Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Psychon Bull Rev ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354295

ABSTRACT

Theories of dynamic decision-making are typically built on evidence accumulation, which is modeled using racing accumulators or diffusion models that track a shifting balance of support over time. However, these two types of models are only two special cases of a more general evidence accumulation process where options correspond to directions in an accumulation space. Using this generalized evidence accumulation approach as a starting point, I identify four ways to discriminate between absolute-evidence and relative-evidence models. First, an experimenter can look at the information that decision-makers considered to identify whether there is a filtering of near-zero evidence samples, which is characteristic of a relative-evidence decision rule (e.g., diffusion decision model). Second, an experimenter can disentangle different components of drift rates by manipulating the discriminability of the two response options relative to the stimulus to delineate the balance of evidence from the total amount of evidence. Third, a modeler can use machine learning to classify a set of data according to its generative model. Finally, machine learning can also be used to directly estimate the geometric relationships between choice options. I illustrate these different approaches by applying them to data from an orientation-discrimination task, showing converging conclusions across all four methods in favor of accumulator-based representations of evidence during choice. These tools can clearly delineate absolute-evidence and relative-evidence models, and should be useful for comparing many other types of decision theories.

2.
Genome Biol Evol ; 16(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39332907

ABSTRACT

Relaxing the molecular clock using models of how substitution rates change across lineages has become essential for addressing evolutionary problems. The diversity of rate evolution models and their implementations are substantial, and studies have demonstrated their impact on divergence time estimates can be as significant as that of calibration information. In this review, we trace the development of rate evolution models from the proposal of the molecular clock concept to the development of sophisticated Bayesian and non-Bayesian methods that handle rate variation in phylogenies. We discuss the various approaches to modeling rate evolution, provide a comprehensive list of available software, and examine the challenges and advancements of the prevalent Bayesian framework, contrasting them to faster non-Bayesian methods. Lastly, we offer insights into potential advancements in the field in the era of big data.


Subject(s)
Bayes Theorem , Evolution, Molecular , Models, Genetic , Phylogeny , Software
3.
Environ Res ; 263(Pt 1): 120036, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39304014

ABSTRACT

Elucidating exposure risks associated with the most widely used agrochemicals and their metabolites in celery agrosystems are vital for food safety and human health. The occurrence, distribution, dissipation and metabolism of imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THM) and difenoconazole (DIF) in celery tissues reflected by initial depositions, uptake characteristics, half-lives, concentration variations. DIF exhibited unacceptable ecological risk to soil organisms under multi-risk evaluation models, including toxicity exposure ratio, risk quotient, and BITSSD model. The joint dietary risks of target pesticides were 37.273-647.454% and 0.400-2522.016% based on deterministic and probabilistic models, with non-carcinogenic risks of 30.207-85.522% and 1.229-2524.662%, respectively. Children aged 1-6 years suffered the highest exposure, with the leaves posing higher risk than other tissues. Long-term exposure risks should be continuously assessed for ecological sustainability and human health, given the widespread usage and cumulative effects of target pesticides, especially for rural children.

4.
Sci Rep ; 14(1): 21047, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251834

ABSTRACT

Prediction of water-conducting fractured zone (WCFZ) of mine overburden is the premise for reducing or eliminating water inrush hazards in undersea mining. To obtain a more robust and precise prediction of WCFZ in undersea mining, a WCFZ prediction dataset with 122 cases of fractured zones was constructed. Five machine learning algorithms (linear regression, XGBRegressor, RandomForestRegressor, LineareSVR, and KNeighborsRegressor) were employed to develop five corresponding predictive models, taking multiple factors into account.The optimal parameters for each model are obtained through ten-fold cross-validation (10CV). The model's predictive performance was validated and assessed using two metrics, namely the coefficient of determination (R2) and mean squared error (MSE). A comparison was made with the regression performance of commonly used empirical formulas. The results indicate that the constructed model outperforms reliance solely on theoretical criteria, showing a high R2 value of up to 0.925 and a low MSE value of 3.61. The proposed model was validated in a recently established mining area on Sanshan Island, China. It shows low absolute and relative errors of 0.71 m and 2.01%, respectively, between the predicted value from the model and observation result from the field, demonstrating a high level of consistency with on-site conditions. This paves a path to leveraging machine learning algorithms for predicting the height of WCFZ.

5.
ESC Heart Fail ; 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39243187

ABSTRACT

AIMS: Heart failure with reduced ejection fraction (HFrEF) is a leading cause of death worldwide; thus, therapeutic improvements are needed. In vivo preclinical models are essential to identify molecular drug targets for future therapies. Transverse aortic constriction (TAC) is a well-established model of HFrEF; however, highly experienced personnel are needed for the surgery, and several weeks of follow-up are necessary to develop HFrEF. To this end, we aimed (i) to develop an easy-to-perform mouse model of HFrEF by treating Balb/c mice with angiotensin-II (Ang-II) for 2 weeks by minipump and (ii) to compare its cardiac phenotype and transcriptome to the well-established TAC model of HFrEF in C57BL/6J mice. METHODS: Mortality and gross pathological data, cardiac structural and functional characteristics assessed by echocardiography and immunohistochemistry and differential gene expression obtained by RNA-sequencing and gene-ontology analyses were used to characterize and compare the two models. To achieve statistical comparability between the two models, changes in treatment groups related to the corresponding control were compared (ΔTAC vs. ΔAng-II). RESULTS: Compared with the well-established TAC model, chronic Ang-II treatment of Balb/c mice shares similarities in cardiac systolic functional decline (left ventricular ejection fraction: -57.25 ± 7.17% vs. -43.68 ± 5.31% in ΔTAC vs. ΔAng-II; P = 0.1794) but shows a lesser degree of left ventricular dilation (left ventricular end-systolic volume: 190.81 ± 44.13 vs. 57.37 ± 10.18 mL in ΔTAC vs. ΔAng-II; P = 0.0252) and hypertrophy (cell surface area: 58.44 ± 6.1 vs. 10.24 ± 2.87 µm2 in ΔTAC vs. ΔAng-II; P < 0.001); nevertheless, transcriptomic changes in the two HFrEF models show strong correlation (Spearman's r = 0.727; P < 0.001). In return, Ang-II treatment in Balb/c mice needs significantly less procedural time [38 min, interquartile range (IQR): 31-46 min in TAC vs. 6 min, IQR: 6-7 min in Ang-II; P < 0.001] and surgical expertise, is less of an object for peri-procedural mortality (15.8% in TAC vs. 0% in Ang-II; P = 0.105) and needs significantly shorter follow-up for developing HFrEF. CONCLUSIONS: Here, we demonstrate for the first time that chronic Ang-II treatment of Balb/c mice is also a relevant, reliable but significantly easier-to-perform preclinical model to identify novel pathomechanisms and targets in future HFrEF research.

6.
Sci Rep ; 14(1): 20454, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227663

ABSTRACT

Net radiation (Rn), a critical component in land surface energy cycling, is calculated as the difference between net shortwave radiation and longwave radiation at the Earth's surface and holds significant importance in crop models for precision agriculture management. In this study, we examined the performance of four machine learning models, including extreme learning machine (ELM), hybrid artificial neural networks with genetic algorithm models (GANN), generalized regression neural networks (GRNN), and random forests (RF), in estimating daily Rn at four representative sites across different climatic zones of China. The input variables included common meteorological factors such as minimum and maximum temperature, relative humidity, sunshine duration, and shortwave solar radiation. Model performance was assessed and compared using statistical parameters such as the correlation coefficient (R2), root mean square errors (RMSE), mean absolute errors (MAE), and Nash-Sutcliffe coefficient (NS). The results indicated that all models slightly underestimated actual Rn, with linear regression slopes ranging from 0.810 to 0.870 across different zones. The estimated Rn was found to be comparable to observed values in terms of data distribution characteristics. Among the models, the ELM and GANN demonstrated higher consistency with observed values, exhibiting R2 values ranging from 0.838 to 0.963 and 0.836 to 0.963, respectively, across varying climatic zones. These values surpassed those of the RF (0.809-0.959) and GRNN (0.812-0.949) models. Additionally, the ELM and GANN models showed smaller simulation errors in terms of RMSE, MAE, and NS across the four climatic zones compared to the RF and GRNN models. Overall, the ELM and GANN models outperformed the RF and GRNN models. Notably, the ELM model's faster computational speed makes it a strong recommendation for Rn estimates across different climatic zones of China.

7.
Cognition ; 252: 105918, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39153444

ABSTRACT

Despite proportional information being ubiquitous, there is not a standard account of proportional reasoning. Part of the difficulty is that there are several apparent contradictions: in some contexts, proportion is easy and privileged, while in others it is difficult and ignored. One possibility is that although we see similarities across tasks requiring proportional reasoning, people approach them with different strategies. We test this hypothesis by implementing strategies computationally and quantitatively comparing them with Bayesian tools, using data from continuous (e.g., pie chart) and discrete (e.g., dots) stimuli and preschoolers, 2nd and 5th graders, and adults. Overall, people's comparisons of highly regular and continuous proportion are better fit by proportion strategy models, but comparisons of discrete proportion are better fit by a numerator comparison model. These systematic differences in strategies suggest that there is not a single, simple explanation for behavior in terms of success or failure, but rather a variety of possible strategies that may be chosen in different contexts.


Subject(s)
Bayes Theorem , Cognition , Humans , Child, Preschool , Adult , Child , Cognition/physiology , Male , Female , Young Adult , Problem Solving/physiology , Models, Psychological
8.
Sci Rep ; 14(1): 18964, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152170

ABSTRACT

Accurately and quickly estimating the soil organic carbon (SOC) content is crucial in the monitoring of global carbon. Environmental variables play a significant role in improving the accuracy of the SOC content estimation model. This study focuses on modeling methodologies and environmental variables, which significantly influence the SOC content estimation model. The modeling methods used in this research comprise multiple linear regression (MLR), partial least squares regression (PLSR), random forest, and support vector machines (SVM). The analyzed environmental variables include terrain, climate, soil, and vegetation cover factors. The original spectral reflectance (OSR) of Landsat 5 TM images and the spectral reflectivity after the derivative processing were combined with the above environmental variables to estimate SOC content. The results showed that: (1) The SOC content can be efficiently estimated using the OSR of Landsat 5 TM, however, the derived processing method cannot significantly improve the estimation accuracy. (2) Environmental variables can effectively improve the accuracy of SOC content estimation, with climate and soil factors producing the most significant improvements. (3) Machine learning modeling methods provide better estimation accuracy than MLR and PLSR, especially the SVM model which has the highest accuracy. According to our observations, the best estimation model in the study area was the "OSR + SVM" model (R2 = 0.9590, RMSE = 13.9887, MAE = 10.8075), which considered four environmental factors. This study highlights the significance of environmental variables in monitoring SOC content, offering insights for more precise future SOC assessments. It also provides crucial data support for soil health monitoring and sustainable agricultural development in the study area.

9.
Front Psychol ; 15: 1438581, 2024.
Article in English | MEDLINE | ID: mdl-39165757

ABSTRACT

Models of heuristics are often predicated on the desideratum that they should possess no free parameters. As a result, heuristic implementations are usually deterministic and do not allow for any choice errors, as the latter would require a parameter to regulate the magnitude of errors. We discuss the implications of this in light of research that highlights the evidence supporting stochastic choice and its dependence on preferential strength. We argue that, in principle, the existing models of deterministic heuristics should, and can, be quite easily modified to stochastic counterparts through the addition of an error mechanism. This requires a single free parameter in the error mechanism, whilst otherwise retaining the parameter-free cognitive processes in the deterministic component of existing heuristics. We present various types of error mechanisms applicable to heuristics and discuss their comparative virtues and drawbacks, paying particular attention to their impact on model comparisons between heuristics and parameter-rich models.

10.
Parasit Vectors ; 17(1): 332, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123265

ABSTRACT

BACKGROUND: Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans. METHODS: Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress towards and the achievement of the EoT goal. We have developed gHAT models that include either asymptomatic or animal transmission, and compare these to a baseline gHAT model without either of these transmission routes, to explore the potential role of cryptic infections on the EoT goal. Each model was independently calibrated to five different health zones in the Democratic Republic of the Congo (DRC) using available historical human case data for 2000-2020 (obtained from the World Health Organization's HAT Atlas). We applied a novel Bayesian sequential updating approach for the asymptomatic model to enable us to combine statistical information about this type of transmission from each health zone. RESULTS: Our results suggest that, when matched to past case data, we estimated similar numbers of new human infections between model variants, although human infections were slightly higher in the models with cryptic infections. We simulated the continuation of screen-confirm-and-treat interventions, and found that forward projections from the animal and asymptomatic transmission models produced lower probabilities of EoT than the baseline model; however, cryptic infections did not prevent EoT from being achieved eventually under this approach. CONCLUSIONS: This study is the first to simulate an (as-yet-to-be available) screen-and-treat strategy and found that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could greatly impact all transmission routes in all models, although this resource-intensive intervention should be carefully prioritised.


Subject(s)
Disease Eradication , Trypanosomiasis, African , Democratic Republic of the Congo/epidemiology , Trypanosomiasis, African/transmission , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Animals , Humans , Trypanosoma brucei gambiense , Bayes Theorem , Tsetse Flies/parasitology
11.
Ergonomics ; : 1-17, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037945

ABSTRACT

Recent studies have focused on accurately estimating mental workload using machine learning algorithms and extracting features from physiological measures. However, feature extraction leads to the loss of valuable information and often results in binary classifications that lack specificity in the identification of optimum mental workload. This study investigates the feasibility of using raw physiological data (EEG, facial EMG, ECG, EDA, pupillometry) combined with Functional Data Analysis (FDA) to estimate the mental workload of human drivers. A driving scenario with five tasks was employed, and subjective ratings were collected. Results demonstrate that the FDA applied nine different combinations of raw physiological signals achieving a maximum 90% accuracy, outperforming extracted features by 73%. This study shows that the mental workload of human drivers can be accurately estimated without utilising burdensome feature extraction. The approach proposed in this study offers promise for mental workload assessment in real-world applications.


This study aimed to estimate the mental workload of human drivers using physiological signals and Functional Data Analysis (FDA). By comparing models using raw data and extracted features, the results show that the FDA with raw data achieved a high accuracy of 90%, outperforming the model with extracted features (73%).

12.
Front Plant Sci ; 15: 1426424, 2024.
Article in English | MEDLINE | ID: mdl-39027669

ABSTRACT

Previous studies have validated a performance equation (PE) and its generalized version (GPE) in describing the rotated and right-shifted Lorenz curves of organ size (e.g., leaf area and fruit volume) distributions of herbaceous plants. Nevertheless, there are still two questions that have not been adequately addressed by prior work: (i) whether the PE and GPE apply to woody plant species and (ii) how do the PE and GPE perform in comparison with other Lorenz equations when fitting data. To address these deficiencies, we measured the lamina length and width of each leaf on 60 Alangium chinense saplings to compare the performance of the PE and GPE with three other Lorenz equations in quantifying the inequality of leaf area distributions across individual trees. Leaf area is shown to be the product of a proportionality coefficient (k) and leaf length and width. To determine the numerical value of k, we scanned 540 leaves to obtain the leaf area empirically. Using the estimated k, the leaf areas of 60 A. chinense saplings were calculated. Using these data, the two performance equations and three other Lorenz equations were then compared and assessed using the root-mean-square error (RMSE) and Akaike information criterion (AIC). The PE and GPE were found to be valid in describing the rotated and right-shifted Lorenz curves of the A. chinense leaf area distributions, and GPE has the lowest RMSE and AIC values. This work validates the GPE as the best model in gauging variations in leaf area of the woody species.

13.
Food Chem ; 458: 140260, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38944927

ABSTRACT

The study aimed to assess the extent to which protein aggregation, and even the modality of aggregation, can affect gastric digestion, down to the nature of the hydrolyzed peptide bonds. By controlling pH and ionic strength during heating, linear or spherical ovalbumin (OVA) aggregates were prepared, then digested with pepsin. Statistical analysis characterized the peptide bonds specifically hydrolyzed versus those not hydrolyzed for a given condition, based on a detailed description of all these bonds. Aggregation limits pepsin access to buried regions of native OVA, but some cleavage sites specific to aggregates reflect specific hydrolysis pathways due to the denaturation-aggregation process. Cleavage sites specific to linear aggregates indicate greater denaturation compared to spherical aggregates, consistent with theoretical models of heat-induced aggregation of OVA. Thus, the peptides released during the gastric phase may vary depending on the aggregation modality. Precisely tuned aggregation may therefore allow subtle control of the digestion process.


Subject(s)
Digestion , Hot Temperature , Ovalbumin , Pepsin A , Ovalbumin/chemistry , Ovalbumin/metabolism , Pepsin A/chemistry , Pepsin A/metabolism , Hydrolysis , Peptides/chemistry , Protein Aggregates , Hydrogen-Ion Concentration , Animals
14.
J Math Biol ; 89(1): 9, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844702

ABSTRACT

In this work, we introduce a compartmental model of ovarian follicle development all along lifespan, based on ordinary differential equations. The model predicts the changes in the follicle numbers in different maturation stages with aging. Ovarian follicles may either move forward to the next compartment (unidirectional migration) or degenerate and disappear (death). The migration from the first follicle compartment corresponds to the activation of quiescent follicles, which is responsible for the progressive exhaustion of the follicle reserve (ovarian aging) until cessation of reproductive activity. The model consists of a data-driven layer embedded into a more comprehensive, knowledge-driven layer encompassing the earliest events in follicle development. The data-driven layer is designed according to the most densely sampled experimental dataset available on follicle numbers in the mouse. Its salient feature is the nonlinear formulation of the activation rate, whose formulation includes a feedback term from growing follicles. The knowledge-based, coating layer accounts for cutting-edge studies on the initiation of follicle development around birth. Its salient feature is the co-existence of two follicle subpopulations of different embryonic origins. We then setup a complete estimation strategy, including the study of structural identifiability, the elaboration of a relevant optimization criterion combining different sources of data (the initial dataset on follicle numbers, together with data in conditions of perturbed activation, and data discriminating the subpopulations) with appropriate error models, and a model selection step. We finally illustrate the model potential for experimental design (suggestion of targeted new data acquisition) and in silico experiments.


Subject(s)
Computer Simulation , Mathematical Concepts , Models, Biological , Nonlinear Dynamics , Ovarian Follicle , Ovarian Follicle/growth & development , Ovarian Follicle/physiology , Female , Animals , Mice , Aging/physiology
15.
J Neural Eng ; 21(4)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38941988

ABSTRACT

Objective: Neurons in primary visual cortex (V1) display a range of sensitivity in their response to translations of their preferred visual features within their receptive field: from high specificity to a precise position through to complete invariance. This visual feature selectivity and invariance is frequently modeled by applying a selection of linear spatial filters to the input image, that define the feature selectivity, followed by a nonlinear function that combines the filter outputs, that defines the invariance, to predict the neural response. We compare two such classes of model, that are both popular and parsimonious, the generalized quadratic model (GQM) and the nonlinear input model (NIM). These two classes of model differ primarily in that the NIM can accommodate a greater diversity in the form of nonlinearity that is applied to the outputs of the filters.Approach: We compare the two model types by applying them to data from multielectrode recordings from cat primary visual cortex in response to spatially white Gaussian noise After fitting both classes of model to a database of 342 single units (SUs), we analyze the qualitative and quantitative differences in the visual feature processing performed by the two models and their ability to predict neural response.Main results: We find that the NIM predicts response rates on a held-out data at least as well as the GQM for 95% of SUs. Superior performance occurs predominantly for those units with above average spike rates and is largely due to the NIMs ability to capture aspects of the model's nonlinear function cannot be captured with the GQM rather than differences in the visual features being processed by the two different models.Significance: These results can help guide model choice for data-driven receptive field modelling.


Subject(s)
Models, Neurological , Nonlinear Dynamics , Visual Fields , Cats , Animals , Visual Fields/physiology , Primary Visual Cortex/physiology , Photic Stimulation/methods , Visual Cortex/physiology , Neurons/physiology
16.
J Biomech ; 169: 112121, 2024 May.
Article in English | MEDLINE | ID: mdl-38733816

ABSTRACT

Models of physical phenomena can be developed using two distinct approaches: using expert knowledge of the underlying physical principles or using experimental data to train a neural network. Here, our aim was to better understand the advantages and disadvantages of these two approaches. We chose to model cycling power because the physical principles are already well understood. Nine participants followed changes in cycling cadence transmitted through a metronome via earphones and we measured their cadence and power. We then developed and trained a physics-based model and a simple neural network model, where both models had cadence, derivative of cadence, and gear ratio as input, and power as output. We found no significant differences in the prediction performance between the models. Both models had good prediction accuracy despite using less input variables than traditional models and using more challenging prediction conditions by enforcing rapid speed changes during cycling. The advantages of the neural network model were that, for similar performance, it did not require an understanding of the underlying principles of cycling nor did it require measurements of fixed parameters such as system weight or wheel size. These same features also give the physics-based model the advantage of interpretability, which can be important when scientists want to better understand the process being modelled.


Subject(s)
Bicycling , Neural Networks, Computer , Humans , Bicycling/physiology , Male , Adult , Models, Biological , Female , Young Adult , Biomechanical Phenomena
17.
Behav Brain Res ; 467: 114991, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38614209

ABSTRACT

Stroke is a leading cause of death and disability in the United States. Most strokes are ischemic, resulting in both cognitive and motor impairments. Animal models of ischemic stroke such as the distal middle cerebral artery occlusion (dMCAO) and photothrombotic stroke (PTS) procedures have become invaluable tools, with their own advantages and disadvantages. The dMCAO model is clinically relevant as it occludes the artery most affected in humans, but yields variability in the infarct location as well as the behavioral and cognitive phenotypes disrupted. The PTS model has the advantage of allowing for targeted location of infarct, but is less clinically relevant. The present study evaluates phenotype disruption over time in mice subjected to either dMCAO, PTS, or a sham surgery. Post-surgery, animals were tested over 28 days on standard motor tasks (grid walk, cylinder, tapered beam, and rotating beam), as well as a novel odor-based operant task; the 5:1 Odor Discrimination Task (ODT). Results demonstrate a significantly greater disturbance of motor control with PTS as compared with Sham and dMCAO. Disruption of the PTS group was detected up to 28 days post-stroke on the grid walk, and up to 7 days on the rotating and tapered beam tasks. PTS also led to significant short-term disruption of ODT performance (1-day post-surgery), exclusively in males, which appeared to be driven by motoric disruption of the lick response. Together, this data provides critical insights into the selection and optimization of animal models for ischemic stroke research. Notably, the PTS procedure was best suited for producing disruptions of motor behavior that can be detected with common behavioral assays and are relatively enduring, as is observed in human stroke.


Subject(s)
Disease Models, Animal , Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , Animals , Male , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/complications , Mice , Stroke/physiopathology , Stroke/complications , Motor Activity/physiology , Thrombotic Stroke , Female , Odorants , Discrimination, Psychological/physiology , Behavior, Animal/physiology , Ischemic Stroke/physiopathology
18.
Heliyon ; 10(7): e29295, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617954

ABSTRACT

It is crucial to employ scientifically sound models for assessing the quality of the ecological environment and revealing the strengths and weaknesses of ecosystems. This process is vital for identifying regional ecological and environmental issues and devising relevant protective measures. Among the widely acknowledged models for evaluating ecological quality, the ecological index (EI) and remote sensing ecological index (RSEI) stand out; however, there is a notable gap in the literature discussing their differences, characteristics, and reasons for selecting either model. In this study, we focused on Fangshan District, Beijing, China, to examine the differences between the two models from 2017 to 2021. We summarized the variations in evaluation indices, importance, quantitative methods, and data acquisition times, proposing application scenarios for both models. The results indicate that the ecological environment quality in Fangshan District, Beijing, remained favorable from 2017 to 2021. There was a discernible trend of initially declining quality followed by subsequent improvement. The variation in the calculation results is evident in the overall correlation between the RSEI and EI. Particularly noteworthy is the significantly smaller correlation between EI and the RSEI in 2021 than in the other two years. This discrepancy is attributed to shifts in the contribution of the evaluation indices within the RSEI model. The use of diverse quantitative methods for evaluating indicators has resulted in several variations. Notably, the evaluation outcomes of the EI model exhibit a stronger correlation with land cover types. This correlation contributes to a more pronounced fluctuation in RSEI levels from 2017 to 2021, with the EI model's evaluation results in 2019 notably surpassing those of the RSEI model. Ultimately, the most prominent disparities lie in the calculation results for water areas and construction land. The substantial difference in water areas is attributed to the distinct importance assigned to evaluation indicators between the two models. Moreover, the notable difference in construction land arises from the use of different quantification methods for evaluation indicators. In general, the EI model has suggested to be more comprehensive and effectively captures the annual comprehensive status of the ecological environment and the multiyear change characteristics of the administrative region. On the other hand, RSEI models exhibit greater flexibility and ease of implementation, independent of spatial and temporal scales. These findings contribute to a clearer understanding of the models' advantages and limitations, offering guidance for decision makers and valuable insights for the improvement and development of ecological environmental quality evaluation models.

19.
Sci Rep ; 14(1): 6198, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486013

ABSTRACT

Accurately identification of the seizure onset zone (SOZ) is pivotal for successful surgery in patients with medically refractory epilepsy. The purpose of this study is to improve the performance of model predicting the epilepsy surgery outcomes using genetic neural network (GNN) model based on a hybrid intracranial electroencephalography (iEEG) marker. We extracted 21 SOZ related markers based on iEEG data from 79 epilepsy patients. The least absolute shrinkage and selection operator (LASSO) regression was employed to integrated seven markers, selected after testing in pairs with all 21 biomarkers and 7 machine learning models, into a hybrid marker. Based on the hybrid marker, we devised a GNN model and compared its predictive performance for surgical outcomes with six other mainstream machine-learning models. Compared to the mainstream models, underpinning the GNN with the hybrid iEEG marker resulted in a better prediction of surgical outcomes, showing a significant increase of the prediction accuracy from approximately 87% to 94.3% (P = 0.0412). This study suggests that the hybrid iEEG marker can improve the performance of model predicting the epilepsy surgical outcomes, and validates the effectiveness of the GNN in characterizing and analyzing complex relationships between clinical data variables.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Electrocorticography/methods , Epilepsy/genetics , Epilepsy/surgery , Drug Resistant Epilepsy/surgery , Machine Learning , Treatment Outcome , Electroencephalography/methods
20.
Entropy (Basel) ; 26(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38539724

ABSTRACT

A unifying setup for opinion models originating in statistical physics and stochastic opinion dynamics are developed and used to analyze election data. The results are interpreted in the light of political theory. We investigate the connection between Potts (Curie-Weiss) models and stochastic opinion models in the view of the Boltzmann distribution and stochastic Glauber dynamics. We particularly find that the q-voter model can be considered as a natural extension of the Zealot model, which is adapted by Lagrangian parameters. We also discuss weak and strong effects (also called extensive and nonextensive) continuum limits for the models. The results are used to compare the Curie-Weiss model, two q-voter models (weak and strong effects), and a reinforcement model (weak effects) in explaining electoral outcomes in four western democracies (United States, Great Britain, France, and Germany). We find that particularly the weak effects models are able to fit the data (Kolmogorov-Smirnov test) where the weak effects reinforcement model performs best (AIC). Additionally, we show how the institutional structure shapes the process of opinion formation. By focusing on the dynamics of opinion formation preceding the act of voting, the models discussed in this paper give insights both into the empirical explanation of elections as such, as well as important aspects of the theory of democracy. Therefore, this paper shows the usefulness of an interdisciplinary approach in studying real world political outcomes by using mathematical models.

SELECTION OF CITATIONS
SEARCH DETAIL