Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927598

ABSTRACT

Celocentesis is a new sampling tool for prenatal diagnosis available from 7 weeks in case of couples at risk for genetic diseases. In this study, we reported the feasibility of earlier prenatal diagnosis by celocentesis in four cases of cystic fibrosis and one case of cystic fibrosis and ß-thalassemia co-inherited in the same fetus. Celomic fluids were aspired from the celomic cavity between 8+2 and 9+3 weeks of gestation and fetal cells were picked up by micromanipulator. Maternal DNA contamination was tested and target regions of fetal DNA containing parental pathogenetic variants of CFTR and HBB genes were amplified and sequenced. Four of the five fetuses resulted as being affected by cystic fibrosis and, in all cases, the women decided to interrupt the pregnancy. In the other case, the fetus presented a healthy carrier of cystic fibrosis. The results were confirmed in three cases on placental tissue. In one case, no abortive tissue was obtained. In the last case, the woman refused the prenatal diagnosis to confirm the celocentesis data; the pregnancy is ongoing without complications. This procedure provides prenatal diagnosis of monogenic diseases at least four weeks earlier than traditional procedures, reducing the anxiety of patients and providing the option for medical termination of the affected fetus at 8-10 weeks of gestation, which is less traumatic and safer than surgical termination in the second trimester.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Prenatal Diagnosis , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis/diagnosis , Female , Pregnancy , Prenatal Diagnosis/methods , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Adult , beta-Thalassemia/genetics , beta-Thalassemia/diagnosis , Fetus
2.
J Adv Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844121

ABSTRACT

BACKGROUND: Studying the human genome is crucial to embrace precision medicine through tailoring treatment and prevention strategies to the unique genetic makeup and molecular information of individuals. After human genome project (1990-2003) generated the first full sequence of a human genome, there have been concerns towards Northern bias due to underrepresentation of other populations. Multiple countries have now established national genome projects aiming at the genomic knowledge that can be harnessed from their populations, which in turn can serve as a basis for their health care policies in the near future. AIM OF REVIEW: The intention is to introduce the recently established Egypt Genome (EG) to delineate the genomics and genetics of both the modern and Ancient Egyptian populations. Leveraging genomic medicine to improve precision medicine strategies while building a solid foundation for large-scale genomic research capacity is the fundamental focus of EG. KEY SCIENTIFIC CONCEPTS: EG generated genomic knowledge is predicted to enrich the existing human genome and to expand its diversity by studying the underrepresented African/Middle Eastern populations. The insightful impact of EG goes beyond Egypt and Africa as it fills the knowledge gaps in health and disease genomics towards improved and sustainable genomic-driven healthcare systems for better outcomes. Promoting the integration of genomics into clinical practice and spearheading the implementation of genomic-driven healthcare and precision medicine is therefore a key focus of EG. Mining into the wealth of Ancient Egyptian Genomics to delineate the genetic bridge between the contemporary and Ancient Egyptian populations is another excitingly unique area of EG to realize the global vision of human genome.

3.
JCI Insight ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38885315

ABSTRACT

Interferon signaling gene (ISG) expression scores are potential markers of inflammation with significance from cancer to genetic syndromes. In Aicardi Goutières Syndrome (AGS), a disorder of abnormal DNA and RNA metabolism, this score has potential as a diagnostic biomarker, although the approach to ISG calculation has not been standardized or validated. To optimize ISG calculation and validate ISG as a diagnostic biomarker, mRNA levels of 36 type I interferon response genes were quantified from 997 samples (including 334 AGS), and samples were randomized into training and test datasets. An independent validation cohort (n = 122) was also collected. ISGs were calculated using all potential combinations up to 6 genes. A 4-gene approach (IFI44L, IFI27, USP18, IFI6) was the best-performing model [area under the curve (AUC) of 0.8872 (training dataset), 0.9245 (test dataset)]. The majority of top performing gene combinations included IFI44L. Performance of IFI44L-alone was 0.8762 (training dataset) and 0.9580 (test dataset) by AUC. The top approaches were able to discriminate cases of genetic interferonopathy from control samples. This study validates the context of use for the ISG score as a diagnostic biomarker and underscores the importance of IFI44L in diagnosis of genetic interferonopathies.

4.
J Clin Invest ; 134(13)2024 May 14.
Article in English | MEDLINE | ID: mdl-38743489

ABSTRACT

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a multiorgan disease that is characterized by diverse metabolic defects. However, other than specific CFTR mutations, the factors that influence disease progression and severity remain poorly understood. Aberrant metabolite levels have been reported, but whether CFTR loss itself or secondary abnormalities (infection, inflammation, malnutrition, and various treatments) drive metabolic defects is uncertain. Here, we implemented comprehensive arteriovenous metabolomics in newborn CF pigs, and the results revealed CFTR as a bona fide regulator of metabolism. CFTR loss impaired metabolite exchange across organs, including disruption of lung uptake of fatty acids, yet enhancement of uptake of arachidonic acid, a precursor of proinflammatory cytokines. CFTR loss also impaired kidney reabsorption of amino acids and lactate and abolished renal glucose homeostasis. These and additional unexpected metabolic defects prior to disease manifestations reveal a fundamental role for CFTR in controlling multiorgan metabolism. Such discovery informs a basic understanding of CF, provides a foundation for future investigation, and has implications for developing therapies targeting only a single tissue.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Metabolomics , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Swine , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis/genetics , Kidney/metabolism , Lung/metabolism , Lung/pathology , Humans , Glucose/metabolism , Arachidonic Acid/metabolism
6.
J Assist Reprod Genet ; 41(5): 1173-1179, 2024 May.
Article in English | MEDLINE | ID: mdl-38557804

ABSTRACT

PURPOSE: To evaluate whether a second biopsy, following a first diagnostic failure on blastocysts tested for preimplantation genetic testing for monogenic diseases (PGT-M), allows to obtain genetic diagnosis and to what extent this procedure can influence clinical pregnancy and live birth rates compared to the PGT-M process with a successful genetic diagnosis from the first biopsy. METHODS: Embryos from women who underwent PGT-M in an infertility centre and who had been transferred after two biopsies for genetic analysis (n = 27) were matched in a 1:1 ratio accordingly to women's age (± 1 year) and fertility status (fertile vs infertile), as well as with the study period, with embryos who were transferred after receiving a conclusive PGT result straight after the first biopsy (n = 27). The main evaluated outcome was clinical pregnancy rate following embryo transfers in which healthy embryos were transferred after only one biopsy and those in which an embryo was transferred after being re-biopsied. Live birth rate was the secondary outcome. RESULTS: Clinical pregnancy rate was 52% (95% CI: 34-69) following the transfer of a single-biopsy blastocyst and 30% (95% CI: 16-48) following the transfer of a re-biopsied blastocyst. The likelihood to have a healthy baby was 33% (95% CI: 19-52) following the transfer of a blastocyst biopsied once and 22% (95% CI: 11-41) following the transfer of a re-biopsied blastocyst. CONCLUSIONS: The re-biopsy intervention seems to considerably reduce the pregnancy potential of a blastocyst. However, a greater sample size is necessary to clarify this issue definitively.


Subject(s)
Embryo, Mammalian , Humans , Biopsy , Embryo, Mammalian/metabolism , Embryo Implantation , Genetic Testing , Pregnancy , Male , Adult , Reproductive Techniques, Assisted , Case-Control Studies , Pregnancy Outcome , Infertility, Female
7.
J Clin Invest ; 134(11)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652563

ABSTRACT

While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease-causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.


Subject(s)
Organoids , Orphan Nuclear Receptors , Retinal Rod Photoreceptor Cells , Humans , Organoids/metabolism , Organoids/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Orphan Nuclear Receptors/genetics , Orphan Nuclear Receptors/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retina/metabolism , Retina/pathology , Retina/growth & development , Cell Differentiation , Light Signal Transduction/genetics , Single-Cell Analysis
8.
JCI Insight ; 9(10)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625743

ABSTRACT

Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.


Subject(s)
Homeostasis , Lipid Metabolism , Purkinje Cells , Sorting Nexins , Sorting Nexins/metabolism , Sorting Nexins/genetics , Animals , Mice , Humans , Purkinje Cells/metabolism , Purkinje Cells/pathology , Disease Models, Animal , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/genetics , Mice, Knockout , Cerebellum/metabolism , Cerebellum/pathology , Male , Lipid Droplets/metabolism
9.
JCI Insight ; 9(10)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652538

ABSTRACT

Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Hypoxia-Inducible Factor 1, alpha Subunit , Liver , Manganese , Polycythemia , Animals , Polycythemia/metabolism , Polycythemia/genetics , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Liver/metabolism , Manganese/metabolism , Manganese/toxicity , Manganese/deficiency , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Humans , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Erythropoietin/metabolism , Erythropoietin/genetics , Mice, Knockout , Male , Hepatocytes/metabolism
10.
J Assist Reprod Genet ; 41(5): 1273-1283, 2024 May.
Article in English | MEDLINE | ID: mdl-38578603

ABSTRACT

PURPOSE: To present the developed preimplantation genetic testing (PGT) for spinocerebellar ataxia type 1 (SCA1) and the outcomes of IVF with PGT. METHODS: PGT was performed for two unrelated couples from the Republic of Sakha (Yakutia) with the risk of SCA1 in one spouse. We have developed a system for PGT of a monogenic disease (PGT-M) for SCA1, which includes the analysis of a panel of 11 polymorphic STR markers linked to the ATXN1 gene and a pathogenic variant of the ATXN1 gene using nested PCR and fragment analysis. IVF/ICSI programs were performed according to standard protocols. Multiple displacement amplification (MDA) was used for whole genome amplification (WGA) and array comparative genomic hybridization (aCGH) for aneuploidy testing (PGT-A). RESULTS: Eight STRs were informative for the first couple and ten for the second. Similarity of the haplotypes carrying pathogenic variants of the ATXN1 gene was noted. In the first case, during IVF/ICSI-PGT, three embryos reached the blastocyst stage and were biopsied. One embryo was diagnosed as normal by maternal STR haplotype and the ATXN1 allele. PGT-A revealed euploidy. The embryo transfer resulted in a singleton pregnancy, and a healthy boy was born. Postnatal diagnosis confirmed normal ATXN1. In the second case, two blastocysts were biopsied. Both were diagnosed as normal by PGT-M, but PGT-A revealed aneuploidy. CONCLUSION: Birth of a healthy child after PGT for SCA1 was the first case of successful preimplantation prevention of SCA1 for the Yakut couple and the first case of successful PGT for SCA1 in Russia.


Subject(s)
Ataxin-1 , Microsatellite Repeats , Preimplantation Diagnosis , Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/diagnosis , Female , Ataxin-1/genetics , Male , Adult , Pregnancy , Microsatellite Repeats/genetics , Genetic Testing , Comparative Genomic Hybridization , Aneuploidy , Fertilization in Vitro , Embryo Transfer
11.
J Cell Sci ; 137(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38465512

ABSTRACT

Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.


Subject(s)
Cell Polarity , Epithelial Cells , Animals , Humans , Epithelial Cells/metabolism , Cell Membrane/metabolism , Cell Polarity/genetics , Mammals
12.
J Clin Invest ; 134(8)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386425

ABSTRACT

Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.


Subject(s)
CADASIL , Mice , Animals , Receptor, Notch3/genetics , CADASIL/genetics , CADASIL/metabolism , CADASIL/pathology , Protein Aggregates , Receptors, Notch/genetics , Receptors, Notch/metabolism , Arteries/pathology , Mice, Transgenic , Mutation
13.
J Clin Invest ; 134(4)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175705

ABSTRACT

Mutations in the N-terminal WD40 domain of coatomer protein complex subunit α (COPA) cause a type I interferonopathy, typically characterized by alveolar hemorrhage, arthritis, and nephritis. We described 3 heterozygous mutations in the C-terminal domain (CTD) of COPA (p.C1013S, p.R1058C, and p.R1142X) in 6 children from 3 unrelated families with a similar syndrome of autoinflammation and autoimmunity. We showed that these CTD COPA mutations disrupt the integrity and the function of coat protein complex I (COPI). In COPAR1142X and COPAR1058C fibroblasts, we demonstrated that COPI dysfunction causes both an anterograde ER-to-Golgi and a retrograde Golgi-to-ER trafficking defect. The disturbed intracellular trafficking resulted in a cGAS/STING-dependent upregulation of the type I IFN signaling in patients and patient-derived cell lines, albeit through a distinct molecular mechanism in comparison with mutations in the WD40 domain of COPA. We showed that CTD COPA mutations induce an activation of ER stress and NF-κB signaling in patient-derived primary cell lines. These results demonstrate the importance of the integrity of the CTD of COPA for COPI function and homeostatic intracellular trafficking, essential to ER homeostasis. CTD COPA mutations result in disease by increased ER stress, disturbed intracellular transport, and increased proinflammatory signaling.


Subject(s)
Coat Protein Complex I , Coatomer Protein , Child , Humans , Coatomer Protein/genetics , Coat Protein Complex I/genetics , Coat Protein Complex I/metabolism , Mutation , Syndrome , Golgi Apparatus/genetics , Golgi Apparatus/metabolism
14.
Epilepsia Open ; 9(1): 106-121, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37842880

ABSTRACT

OBJECTIVE: Adenylosuccinate lyase (ADSL) deficiency is a rare inherited metabolic disorder with a wide phenotypic presentation, classically grouped into three types (neonatal, type I, and type II). We aim to better delineate the pathological spectrum, focusing on the electroclinical characteristics and phenotypic differences of patients with ADSL deficiency. PATIENTS AND METHODS: Seven patients, from four different families, underwent serial electroencephalogram (EEG), clinical assessment, and neuroimaging. We also performed a systematic review of the cases published in the literature, summarizing the available clinical, neurophysiological, and genetic data. RESULTS: We report seven previously unreported ADSL deficiency patients with long-term follow-up (10-34 years). From the literature review, we collected 81 previously reported cases. Of the included patient population, 58 % (51/88) were classified as having ADSL deficiency type I, 28% (25/88) as having type II, and 14% (12/88) as having neonatal. The most frequently reported pathogenic variants are p.R426H homozygous (19 patients), p.Y114H in compound heterozygosity (13 patients), and p.D430N homozygous (6 patients). In the majority (89.2%), disease onset was within the first year of life. Epilepsy is present in 81.8% of the patients, with polymorphic and often intractable seizures. EEG features seem to display common patterns and developmental trajectories: (i) poor general background organization with theta-delta activity; (ii) hypsarrhythmia with spasms, usually adrenocorticotropic hormone-responsive; (iii) generalized epileptic discharges with frontal or frontal temporal predominance; and (iv) epileptic discharge activation in sleep with an altered sleep structure. Imaging features present consistent findings of cerebral atrophy with frontal predominance, cerebellar atrophy, and white matter abnormalities among the three types. SIGNIFICANCE: ADSL deficiency presents variable phenotypic expression, whose severity could be partially attributed to residual activity of the mutant protein. Although a precise phenotype-genotype correlation was not yet feasible, we delineated a common pattern of clinical, neuroradiological, and neurophysiological features.


Subject(s)
Adenylosuccinate Lyase , Autistic Disorder , Epilepsy , Purine-Pyrimidine Metabolism, Inborn Errors , Infant, Newborn , Humans , Adenylosuccinate Lyase/genetics , Adenylosuccinate Lyase/chemistry , Follow-Up Studies , Autistic Disorder/genetics , Atrophy
15.
J Clin Invest ; 134(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38015619

ABSTRACT

AIOLOS, also known as IKZF3, is a transcription factor that is highly expressed in the lymphoid lineage and is critical for lymphocyte differentiation and development. Here, we report on 9 individuals from 3 unrelated families carrying AIOLOS variants Q402* or E82K, which led to AIOLOS haploinsufficiency through different mechanisms of action. Nonsense mutant Q402* displayed abnormal DNA binding, pericentromeric targeting, posttranscriptional modification, and transcriptome regulation. Structurally, the mutant lacked the AIOLOS zinc finger (ZF) 5-6 dimerization domain, but was still able to homodimerize with WT AIOLOS and negatively regulate DNA binding through ZF1, a previously unrecognized function for this domain. Missense mutant E82K showed overall normal AIOLOS functions; however, by affecting a redefined AIOLOS protein stability domain, it also led to haploinsufficiency. Patients with AIOLOS haploinsufficiency showed hypogammaglobulinemia, recurrent infections, autoimmunity, and allergy, but with incomplete clinical penetrance. Altogether, these data redefine the AIOLOS structure-function relationship and expand the spectrum of AIOLOS-associated diseases.


Subject(s)
Haploinsufficiency , Trans-Activators , Humans , DNA , Gene Expression Regulation , Trans-Activators/metabolism , Transcription Factors/genetics
16.
J Genet Genomics ; 51(2): 133-143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37586590

ABSTRACT

Monogenic disorders refer to a group of human diseases caused by mutations in single genes. While disease-modifying therapies have offered some relief from symptoms and delayed progression for some monogenic diseases, most of these diseases still lack effective treatments. In recent decades, gene therapy has emerged as a promising therapeutic strategy for genetic disorders. Researchers have developed various gene manipulation tools and gene delivery systems to treat monogenic diseases. Despite this progress, concerns about inefficient delivery, persistent expression, immunogenicity, toxicity, capacity limitation, genomic integration, and limited tissue specificity still need to be addressed. This review gives an overview of commonly used gene therapy and delivery tools, along with the challenges they face and potential strategies to counter them.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Humans , Mutation , Gene Editing
17.
bioRxiv ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37961213

ABSTRACT

Neuronal hyperexcitability is a hallmark of seizures. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interacts with human neurons to regulate hyperexcitability mediated by epilepsy-causing genetic mutation found in human patients remains unknown. The SCN2A genetic locus is responsible for encoding the voltage-gated sodium channel Nav1.2, recognized as one of the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-L1342P mutation identified in patients with epilepsy leads to hyperexcitability in a hiPSC-derived cortical neuron model from a male donor. While microglia play an important role in the brain, these cells originate from a different lineage (yolk sac) and thus are not naturally present in hiPSCs-derived neuronal culture. To study how microglia respond to diseased neurons and influence neuronal excitability, we established a co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display altered morphology with increased branch length and enhanced calcium signal when co-cultured with neurons carrying the Nav1.2-L1342P mutation. Moreover, the presence of microglia significantly lowers the action potential firing of neurons carrying the mutation. Interestingly, we further demonstrated that the current density of sodium channels in neurons carrying the epilepsy-associated mutation was reduced in the presence of microglia. Taken together, our work reveals a critical role of human iPSCs-derived microglia in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation present in human neurons, highlighting the importance of neuron-microglia interactions in human pathophysiology.

18.
JCI Insight ; 8(24)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37943614

ABSTRACT

HNF1A haploinsufficiency underlies the most common form of human monogenic diabetes (HNF1A-maturity onset diabetes of the young [HNF1A-MODY]), and hypomorphic HNF1A variants confer type 2 diabetes risk. But a lack of experimental systems for interrogating mature human islets has limited our understanding of how the transcription factor HNF1α regulates adult islet function. Here, we combined conditional genetic targeting in human islet cells, RNA-Seq, chromatin mapping with cleavage under targets and release using nuclease (CUT&RUN), and transplantation-based assays to determine HNF1α-regulated mechanisms in adult human pancreatic α and ß cells. Short hairpin RNA-mediated (shRNA-mediated) suppression of HNF1A in primary human pseudoislets led to blunted insulin output and dysregulated glucagon secretion after transplantation in mice, recapitulating phenotypes observed in patients with diabetes. These deficits corresponded with altered expression of genes encoding factors critical for hormone secretion, including calcium channel subunits, ATPase transporters, and extracellular matrix constituents. Additionally, HNF1A loss led to upregulation of transcriptional repressors, providing evidence for a mechanism of transcriptional derepression through HNF1α. CUT&RUN mapping of HNF1α DNA binding sites in primary human islets imputed a subset of HNF1α-regulated genes as direct targets. These data elucidate mechanistic links between HNF1A loss and diabetic phenotypes in mature human α and ß cells.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Humans , Mice , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Pancreas/metabolism
19.
Am J Transl Res ; 15(10): 6255-6263, 2023.
Article in English | MEDLINE | ID: mdl-37969196

ABSTRACT

Recent decades have brought enormous progress in both genetics and genomics, as well as in information technology (IT). The sequence of the human genome is now known, and although our knowledge is far from complete, great progress has been made in understanding how the genome works. With the developments in storage capacity, artificial intelligence, and learning algorithms, we are now able to learn and interpret complex systems such as the human genome in a very short time. Perhaps the most important goal of learning about the human genome is to understand diseases better: how they develop; how their processes can be prevented or slowed down; and after diseases have developed, how they can be cured or their symptoms alleviated. The vast majority of diseases have a genetic background, i.e., genes, sequence variations, and gene-gene interactions play a role in most diseases to a greater or lesser extent. Accordingly, the first step is to discover which genes, or genomic variants, cause or contribute to the development of a particular disease in a given patient. Given that an individual's genome remains virtually unchanged throughout their life (with one or two exceptions, such as in the case of cancer, which is caused by somatic mutations), it might be considered advantageous to sequence the genome of every person at birth. In this paper, we set out to show the possible benefits of sequencing the entire genome of every human being at birth, while also discussing the main arguments against it.

20.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37707949

ABSTRACT

Application of classic liver-directed gene replacement strategies is limited in genetic diseases characterized by liver injury due to hepatocyte proliferation, resulting in decline of therapeutic transgene expression and potential genotoxic risk. Wilson disease (WD) is a life-threatening autosomal disorder of copper homeostasis caused by pathogenic variants in copper transporter ATP7B and characterized by toxic copper accumulation, resulting in severe liver and brain diseases. Genome editing holds promise for the treatment of WD; nevertheless, to rescue copper homeostasis, ATP7B function must be restored in at least 25% of the hepatocytes, which surpasses by far genome-editing correction rates. We applied a liver-directed, nuclease-free genome editing approach, based on adeno-associated viral vector-mediated (AAV-mediated) targeted integration of a promoterless mini-ATP7B cDNA into the albumin (Alb) locus. Administration of AAV-Alb-mini-ATP7B in 2 WD mouse models resulted in extensive liver repopulation by genome-edited hepatocytes holding a proliferative advantage over nonedited ones, and ameliorated liver injury and copper metabolism. Furthermore, combination of genome editing with a copper chelator, currently used for WD treatment, achieved greater disease improvement compared with chelation therapy alone. Nuclease-free genome editing provided therapeutic efficacy and may represent a safer and longer-lasting alternative to classic gene replacement strategies for WD.


Subject(s)
Hepatolenticular Degeneration , Mice , Animals , Hepatolenticular Degeneration/therapy , Hepatolenticular Degeneration/drug therapy , Copper/metabolism , Gene Editing , Hepatocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL