Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 19: 7307-7321, 2024.
Article in English | MEDLINE | ID: mdl-39050879

ABSTRACT

Background: Challenges such as poor drug selectivity, non-target reactivity, and the development of drug resistance continue to pose significant obstacles in the clinical application of cancer therapeutic drugs. To overcome the limitations of drug resistance in chemotherapy, a viable treatment strategy involves designing multifunctional nano-platforms that exploit the unique physicochemical properties of tumor microenvironment (TME). Methods: Herein, layer-by-layer nanoparticles with polyporous CuS as delivery vehicles, loaded with a sonosensitizer (tetra-(4-aminophenyl) porphyrin, TAPP) and sequentially functionalized with pH-responsive CaCO3, targeting group hyaluronic acid (HA) were designed and synthesized for synergistic treatment involving chemodynamic therapy (CDT), sonodynamic therapy (SDT), photothermal therapy (PTT), and calcium overload. Upon cleavage in an acidic environment, CaCO3 nanoparticles released TAPP and Ca2+, with TAPP generating 1O2 under ultrasound trigger. Exposed CuS produced highly cytotoxic ·OH in response to H2O2 and also exhibited a strong PTT effect. Results: CuS@TAPP-CaCO3/HA (CTCH) delivered an enhanced ability to release more Ca2+ under acidic conditions with a pH value of 6.5, which in situ causes damage to HeLa mitochondria. In vitro and in vivo experiments both demonstrated that mitochondrial dysfunction greatly amplified the damage caused by reactive oxygen species (ROS) to tumor, which strongly confirms the synergistic effect between calcium overload and reactive oxygen therapy. Conclusion: Collectively, the development of CTCH presents a novel therapeutic strategy for tumor treatment by effectively responding to the acidic TME, thus holding significant clinical implications.


Subject(s)
Calcium Carbonate , Calcium , Nanoparticles , Tumor Microenvironment , Humans , Animals , Nanoparticles/chemistry , Calcium/chemistry , Calcium Carbonate/chemistry , Calcium Carbonate/pharmacology , Tumor Microenvironment/drug effects , HeLa Cells , Reactive Oxygen Species/metabolism , Mice , Hyaluronic Acid/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Porphyrins/pharmacokinetics , Porphyrins/administration & dosage , Photothermal Therapy/methods , Hydrogen-Ion Concentration , Ultrasonic Therapy/methods , Neoplasms/therapy , Neoplasms/drug therapy , Mitochondria/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Mice, Nude , Layer-by-Layer Nanoparticles
2.
Biomed Pharmacother ; 175: 116690, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718519

ABSTRACT

Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.


Subject(s)
Mitochondria , Pancreatitis , Humans , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/genetics , Mitochondria/metabolism , Mitochondria/pathology , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Acute Disease , Alarmins/metabolism , Adenosine Triphosphate/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
3.
Folia Neuropathol ; 62(1): 21-31, 2024.
Article in English | MEDLINE | ID: mdl-38741434

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are a growing group of neurodegenerative storage diseases, in which specific features are sought to facilitate the creation of a universal diagnostic algorithm in the future. In our ultrastructural studies, the group of NCLs was represented by the CLN2 disease caused by a defect in the TPP1 gene encoding the enzyme tripeptidyl-peptidase 1. A 3.5-year-old girl was affected by this disease. Due to diagnostic difficulties, the spectrum of clinical, enzymatic, and genetic tests was extended to include analysis of the ultrastructure of cells from a rectal biopsy. The aim of our research was to search for pathognomonic features of CLN2 and to analyse the mitochondrial damage accompanying the disease. In the examined cells of the rectal mucosa, as expected, filamentous deposits of the curvilinear profile (CVP) type were found, which dominated quantitatively. Mixed deposits of the CVP/fingerprint profile (FPP) type were observed less frequently in the examined cells. A form of inclusions of unknown origin, not described so far in CLN2 disease, were wads of osmophilic material (WOMs). They occurred alone or co-formed mixed deposits. In addition, atypically damaged mitochondria were observed in muscularis mucosae. Their deformed cristae had contact with inclusions that looked like CVPs. Considering the confirmed role of the c subunit of the mitochondrial ATP synthase in the formation of filamentous lipopigment deposits in the group of NCLs, we suggest the possible significance of other mitochondrial proteins, such as mitochondrial contact site and cristae organizing system (MICOS), in the formation of these deposits. The presence of WOMs in the context of searching for ultrastructural pathognomonic features in CLN2 disease also requires further research.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inclusion Bodies , Mitochondria , Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/genetics , Humans , Female , Child, Preschool , Mitochondria/pathology , Mitochondria/ultrastructure , Inclusion Bodies/pathology , Inclusion Bodies/ultrastructure , Biopsy , Rectum/pathology , Serine Proteases/genetics , Aminopeptidases/genetics
4.
Regen Biomater ; 11: rbae038, 2024.
Article in English | MEDLINE | ID: mdl-38799701

ABSTRACT

Despite a growing body of studies demonstrating the specific anti-tumor effect of nano-hydroxyapatite (n-HA), the underlying mechanism remained unclear. Endoplasmic reticulum (ER) and mitochondria are two key players in intracellular Ca2+ homeostasis and both require Ca2+ to participate. Moreover, the ER-mitochondria interplay coordinates the maintenance of cellular Ca2+ homeostasis to prevent any negative consequences from excess of Ca2+, hence there needs in-depth study of n-HA effect on them. In this study, we fabricated needle-like n-HA to investigate the anti-tumor effectiveness as well as the underlying mechanisms from cellular and molecular perspectives. Data from in vitro experiments indicated that the growth and invasion of glioma cells were obviously reduced with the aid of n-HA. It is interesting to note that the expression of ER stress biomarkers (GRP78, p-IRE1, p-PERK, PERK, and ATF6) were all upregulated after n-HA treatment, along with the activation of the pro-apoptotic transcription factor CHOP, showing that ER stress produced by n-HA triggered cell apoptosis. Moreover, the increased expression level of intracellular reactive oxygen species and the mitochondrial membrane depolarization, as well as the downstream cell apoptotic signaling activation, further demonstrated the pro-apoptotic roles of n-HA induced Ca2+ overload through inducing mitochondria damage. The in vivo data provided additional evidence that n-HA caused ER stress and mitochondria damage in cells and effectively restrain the growth of glioma tumors. Collectively, the work showed that n-HA co-activated intracellular ER stress and mitochondria damage are critical triggers for cancer cells apoptosis, offering fresh perspectives on ER-mitochondria targeted anti-tumor therapy.

5.
Bioact Mater ; 36: 96-111, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440322

ABSTRACT

Endometrial cancer (EC) stands as one of the most prevalent gynecological malignancies affecting women, with its incidence and disease-related mortality steadily on the rise. Disulfiram (DSF), an FDA-approved medication primarily used for treating alcohol addiction, has exhibited promising anti-tumor properties. Studies have revealed DSF's capacity for enhanced anti-tumor activity, particularly when combined with copper. The novel Copper-Cysteamine (CuCy) compound, Cu3Cl(SR)2 (R[bond, double bond]CH2CH2NH2), showcases photodynamic effects and demonstrates significant anti-tumor potential under various conditions, including exposure to ultraviolet light, X-ray, microwave, and ultrasound. This study delves into exploring the synergistic anti-tumor effects and underlying mechanisms by utilizing copper-cysteamine in conjunction with DSF against endometrial cancer. The investigation involved comprehensive analyses encompassing in vitro experiments utilizing Ishikawa cells, in vivo studies, and transcriptomic analyses. Remarkably, the combined administration of both compounds at a low dose of 0.5 µM exhibited pronounced efficacy in impeding tumor growth, inhibiting blood vessel formation, and stimulating cell apoptosis. Notably, experiments involving transplanted tumors in nude mice vividly demonstrated the significant in vivo anti-tumor effects of this combination treatment. Detailed examination through transmission electron microscopy unveiled compelling evidence of mitochondrial damage, cellular swelling, and rupture, indicative of apoptotic changes in morphology due to the combined treatment. Moreover, transcriptomic analysis unveiled substantial downregulation of mitochondrial-related genes at the molecular level, coupled with a significant hindrance in the DNA repair pathway. These findings strongly suggest that the combined application of CuCy and DSF induces mitochondrial impairment in Ishikawa cells, thereby fostering apoptosis and ultimately yielding potent anti-tumor effects.

6.
J Agric Food Chem ; 72(10): 5269-5282, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38439706

ABSTRACT

Dityrosine (Dityr) has been detected in commercial food as a product of protein oxidation and has been shown to pose a threat to human health. This study aims to investigate whether Dityr causes a decrease in lactic acid metabolism in the gastrocnemius muscle during endurance exercise. C57BL/6 mice were administered Dityr or saline by gavage for 13 weeks and underwent an endurance exercise test on a treadmill. Dityr caused a severe reduction in motion displacement and endurance time, along with a significant increase in lactic acid accumulation in the blood and gastrocnemius muscle in mice after exercise. Dityr induced significant mitochondrial defects in the gastrocnemius muscle of mice. Additionally, Dityr induced serious oxidative stress in the gastrocnemius muscle, accompanied by inflammation, which might be one of the causes of mitochondrial dysfunction. Moreover, significant apoptosis in the gastrocnemius muscle increased after exposure to Dityr. This study confirmed that Dityr induced oxidative stress in the gastrocnemius muscle, which further caused significant mitochondrial damage in the gastrocnemius muscle cell, resulting in decreased capacity of lactic acid metabolism and finally affected performance in endurance exercise. This may be one of the possible mechanisms by which highly oxidized foods cause a decreased muscle energy metabolism.


Subject(s)
Mitochondria , Muscle, Skeletal , Tyrosine/analogs & derivatives , Humans , Animals , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Oxidative Stress
7.
Adv Sci (Weinh) ; 11(15): e2306031, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342617

ABSTRACT

Overproduction of reactive oxygen species (ROS), metal ion accumulation, and tricarboxylic acid cycle collapse are crucial factors in mitochondria-mediated cell death. However, the highly adaptive nature and damage-repair capabilities of malignant tumors strongly limit the efficacy of treatments based on a single treatment mode. To address this challenge, a self-reinforced bimetallic Mito-Jammer is developed by incorporating doxorubicin (DOX) and calcium peroxide (CaO2) into hyaluronic acid (HA) -modified metal-organic frameworks (MOF). After cellular, Mito-Jammer dissociates into CaO2 and Cu2+ in the tumor microenvironment. The exposed CaO2 further yields hydrogen peroxide (H2O2) and Ca2+ in a weakly acidic environment to strengthen the Cu2+-based Fenton-like reaction. Furthermore, the combination of chemodynamic therapy and Ca2+ overload exacerbates ROS storms and mitochondrial damage, resulting in the downregulation of intracellular adenosine triphosphate (ATP) levels and blocking of Cu-ATPase to sensitize cuproptosis. This multilevel interaction strategy also activates robust immunogenic cell death and suppresses tumor metastasis simultaneously. This study presents a multivariate model for revolutionizing mitochondria damage, relying on the continuous retention of bimetallic ions to boost cuproptosis/immunotherapy in cancer.


Subject(s)
Hydrogen Peroxide , Neoplasms , Humans , Reactive Oxygen Species , Adenosine Triphosphate , Cell Death , Mitomycin , Tumor Microenvironment
8.
J Virol ; 98(2): e0188023, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38226812

ABSTRACT

Bovine viral diarrhea virus (BVDV) belongs to the family Flaviviridae and includes two biotypes in cell culture: cytopathic (CP) or non-cytopathic (NCP) effects. Ferroptosis is a non-apoptotic form of programmed cell death that contributes to inflammatory diseases. However, whether BVDV induces ferroptosis and the role of ferroptosis in viral infection remain unclear. Here, we provide evidence that both CP and NCP BVDV can induce ferroptosis in Madin-Darby bovine kidney cells at similar rate. Mechanistically, biotypes of BVDV infection downregulate cytoplasmic and mitochondrial GPX4 via Nrf2-GPX4 pathway, thereby resulting in lethal lipid peroxidation and promoting ferroptosis. In parallel, BVDV can degrade ferritin heavy chain and mitochondrial ferritin via NCOA4-mediated ferritinophagy to promote the accumulation of Fe2+ and initiate ferroptosis. Importantly, CP BVDV-induced ferroptosis is tightly associated with serious damage of mitochondria and hyperactivation of inflammatory responses. In contrast, mild or unapparent damage of mitochondria and slight inflammatory responses were detected in NCP BVDV-infected cells. More importantly, different mitophagy pathways in response to mitochondria damage by both biotypes of BVDV are involved in inflammatory responses. Overall, this study is the first to show that mitochondria may play key roles in mediating ferroptosis and inflammatory responses induced by biotypes of BVDV in vitro.IMPORTANCEBovine viral diarrhea virus (BVDV) threatens a wide range of domestic and wild cattle population worldwide. BVDV causes great economic loss in cattle industry through its immunosuppression and persistent infection. Despite extensive research, the mechanism underlying the pathogenesis of BVDV remains elusive. Our data provide the first direct evidence that mitochondria-mediated ferroptosis and mitophagy are involved in inflammatory responses in both biotypes of BVDV-infected cells. Importantly, we demonstrate that the different degrees of injury of mitochondria and inflammatory responses may attribute to different mitophagy pathways induced by biotypes of BVDV. Overall, our findings uncover the interaction between BVDV infection and mitochondria-mediated ferroptosis, which shed novel light on the physiological impacts of ferroptosis on the pathogenesis of BVDV infection, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Ferroptosis , Mitochondria , Animals , Cattle , Bovine Virus Diarrhea-Mucosal Disease/pathology , Cytopathogenic Effect, Viral , Diarrhea Viruses, Bovine Viral/physiology , Mitochondria/pathology
9.
Heliyon ; 10(1): e23426, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173512

ABSTRACT

Ischemia-reperfusion (I/R) injury constitutes a significant risk factor for a range of diseases, including ischemic stroke, myocardial infarction, and trauma. Following the restoration of blood flow post-tissue ischemia, oxidative stress can lead to various forms of cell death, including necrosis, apoptosis, autophagy, and necroptosis. Recent evidence has highlighted the crucial role of mitochondrial dysfunction in I/R injury. Nevertheless, there remains much to be explored regarding the molecular signaling network governing cell death under conditions of oxidative stress. Voltage-dependent anion channel 1 (VDAC1), a major component in the outer mitochondrial membrane, is closely involved in the regulation of cell death. In a cellular model of oxygen-glucose deprivation and reoxygenation (OGD/R), which effectively simulates I/R injury in vitro, our study reveals that OGD/R induces VDAC1 oligomerization, consequently exacerbating cell death. Furthermore, we have revealed the translocation of mixed lineage kinase domain-like protein (MLKL) to the mitochondria, where it interacts with VDAC1 following OGD/R injury, leading to an increased mitochondrial membrane permeability. Notably, the inhibition of MLKL by necrosulfonamide hinders the binding of MLKL to VDAC1, primarily by affecting the membrane translocation of MLKL, and reduces OGD/R-induced VDAC1 oligomerization. Collectively, our findings provide preliminary evidence of the functional association between MLKL and VDAC1 in the regulation of necroptosis.

10.
Adv Mater ; 36(2): e2304098, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37689975

ABSTRACT

Ferroptosis-related cancer therapy is limited by insufficient Fe2+ /Fe3+ redox pair and hydrogen peroxide (H2 O2 ) for producing lethal hydroxyl radicals (·OH). Although exogenous iron or ROS-producing drugs can enhance ferroptosis, exploiting endogenous iron (labile iron pool, LIP) stored in ferritin and promoting ROS generation may be safer. Herein, a metal/drug-free nanomedicine is developed for responsive LIP release and H2 O2 generation on the mitochondria membranes, amplifying hydroxyl radical production to enhance ferroptosis-mediated antitumor effects. A glutathione(GSH)/pH dual activatable fluorinated and cross-linked polyethyleneimine (PEI) with dialdehyde polyethylene glycol layer nanocomplex loaded with MTS-KR-SOD (Mitochondria-targeting-sequence-KillerRed-Superoxide Dismutase) and CRISPR/Cas9-CA IX (Carbonic anhydrase IX (CA IX)) plasmids (FP@MC) are developed for enhanced ferroptosis through endogenous iron de-hijacking and in situ ROS amplification. Two plasmids are constructed to knockdown CA IX and translate KillerRed-SOD recombinant protein specifically on mitochondria membranes, respectively. The CA IX knockdown acidifies the intracellular environment, leading the release of LIP from ferritin as a "flare" to initiate endogenous chemodynamic therapy. Meanwhile, MTS-KR-SOD generates H2 O2 when irradiated by a 590 nm laser to assist chemodynamic therapy, leading to ROS amplification for mitochondria damage and lipid peroxide accumulation. The combined therapeutic effects aggravate cancer ferroptosis and suppress tumor growth, providing a new paradigm for amplifying ROS and iron ions to promote ferroptosis-related cancer therapy.


Subject(s)
Iron , Neoplasms , Humans , Polyethyleneimine , Reactive Oxygen Species , Ferritins , Glutathione , Hydrogen Peroxide , Hydroxyl Radical , Superoxide Dismutase/genetics , Genes, Neoplasm , Hydrogen-Ion Concentration , Cell Line, Tumor
11.
Redox Rep ; 28(1): 2284517, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38041592

ABSTRACT

Melittin, a naturally occurring polypeptide found in bee venom, has been recognized for its potential anti-tumor effects, particularly in the context of lung cancer. Our previous study focused on its impact on human lung adenocarcinoma cells A549, revealing that melittin induces intracellular reactive oxygen species (ROS) burst and oxidative damage, resulting in cell death. Considering the significant role of mitochondria in maintaining intracellular redox levels and ROS, we further examined the involvement of mitochondrial damage in melittin-induced apoptosis in lung cancer cells. Our findings demonstrated that melittin caused changes in mitochondrial membrane potential (MMP), triggered mitochondrial ROS burst (Figure 1), and activated the mitochondria-related apoptosis pathway Bax/Bcl-2 by directly targeting mitochondria in A549 cells (Figure 2). Further, we infected A549 cells using a lentivirus that can express melittin-Myc and confirmed that melittin can directly target binding to mitochondria, causing the biological effects described above (Figure 2). Notably, melittin induced mitochondrial damage while inhibiting autophagy, resulting in abnormal degradation of damaged mitochondria (Figure 5). To summarize, our study unveils that melittin targets mitochondria, causing mitochondrial damage, and inhibits the autophagy-lysosomal degradation pathway. This process triggers mitoROS burst and ultimately activates the mitochondria-associated Bax/Bcl-2 apoptotic signaling pathways in A549 cells.


Subject(s)
Lung Neoplasms , Mitophagy , Humans , A549 Cells , Melitten/pharmacology , Melitten/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Mitochondria/metabolism , Apoptosis , Membrane Potential, Mitochondrial , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism
12.
Antioxidants (Basel) ; 12(12)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38136242

ABSTRACT

After parturition, bovine endometrial epithelial cells (BEECs) undergo serious inflammation and imbalance between oxidation and antioxidation, which is widely acknowledged as a primary contributor to the development of endometritis in dairy cows. Nevertheless, the mechanism of oxidative stress-mediated inflammation and damage in bovine endometrial epithelial cells remains inadequately defined, particularly the molecular pathways associated with mitochondria-dependent apoptosis. Hence, the present study was designed to explore the mechanism responsible for mitochondrial dysfunction-induced BEEC damage. In vivo, the expressions of proapoptotic protein caspase 3 and cytochrome C were increased significantly in dairy uteri with endometritis. Similarly, the levels of proapoptotic protein caspase 3, BAX, and cytochrome C were markedly increased in H2O2-treated BEECs. Our findings revealed pronounced BEEC damage in dairy cows with endometritis, accompanied by heightened expression of cyto-C and caspase-3 both in vivo and in vitro. The reduction in apoptosis-related protein of BEECs due to oxidant injury was notably mitigated following N-acetyl-L-cysteine (NAC) treatment. Furthermore, mitochondrial vacuolation was significantly alleviated, and mitochondrial membrane potential returned to normal levels after the removal of ROS. Excessive ROS may be the main cause of mitochondrial dysfunction. Mitochondrial permeability transition pore (mPTP) blockade by cyclophilin D (CypD) knockdown with CSA significantly blocked the flow of cytochrome C (cyto-C) and Ca2+ to the cytoplasm from the mitochondria. Our results indicate that elevated ROS and persistent opening of the mPTP are the main causes of oxidative damage in BEECs. Collectively our results reveal a new mechanism involving ROS-mPTP signaling in oxidative damage to BEECs, which may be a potential avenue for the clinical treatment of bovine endometritis.

13.
Toxicol Res (Camb) ; 12(6): 1014-1023, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38145103

ABSTRACT

Mitochondria and endoplasmic reticulum (ER) are essential organelles playing pivotal roles in the regulation of cellular metabolism, energy production, and protein synthesis. In addition, these organelles are important targets susceptible to external stimuli, such as environmental pollutants. Exposure to environmental pollutants can cause the mitochondrial damage, endoplasmic reticulum stress (ERS), and oxidative stress, leading to cellular dysfunction and death. Therefore, understanding the toxic effects and molecular mechanisms of environmental pollution underlying these processes is crucial for developing effective strategies to mitigate the adverse effects of environmental pollutants on human health. In the present study, we summarized and reviewed the toxic effects and molecular mechanisms of mitochondrial damage, ERS, and oxidative stress caused by exposure to environmental pollutants as well as interactions inducing the cell apoptosis and the roles in exposure to environmental pollutants.

14.
Environ Sci Technol ; 57(39): 14493-14501, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37726893

ABSTRACT

Escalating the production and application of tungsten disulfide (WS2) nanosheets inevitably increases environmental human exposure and warrants the necessity of studies to elucidate their biological impacts. Herein, we assessed the toxicity of WS2 nanosheets and focused on the impacts of low doses (≤10 µg/mL) on normal (BEAS-2B) and tumorigenic (A549) lung epithelial cells. The low doses, which approximate real-world exposures, were found to induce cell apoptosis, while doses ≥ 50 µg/mL cause necrosis. Focused studies on low-dose exposure to WS2 nanosheets revealed more details of the impacts on both cell lines, including reduction of cell metabolic activity, induction of lipid peroxidation in cell membranes, and uncoupling of mitochondrial oxidative phosphorylation that led to the loss of ATP production. These phenomena, along with the expression situations of a few key proteins involved in apoptosis, point toward the occurrence of mitochondria-dependent apoptotic signaling in exposed cells. Substantial differences in responses to WS2 exposure between normal and tumorigenic lung epithelial cells were noticed as well. Specifically, BEAS-2B cells experienced more adverse effects and took up more nanosheets than A549 cells. Our results highlight the importance of dose and cell model selection in the assessment of nanotoxicity. By using doses consistent with real-world exposures and comparing normal and diseased cells, we can gain knowledge to guide the development of safety precautions for mitigating the adverse impacts of nanomaterial exposure on human health.

15.
Toxics ; 11(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37235267

ABSTRACT

Metallic nanomaterials (MNMs) are widely used in the medical field because of their photocatalytic, optical, electrical, electronic, antibacterial, and bactericidal properties. Despite the advantages of MNMs, there is a lack of complete understanding of their toxicological behavior and their interactions with cellular mechanisms that determine cell fate. Most of the existing studies are acute toxicity studies with high doses, which is not conducive to understanding the toxic effects and mechanisms of homeostasis-dependent organelles, such as mitochondria, which are involved in many cellular functions. In this study, four types of MNMs were used to investigate the effects of metallic nanomaterials on mitochondrial function and structure. We first characterized the four MNMs and selected the appropriate sublethal concentration for application in cells. Mitochondrial characterization, energy metabolism, mitochondrial damage, mitochondrial complex activity, and expression levels were evaluated using various biological methods. The results showed that the four types of MNMs greatly inhibited mitochondrial function and cell energy metabolism and that the material entering the mitochondria damaged the mitochondrial structure. Additionally, the complex activity of mitochondrial electron transport chains is critical for assessing the mitochondrial toxicity of MNMs, which may serve as an early warning of MNM-induced mitochondrial dysfunction and cytotoxicity.

16.
Dose Response ; 21(2): 15593258231169392, 2023.
Article in English | MEDLINE | ID: mdl-37113652

ABSTRACT

Excessive manganese (Mn) exposure produces neurotoxicity with mitochondrial damage. Mitophagy is a protective mechanism to eliminate damaged mitochondria to protect cells. The aim of this study was to determine the dose-response of Mn-induced mitochondria damage, the expression of mitophagy-mediated protein PINK1/Parkin and mitophagy in dopamine-producing SK-N-SH cells. Cells were exposed to 0, 300, 900, and 1500 µM Mn2+ for 24 h, and ROS production, mitochondrial damage and mitophagy were examined. The levels of dopamine were detected by ELISA and neurotoxicity and mitophagy-related proteins (α-synuclein, PINK1, Parkin, Optineurin, and LC3II/I) were detected by western blot. Mn increased intracellular ROS and apoptosis and decreased mitochondrial membrane potential in a concentration-dependent manner. However, at the low dose of 300 µM Mn, autophagosome was increased 11-fold, but at the high dose of 1500 µM, autophagosome was attenuated to 4-fold, together with decreased mitophagy-mediated protein PINK1/Parkin and LC3II/I ratio and increased Optineurin expression, resulting in increased α-synuclein accumulation and decreased dopamine production. Thus, Mn-induced mitophagy exhibited a novel biphasic regulation: at the low dose, mitophagy is activated to eliminate damaged mitochondria, however, at the high dose, cells gradually loss the adaptive machinery, the PINK1/Parkin-mediated mitophagy weakened, resulting in neurotoxicity.

17.
Acta Biomater ; 160: 211-224, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36792045

ABSTRACT

Chemodynamic therapy (CDT) can effectively induce immunogenic cell death (ICD) in tumours and is thus a promising strategy for boosting the efficacy of immunotherapy. However, the mechanism by which CDT enhances ICD and lowers ICD efficiency is unknown and this restricts its clinical application. In this study, a second near-infrared (NIR-II) window irradiation-triggered hydrogen peroxide (H2O2) self-supplying nanocomposite ((Cu2Se-CaO2)@LA) was constructed. The modified lauric acid was melted by the heat energy of the NIR-II irradiation, to expose the CaO2 nanoparticles, and they then reacted with water to produce H2O2 and Ca2+. H2O2 was then converted to hydroxyl radicals by the photothermal-enhanced CDT process of the Cu2Se nanocubes. Notably, the CDT and Ca2+ overload was found to induce sequential damage to the mitochondria and endoplasmic reticulum (ER), which upregulated the PERK-mediated eIF2α phosphorylation pathway and caused subsequent ICD. NIR-II irradiation of the (Cu2Se-CaO2)@LA also increased reactive oxygen species (ROS) formation and this was sufficient to increase dendritic cell maturation, attracting cytotoxic T lymphocytes, and suppressing tumour growth in vivo. Overall, we demonstrated that an enhanced CDT strategy under NIR-II exposure and H2O2 self-supply can induce extensive ICD by inducing mitochondria-associated ER stress, which represents a highly effective and promising strategy for ICD amplification and tumour immunotherapy. STATEMENT OF SIGNIFICANCE: In this study, a second near-infrared window (NIR-II) irradiation-triggered and H2O2 self-supplying nanocomposite (named (Cu2Se-CaO2)@LA) was constructed and tested both in vitro and in vivo. These nanoparticles demonstrated promising antitumor activity as designed. Mechanistically, the nanoparticles could damage mitochondria and upregulate the PERK-mediated eIF2αphosphorylation pathway, further causing endoplasmic reticulum stress, and inducing immunogenic cell death through dendritic cell maturation and cytotoxic T lymphocyte recruitment augmented activity. This system represents a highly effective and promising strategy for enhancing tumor immunotherapy and provides new insights for future studies and design refinements.


Subject(s)
Nanoparticles , Neoplasms , Humans , Cell Line, Tumor , Endoplasmic Reticulum Stress , Hydrogen Peroxide/pharmacology , Immunogenic Cell Death , Immunotherapy , Reactive Oxygen Species , eIF-2 Kinase/metabolism , Eukaryotic Initiation Factor-2/metabolism
18.
Redox Biol ; 59: 102547, 2023 02.
Article in English | MEDLINE | ID: mdl-36481733

ABSTRACT

We have previously shown that a fatty acid-binding protein7 (FABP7) inhibitor ameliorates cerebral ischemia-reperfusion injury in mice, suggesting an association between FABPs and ischemic neuronal injury. However, the precise role of FABPs in ischemic neuronal injury remains unclear. In this study, we investigated the role of FABPs in ischemia-reperfusion neuronal injury. FABP3, FABP5, and FABP7 were upregulated in the ischemic penumbra regions in mice. However, only FABP3 and FABP5 were expressed in injured neurons. Furthermore, FABP3 and FABP5 accumulated in the mitochondria of ischemic neurons. Overexpressing either FABP3 or FABP5 aggravated the reduced mitochondrial membrane potential and induced cell death in human neuroblastoma SH-SY5Y cells during oxidative stress. This damage was mediated by the formation of BAX-containing pores in the mitochondrial membrane. Moreover, FABP5 mediates lipid peroxidation and generates toxic by-products (i.e., 4-HNE) in SH-SY5Y cells. HY11-08 (HY08), a novel FABP3 and 5 inhibitor that does not act on FABP7, significantly reduced cerebral infarct volume and blocked FABP3/5-induced mitochondrial damage, including lipid peroxidation and BAX-related apoptotic signaling. Thus, FABP3 and FABP5 are key players in triggering mitochondrial damage in ischemic neurons. In addition, the novel FABP inhibitor, HY08, may be a potential neuroprotective treatment for ischemic stroke.


Subject(s)
Neuroblastoma , Reperfusion Injury , Animals , Humans , Mice , bcl-2-Associated X Protein/metabolism , Fatty Acid-Binding Proteins/genetics , Ischemia/metabolism , Neuroblastoma/metabolism , Neurons/metabolism , Reperfusion Injury/metabolism
19.
ACS Nano ; 16(10): 15977-15993, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36190834

ABSTRACT

The number of patients who benefit from acquired immunotherapy is limited. Stimulator of interferon genes (STING) signal activation is a significant component to enhance innate immunity, which has been used to realize broad-spectrum immunotherapy. Here, M@P@HA nanoparticles, as a STING signal amplifier, are constructed to enhance innate immunotherapy. Briefly, when M@P@HA was targeted into tumor cells, the nanoparticles decomposed with Mn2+ and activated the release of protoporphyrin (PpIX). Under light irradiation, the generated reactive oxygen species disrupt the cellular redox homeostasis to lead cytoplasm leakage of damaged mitochondrial double-stranded (ds) DNA, which is the initiator of the STING signal. Simultaneously, Mn2+ as the immunoregulator could significantly increase the activity of related protein of a STING signal, such as cyclic GMP-AMP synthase (cGAS) and STING, to further amplify the STING signal of tumor cells. Subsequently, the STING signal of tumor-associated macrophages (TAM) is also activated by capturing dsDNA and Mn2+ that escaped from tumor cells, so as to enhance innate immunity. It is found that, by amplifying the STING signal of tumor tissue, M@P@HA could not only activate innate immunity but also cascade to activate CD8+ T cell infiltration even in a tumor with low immunogenicity.


Subject(s)
Membrane Proteins , Protoporphyrins , Humans , Reactive Oxygen Species , Membrane Proteins/metabolism , Signal Transduction , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Immunity, Innate , Immunotherapy , DNA/metabolism , Interferons
20.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077566

ABSTRACT

Zearalenone (ZEA) is a fungal mycotoxin known to exert strong reproductive toxicity in animals. As a newly identified type of programmed cell death, necroptosis is regulated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like pseudokinase (MLKL). However, the role and mechanism of necroptosis in ZEA toxicity remain unclear. In this study, we confirmed the involvement of necroptosis in ZEA-induced cell death in goat endometrial stromal cells (gESCs). The release of lactate dehydrogenase (LDH) and the production of PI-positive cells markedly increased. At the same time, the expression of RIPK1 and RIPK3 mRNAs and P-RIPK3 and P-MLKL proteins were significantly upregulated in ZEA-treated gESCs. Importantly, the MLKL inhibitor necrosulfonamide (NSA) dramatically attenuated gESCs necroptosis and powerfully blocked ZEA-induced reactive oxygen species (ROS) generation and mitochondrial dysfunction. The reactive oxygen species (ROS) scavengers and N-acetylcysteine (NAC) inhibited ZEA-induced cell death. In addition, the inhibition of MLKL alleviated the intracellular Ca2+ overload caused by ZEA. The calcium chelator BAPTA-AM markedly suppressed ROS production and mitochondrial damage, thus inhibiting ZEA-induced necroptosis. Therefore, our results revealed the mechanism by which ZEA triggers gESCs necroptosis, which may provide a new therapeutic strategy for ZEA poisoning.


Subject(s)
Necroptosis , Zearalenone , Animals , Calcium/metabolism , Calcium, Dietary , Goats/metabolism , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Stromal Cells/metabolism , Zearalenone/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL