Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Brief Funct Genomics ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880995

ABSTRACT

40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.

2.
J Transl Med ; 22(1): 419, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702818

ABSTRACT

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Subject(s)
Apoptosis , Cell Proliferation , Glioblastoma , Mitochondria , Organelle Biogenesis , Vascular Endothelial Growth Factor Receptor-2 , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy , Vascular Endothelial Growth Factor Receptor-2/metabolism , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
3.
Free Radic Biol Med ; 222: 106-121, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797339

ABSTRACT

PURPOSE: Severe dry eye disease causes ocular surface damage, which is highly associated with mitochondrial dysfunction. Mitochondrial transcription factor A (TFAM) is essential for packaging mitochondrial DNA (mtDNA) and is crucial for maintaining mitochondrial function. Herein, we aimed to explore the effect of a decreased TFAM expression on ocular surface damage. METHODS: Female C57BL/6 mice were induced ocular surface injury by topical administrating benzalkonium chloride (BAC). Immortalized human corneal epithelial cells (HCECs) were stimulated by tert-butyl hydroperoxide (t-BHP) to create oxidative stress damage. HCECs with TFAM knockdown were established. RNA sequencing was employed to analyze the whole-genome expression. Mitochondrial changes were measured by transmission electron microscopy, Seahorse metabolic flux analysis, mitochondrial membrane potential, and mtDNA copy number. TFAM expression and inflammatory cytokines were determined using RT-qPCR, immunohistochemistry, immunofluorescence, and immunoblotting. RESULTS: In both the corneas of BAC-treated mice and t-BHP-induced HCECs, we observed impaired TFAM expression, accompanied by mitochondrial structure and function defects. TFAM downregulation in HCECs suppressed mitochondrial respiratory capacity, reduced mtDNA content, induced mtDNA leakage into the cytoplasm, and led to inflammation. RNA sequencing revealed the absent in melanoma 2 (AIM2) inflammasome was activated in the corneas of BAC-treated mice. The AIM2 inflammasome activation was confirmed in TFAM knockdown HCECs. TFAM knockdown in t-BHP-stimulated HCECs aggravated mitochondrial dysfunction and the AIM2 inflammasome activation, thereby further triggering the secretion of inflammatory factors such as interleukin (IL) -1ß and IL-18. CONCLUSIONS: TFAM reduction impaired mitochondrial function, activated AIM2 inflammasome and promoted ocular surface inflammation, revealing an underlying molecular mechanism for ocular surface disorders.

4.
Int Immunopharmacol ; 133: 112012, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38657501

ABSTRACT

Alveolar macrophages (AMs) seed in lung during embryogenesis and become mature in perinatal period. Establishment of acclimatization to environmental challenges is important, whereas the detailed mechanisms that drive metabolic adaptation of AMs remains to be elucidated. Here, we showed that energy metabolism of AMs was transformed from glycolysis prenatally to oxidative phosphorylation (OXPHOS) postnatally accompanied by up-regulated expression of mitochondrial transcription factor A (TFAM). TFAM deficiency disturbed mitochondrial stability and decreased OXPHOS, which finally impaired AM maintenance and function, but not AM embryonic development. Mechanistically, Tfam-deletion resulted in impaired mitochondrial respiration and decreased ATP production, which triggered endoplasmic reticulum (ER) stress to cause B cell lymphoma 2 ovarian killer (BOK) accumulation and abnormal distribution of intracellular Ca2+, eventually led to induce AM apoptotic death. Thus, our data illustrated mitochondrial-dependent OXPHOS played a key role in orchestrating AM postnatal metabolic adaptation.


Subject(s)
Lung , Macrophages, Alveolar , Mitochondria , Oxidative Phosphorylation , Animals , Macrophages, Alveolar/metabolism , Mitochondria/metabolism , Mice , Lung/metabolism , Adaptation, Physiological , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Endoplasmic Reticulum Stress , Mice, Knockout , Apoptosis , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Female , Glycolysis , Adenosine Triphosphate/metabolism , High Mobility Group Proteins
5.
Mol Cell Biochem ; 479(2): 431-444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37084167

ABSTRACT

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.


Subject(s)
Colitis, Ulcerative , Genistein , Animals , Rats , Genistein/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Caspase 3 , Caspase 9 , Caspase 8 , Antioxidants/pharmacology , NF-E2-Related Factor 2 , Organelle Biogenesis , bcl-2-Associated X Protein
6.
J Assist Reprod Genet ; 41(2): 363-370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38079076

ABSTRACT

OBJECTIVE: In vitro fertilization-embryo transfer (IVF-ET) is a widely used treatment for infertility, with oocyte maturation and quality having a significant impact on oocyte fertilization, embryo development, and fetal growth. Mitochondrial transcription factor A (TFAM) is essential for maintaining the mitochondrial oxidative respiratory chain and supplying energy for oocyte development, fertilization, and embryonic development. In this study, we aimed to examine TFAM expression in women undergoing IVF-ET and assess its impact on the IVF outcomes. METHODS: We recruited 85 women who underwent IVF-ET treatment for infertility. On the date of egg collection, granulosa cells were extracted from the clear follicular fluid of the first mature egg using ultrasound-guided needle aspiration. The collected granulosa cells served three purposes: (1) detecting TFAM gene expression in granulosa cells via immunocytochemistry, (2) determining TFAM mRNA expression using reverse transcription-PCR (RT-PCR), and (3) measuring TFAM protein expression through western blotting. RESULT: Based on the results, we found that TFAM was localized and expressed in the cytoplasm of granulosa cells, whereas no expression was detected in the nucleus. Granulosa cells exhibited a linear correlation between TFAM mRNA and TFAM protein expression. The study participants were divided into three groups using the ternary method based on relative TFAM mRNA expression thresholds of 33% and 76%: the low-expression group (n = 30), the moderate-expression group (n = 27), and the high-expression group (n = 28). When compared to the other two groups, the moderate expression group exhibited a significantly higher egg utilization rate, 2 pronucleus rate, fertilization rate, and clinical pregnancy rate (P < 0.05). CONCLUSION: TFAM was detected in the cytoplasm of human ovarian granulosa cells. Women with moderate TFAM expression demonstrate enhanced outcomes in IVF.


Subject(s)
DNA-Binding Proteins , Fertilization in Vitro , Infertility , Mitochondrial Proteins , Transcription Factors , Pregnancy , Humans , Female , Granulosa Cells/metabolism , Infertility/therapy , Oocytes/metabolism , RNA, Messenger/metabolism
7.
Arch Insect Biochem Physiol ; 115(1): e22062, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37905458

ABSTRACT

Mitochondria are essential organelles for maintaining vital cellular functions, and microRNAs (miRNAs) regulate gene expression posttranscriptionally. miRNAs exhibit tissue and time-specific patterns in mitochondria and specifically mitochondrial miRNAs (mitomiRs) can regulate the mRNA expression both originating from mitochondrial and nuclear transcription which affect mitochondrial metabolic activity and cell homeostasis. In this study, miRNAs of two insect species, Syrista parreyssi (Hymenoptera) and Lepisma saccharina (Zygentoma), were investigated for the first time. The known and possible novel miRNAs were predicted and characterized and their potential effects on mitochondrial transcription were investigated in these insect species using deep sequencing. The previously reported mitomiRs were also investigated and housekeeping miRNAs were characterized. miRNAs that are involved in mitochondrial processes such as apoptosis and signaling and that affect genes encoding the subunits of OXPHOS complexes have been identified in each species. Here, 81 and 161 novel mature miRNA candidates were bioinformatically predicted and 9 and 24 of those were aligned with reference mitogenomes of S. parreyssi and L. saccharina, respectively. As a result of RNAHybrid analysis, 51 and 69 potential targets of miRNAs were found in the mitogenome of S. parreyssi and L. saccharina, respectively. cox1 gene was the most targeted gene and cytB, rrnS, and rrnL genes were highly targeted in both of the species by novel miRNAs, hypothetically. We speculate that these novel miRNAs, originating from or targeting mitochondria, influence on rRNA genes or positively selected mitochondrial protein-coding genes. These findings may provide a new perspective in evaluating miRNAs for maintaining mitochondrial function and transcription.


Subject(s)
Hymenoptera , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Lepisma/genetics , Hymenoptera/genetics , Hymenoptera/metabolism , Gene Expression Regulation , Mitochondria/genetics , Mitochondria/metabolism
8.
Mol Neurobiol ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087167

ABSTRACT

Mitochondrial transcription factor A (TFAM) is a mitochondrial protein encoded by nuclear genes and transported from the cytoplasm to the mitochondria. TFAM is essential for the maintenance, expression, and delivery of mitochondrial DNA (mtDNA) and can regulate the replication and transcription of mtDNA. TFAM is associated with the formation of mtDNA nucleomimetic structures, mtDNA repair, and mtDNA stability. However, the mechanism by which TFAM protects mtDNA is still being studied. This review provides a summary of the protective mechanism of TFAM on mtDNA including the discrete regulatory effects of TFAM acetylation and phosphorylation on mtDNA, the regulation of Ca2+ levels by TFAM to activate transcription in mitochondria, and the increased binding of TFAM to mtDNA damage hot spots. This review also discusses the association between TFAM and some neurodegenerative diseases.

9.
Cells ; 12(19)2023 10 03.
Article in English | MEDLINE | ID: mdl-37830611

ABSTRACT

Mitochondrial dysfunction has been described in many neurodegenerative disorders; however, there is less information regarding mitochondrial deficits in Machado-Joseph disease (MJD), a polyglutamine (polyQ) disorder caused by CAG repeat expansion in the ATXN3 gene. In the present study, we characterized the changes in mitochondrial function and biogenesis markers in two MJD models, CMVMJD135 (MJD135) transgenic mice at a fully established phenotype stage and tetracycline-regulated PC6-3 Q108 cell line expressing mutant ataxin-3 (mATXN3). We detected mATXN3 in the mitochondrial fractions of PC6-3 Q108 cells, suggesting the interaction of expanded ATXN3 with the organelle. Interestingly, in both the cerebella of the MJD135 mouse model and in PC6-3 Q108 cells, we found decreased mitochondrial respiration, ATP production and mitochondrial membrane potential, strongly suggesting mitochondrial dysfunction in MJD. Also, in PC6-3 Q108 cells, an additional enhanced glycolytic flux was observed. Supporting the functional deficits observed in MJD mitochondria, MJD135 mouse cerebellum and PC6-3 Q108 cells showed reduced cytochrome c mRNA and protein levels. Overall, our findings show compromised mitochondrial function associated with decreased cytochrome c levels in both cell and animal models of MJD.


Subject(s)
Machado-Joseph Disease , Mice , Animals , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Cytochromes c/metabolism , Nerve Tissue Proteins/metabolism , Repressor Proteins/metabolism , Mice, Transgenic , Mitochondria/metabolism , Disease Models, Animal
10.
EMBO J ; 42(18): e113256, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37439264

ABSTRACT

Replication of the mitochondrial genome and expression of the genes it encodes both depend on a sufficient supply of nucleotides to mitochondria. Accordingly, dysregulated nucleotide metabolism not only destabilises the mitochondrial genome, but also affects its transcription. Here, we report that a mitochondrial nucleoside diphosphate kinase, NME6, supplies mitochondria with pyrimidine ribonucleotides that are necessary for the transcription of mitochondrial genes. Loss of NME6 function leads to the depletion of mitochondrial transcripts, as well as destabilisation of the electron transport chain and impaired oxidative phosphorylation. These deficiencies are rescued by an exogenous supply of pyrimidine ribonucleosides. Moreover, NME6 is required for the maintenance of mitochondrial DNA when the access to cytosolic pyrimidine deoxyribonucleotides is limited. Our results therefore reveal an important role for ribonucleotide salvage in mitochondrial gene expression.


Subject(s)
Genes, Mitochondrial , Pyrimidines , Pyrimidines/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Nucleotides , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Ribonucleotides/genetics
11.
Heliyon ; 9(6): e17588, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37408910

ABSTRACT

Kaempferia galanga L. shows anti-cancer effects; however, the underling mechanism remains unclear. In this study, we explored the underlying mechanism of the anti-cancer effects of Kaempferia galanga L. Kaempferia galanga L. rhizome extracts (KGEs) suppressed Ehrlich ascites tumor cell (EATC) proliferation by inhibiting S-phase progression. The main component of KGE is ethyl p-methoxycinnamate (EMC), which exhibits the same anti-proliferative effect as KGE. Furthermore, EMC induced the downregulation of cyclin D1 and upregulation of p21. EMC also decreased the expression of mitochondrial transcription factor A (TFAM) but did not significantly change mitochondrial DNA copy number and membrane potential. Phosphorylation at Ser62 of c-Myc, a transcription factor of TFAM, was decreased by EMC treatment, which might be due to the suppression of H-ras expression. These results indicate that EMC is the active compound responsible for the anti-cancer effect of KGE and suppresses EATC proliferation by regulating the protein expression of cyclin D1 and p21; TFAM may also regulate the expression of these genes. In addition, we investigated the anticancer effects of KGE and EMC in vivo using EATC bearing mice. The volume of ascites fluid was significantly increased by intraperitoneal administration of EATC. However, the increase in the volume of ascites fluid was suppressed by oral administration of EMC and KGE. This study provides novel insights into the association between the anti-cancer effects of natural compounds and TFAM, indicating that TFAM might be a potential therapeutic target.

12.
Biomedicines ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37371693

ABSTRACT

Transcription of the mitochondrial genome is essential for the maintenance of oxidative phosphorylation (OXPHOS) and other functions directly related to this unique genome. Considerable evidence suggests that mitochondrial transcription is dysregulated in cancer and cancer metastasis and contributes significantly to cancer cell metabolism. Recently, inhibitors of the mitochondrial DNA-dependent RNA polymerase (POLRMT) were identified as potentially attractive new anti-cancer compounds. These molecules (IMT1, IMT1B) inactivate cancer cell metabolism through reduced transcription of mitochondrially-encoded OXPHOS subunits such as ND1-5 (Complex I) and COI-IV (Complex IV). Studies from our lab have discovered small molecule regulators of the mitochondrial matrix caseinolytic protease (ClpP) as probable inhibitors of mitochondrial transcription. These compounds activate ClpP proteolysis and lead to the rapid depletion of POLRMT and other matrix proteins, resulting in inhibition of mitochondrial transcription and growth arrest. Herein we present a comparison of POLRMT inhibition and ClpP activation, both conceptually and experimentally, and evaluate the results of these treatments on mitochondrial transcription, inhibition of OXPHOS, and ultimately cancer cell growth. We discuss the potential for targeting mitochondrial transcription as a cancer cell vulnerability.

13.
Biology (Basel) ; 12(6)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372108

ABSTRACT

Transcription Factor A Mitochondrial (TFAM), through its contributions to mtDNA maintenance and expression, is essential for cellular bioenergetics and, therefore, for the very survival of cells. Thirty-five years of research on TFAM structure and function generated a considerable body of experimental evidence, some of which remains to be fully reconciled. Recent advancements allowed an unprecedented glimpse into the structure of TFAM complexed with promoter DNA and TFAM within the open promoter complexes. These novel insights, however, raise new questions about the function of this remarkable protein. In our review, we compile the available literature on TFAM structure and function and provide some critical analysis of the available data.

14.
Plant J ; 115(4): 910-925, 2023 08.
Article in English | MEDLINE | ID: mdl-37133286

ABSTRACT

Mesocotyl length (ML) is a crucial factor in determining the establishment and yield of rice planted through dry direct seeding, a practice that is increasingly popular in rice production worldwide. ML is determined by the endogenous and external environments, and inherits as a complex trait. To date, only a few genes have been cloned, and the mechanisms underlying mesocotyl elongation remain largely unknown. Here, through a genome-wide association study using sequenced germplasm, we reveal that natural allelic variations in a mitochondrial transcription termination factor, OsML1, predominantly determined the natural variation of ML in rice. Natural variants in the coding regions of OsML1 resulted in five major haplotypes with a clear differentiation between subspecies and subpopulations in cultivated rice. The much-reduced genetic diversity of cultivated rice compared to the common wild rice suggested that OsML1 underwent selection during domestication. Transgenic experiments and molecular analysis demonstrated that OsML1 contributes to ML by influencing cell elongation primarily determined by H2 O2 homeostasis. Overexpression of OsML1 promoted mesocotyl elongation and thus improved the emergence rate under deep direct seeding. Taken together, our results suggested that OsML1 is a key positive regulator of ML, and is useful in developing varieties for deep direct seeding by conventional and transgenic approaches.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Base Sequence , Genetic Variation
15.
Respir Physiol Neurobiol ; : 104066, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37080370

ABSTRACT

We assessed mitochondrial replication, transcription, and function in the upper airways of obstructive sleep apnea (OSA) patients and the effects of uvulopalatopharyngoplasty. Twenty subjects with mild and 40 with moderate to severe OSA requiring uvulopalatopharyngoplasty were included. Mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in uvula specimens were assessed by immunohistochemical staining, and their mRNA and protein expression was examined using reverse-transcription polymerase chain reaction and western blotting, respectively. The mitochondrial to nuclear DNA (Mt/N) ratio in the blood, exhaled breath condensate (EBC), and uvula was measured using quantitative reverse-transcription polymerase chain reaction. TFAM and PGC-1α protein concentrations in the plasma and EBC were determined using enzyme-linked immunosorbent assay. All tested parameters were higher in the OSA group than in the control. Three months later, 21 uvulopalatopharyngoplasty-responsive patients with OSA showed decreased TFAM and PGC-1α concentrations and EBC Mt/N ratio while these remained high in 19 uvulopalatopharyngoplasty-unresponsive patients. The OSA group showed severe inflammation, increased mitochondrial replication and transcription-related signaling, and mitochondrial dysfunction in the uvula. Successful OSA treatment using uvulopalatopharyngoplasty restored the TFAM and PGC-1α levels and EBC Mt/N ratio.

16.
Apoptosis ; 28(7-8): 1048-1059, 2023 08.
Article in English | MEDLINE | ID: mdl-37060506

ABSTRACT

Vascular endothelial cell barrier disruption is a hallmark of sepsis-induced acute lung injury (ALI). Mesenchymal stem cells (MSCs)-based therapy has been regarded as a promising treatment for repairing injured lungs, and mitochondrial transfer was shown to be important for the therapeutic effects of MSCs. Here we investigated the ability of MSCs to modulate endothelial barrier integrity through mitochondrial transfer in sepsis-induced ALI. We found that mitochondrial transfer from MSCs to LPS-induced PMVECs through forming tunneling nanotubes (TNTs). Due to the inhibition of TNTs (using LAT-A), MSCs-mediated reparation on PMVECs functions, including cell apoptosis, MMP, ATP generation, TEER level and monolayer permeability of FITC-dextran were greatly inhibited. In addition, silencing of mitochondrial transcription factor A (TFAM) in MSCs could also partly inhibit the TNTs formation and aggravate the LPS-induced mitochondrial dysfunction and permeability barrier in PMVECs. Furthermore, the LPS-induced pulmonary edema and higher pulmonary vascular permeability were alleviated by MSCs while that of lung tissue bounced back after MSCs were pre-incubated by LAT-A and or down-regulation of TFAM. Therefore, we firstly revealed that regulation of TFAM expression in MSCs played a critical role to improve the permeability barrier of PMVECs by TNTs mediating mitochondrial transfer in sepsis-associated ALI. This study provided a new therapeutic strategy for the treatment of sepsis-induced ALI.


Subject(s)
Acute Lung Injury , Mesenchymal Stem Cells , Sepsis , Humans , Lipopolysaccharides , Apoptosis , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Lung/metabolism , Mitochondria , Mesenchymal Stem Cells/metabolism , Sepsis/complications , Sepsis/genetics , Sepsis/metabolism , Permeability , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Mitochondrial Proteins/metabolism
17.
Free Radic Biol Med ; 203: 45-57, 2023 07.
Article in English | MEDLINE | ID: mdl-37030337

ABSTRACT

Defective antioxidant system as well as mitochondrial dysfunction contributes to the pathogenesis and progression of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling is the central defensive mechanism against oxidative stress and therefore pharmacological activation of Nrf2 is a promising therapeutic strategy. In this study, using molecular docking we found that Astragaloside IV (AS-IV), an active ingredient from traditional formula of Huangqi decoction (HQD), exerted a higher potential to promote Nrf2 escape from Keap1-Nrf2 interaction via competitively bind to amino acid sites in Keap1. When podocyte exposed to high glucose (HG) stimulation, mitochondrial morphological alterations and podocyte apoptosis were presented and accompanied by Nrf2 and mitochondrial transcription factor A (TFAM) downregulation. Mechanistically, HG promoted a decrease in mitochondria-specific electron transport chain (ETC) complexes, ATP synthesis and mtDNA content as well as increased ROS production. Conversely, all these mitochondrial defects were dramatically alleviated by AS-IV, but suppression of Nrf2 with inhibitor or siRNA and TFAM siRNA simultaneously alleviated the AS-IV efficacy. Moreover, experimental diabetic mice exhibited significant renal injury as well as mitochondrial disorder, corresponding with the decreased expression of Nrf2 and TFAM. On the contrary, AS-IV reversed the abnormality and the Nrf2 and TFAM expression were also restored. Taken together, the present findings demonstrate the improvement of AS-IV on mitochondrial function, thereby resistance to oxidative stress-induced diabetic kidney injury and podocyte apoptosis, and the process is closely associated with activation of Nrf2-ARE/TFAM signaling.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Mice , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Podocytes/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Molecular Docking Simulation , Oxidative Stress , Mitochondria/metabolism , Apoptosis , RNA, Small Interfering/metabolism , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism
18.
J Nutr Biochem ; 116: 109322, 2023 06.
Article in English | MEDLINE | ID: mdl-36963731

ABSTRACT

Vitamin D receptor (VDR) is an essential transcription factor (TF) synthesized in different cell types. We hypothesized that VDR might also act as a mitochondrial TF. We conducted the experiments in primary cortical neurons, PC12, HEK293T, SH-SY5Y cell lines, human peripheral blood mononuclear cells (PBMC) and human brain. We showed that vitamin D/VDR affects the expression of mitochondrial DNA (mtDNA) encoded oxidative phosphorylation (OXPHOS) subunits. We observed the co-localization of VDR with mitochondria and the mtDNA with confocal microscopy. mtDNA-chromatin-immunoprecipitation and electrophoretic mobility shift assays indicated that VDR was able to bind to the mtDNA D-loop site in several locations, with a consensus sequence "MMHKCA." We also reported the possible interaction between VDR and mitochondrial transcription factor A (TFAM) and their binding sites located in close proximity in mtDNA. Consequently, our results showed for the first time that VDR was able to bind and regulate mtDNA transcription and interact with TFAM even in the human brain. These results not only revealed a novel function of VDR, but also showed that VDR is indispensable for energy demanded cells.


Subject(s)
DNA, Mitochondrial , Receptors, Calcitriol , Humans , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , HEK293 Cells , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Neuroblastoma , Receptors, Calcitriol/metabolism , Transcription Factors/metabolism
19.
Methods Mol Biol ; 2615: 121-137, 2023.
Article in English | MEDLINE | ID: mdl-36807789

ABSTRACT

Mitochondrial transcription factor A (TFAM) plays a key role in the organization and compaction of the mitochondrial genome. However, there are only a few simple and accessible methods available to observe and quantify TFAM-dependent DNA compaction. Acoustic Force Spectroscopy (AFS) is a straightforward single-molecule force spectroscopy technique. It allows one to track many individual protein-DNA complexes in parallel and to quantify their mechanical properties. Total internal reflection fluorescence (TIRF) microscopy is a high-throughput single-molecule technique that permits the real-time visualization of the dynamics of TFAM on DNA, parameters inaccessible with classical biochemistry tools. Here we describe, in detail, how to set up, perform, and analyze AFS and TIRF measurements to study DNA compaction by TFAM.


Subject(s)
DNA , Mechanical Phenomena , DNA/chemistry , Mitochondrial Proteins/genetics , Microscopy, Fluorescence/methods , Spectrum Analysis/methods , Acoustics , DNA, Mitochondrial/genetics
20.
Methods Mol Biol ; 2615: 139-151, 2023.
Article in English | MEDLINE | ID: mdl-36807790

ABSTRACT

Mitochondrial transcription factor A (TFAM) is a mitochondrial DNA (mtDNA)-binding protein that plays a crucial dual role in the initiation of mitochondrial transcription initiation and mtDNA maintenance. Because TFAM directly interacts with mtDNA, assessing its DNA-binding property can provide useful information. This chapter describes two in vitro assay methods, an electrophoretic mobility shift assay (EMSA) and a DNA-unwinding assay with recombinant TFAM proteins, which both require simple agarose gel electrophoresis. These are used to investigate the effects of mutations, truncation, and posttranslational modifications on this key mtDNA regulatory protein.


Subject(s)
DNA, Mitochondrial , Mitochondria , Humans , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Transcription, Genetic , Mitochondrial Proteins/metabolism , Gene Expression Regulation , Protein Binding , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...