DNAJC5 mediates MAPS. Functional proteomics identifies a previously unknown DNAJC5 interactor SLC3A2/CD98hc that is essential for the perinuclear DNAJC5 localization and MAPS but dispensable for microautophagy. Importantly, uncoupling these two processes, as seen in cells lacking SLC3A2 or expressing ANCL-associated DNAJC5 mutants, generates DNAJC5-containing AFSMs resembling NCL patient-derived lipofuscin and induces neurodegeneration in a Drosophila ANCL model. These findings suggest that MAPS safeguards microautophagy to avoid DNAJC5-associated lipofuscinosis and neurodegeneration.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; AFSM: autofluorescent storage materials; ANCL: adult neuronal ceroid lipofuscinosis; Baf. A1: bafilomycin A1; CLN: ceroid lipofuscinosis neuronal; CLU: clusterin; CS: cysteine string domain of DNAJC5/CSPα; CUPS: compartment for unconventional protein secretion; DN: dominant negative; DNAJC5/CSPα: DnaJ heat shock protein family (Hsp40) member C5; eMI: endosomal microautophagy; ESCRT: endosomal sorting complex required for transport; GFP: green fluorescent protein; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; INCL: infant neuronal ceroid lipofuscinosis; JNCL: juvenile neuronal ceroid lipofuscinosis; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAPTM4B: lysosomal protein transmembrane 4 beta; LN: linker domain of DNAJC5/CSPα; MAPS: misfolding-associated protein secretion; mCh/Ch: mCherry; mCi/Ci: mCitrine; MTOR: mechanistic target of rapamycin kinase; NCL: neuronal ceroid lipofuscinosis; PPT1: palmitoyl-protein thioesterase 1; PQC: protein quality control; SBP: streptavidin binding protein; SGT: small glutamine-rich tetratricopeptide repeat; shRNA: short hairpin RNA; SLC3A2/CD98hc: solute carrier family 3 member 2; SNCA/α-synuclein: synuclein alpha; TMED10: transmembrane p24 trafficking protein 10; UV: ultraviolet; VPS4: vacuolar protein sorting 4 homolog; WT: wild type.


Subject(s)
HSP40 Heat-Shock Proteins , Membrane Proteins , Neuronal Ceroid-Lipofuscinoses , Humans , Autophagy/genetics , Endosomal Sorting Complexes Required for Transport , Lipofuscin , Membrane Proteins/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , HSP40 Heat-Shock Proteins/genetics
20.
Cancer Research and Clinic ; (6): 150-153, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996203

ABSTRACT

Autophagy is an intracellular degradation process that delivers cytoplasmic constituents to the lysosome. Abnormality of autophagy is related to many human diseases, which provides a new clue to the pathophysiology of human cancer. However, the role of autophagy in normal liver physiology and the pathogenesis of liver diseases need to be further clarified. This article reviews the role of autophagy in the occurrence and development of hepatocellular carcinoma and the molecular mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL