Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Mol Ther ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39169621

ABSTRACT

Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplant with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.

2.
Clin Genet ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863195

ABSTRACT

Biallelic variants in SUMF1 are associated with multiple sulfatase deficiency (MSD), a rare lysosomal storage disorder typically diagnosed in early infancy or childhood, marked by severe neurodegeneration and early mortality. We present clinical and molecular characterisation of three unrelated patients aged 13 to 58 years with milder clinical manifestations due to SUMF1 disease variants, including two adult patients presenting with apparent non-syndromic retinal dystrophy. Whole genome sequencing identified biallelic SUMF1 variants in all three patients; Patient 1 homozygous for a complex allele c.[290G>T;293T>A]; p.[(Gly97Val);(Val98Glu)], Patient 2 homozygous for c.866A>G; p.(Tyr289Cys), and Patient 3 compound heterozygous for c.726-1G>C and p.(Tyr289Cys). Electroretinography indicated a rod-cone dystrophy with additional possible inner retinal dysfunction in all three patients. Biochemical studies confirmed reduced, but not absent, sulfatase enzyme activity in the absence of extra-ocular disease (Patient 1) or only mild systemic disease (Patients 2, 3). These cases are suggestive that non-null SUMF1 genotypes can cause an attenuated clinical phenotype, including retinal dystrophy without systemic complications, in adulthood.

3.
Mol Genet Metab ; 141(2): 108116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161139

ABSTRACT

Multiple sulfatase deficiency (MSD) is an ultra-rare, inherited lysosomal storage disease caused by mutations in the gene sulfatase modifying factor 1 (SUMF1). MSD is characterized by the functional deficiency of all sulfatase enzymes, leading to the storage of sulfated substrates including glycosaminoglycans (GAGs), sulfolipids, and steroid sulfates. Patients with MSD experience severe neurological impairment, hearing loss, organomegaly, corneal clouding, cardiac valve disease, dysostosis multiplex, contractures, and ichthyosis. Here, we generated a novel human model of MSD by reprogramming patient peripheral blood mononuclear cells to establish an MSD induced pluripotent stem cell (iPSC) line (SUMF1 p.A279V). We also generated an isogenic control iPSC line by correcting the pathogenic variant with CRISPR/Cas9 gene editing. We successfully differentiated these iPSC lines into neural progenitor cells (NPCs) and NGN2-induced neurons (NGN2-iN) to model the neuropathology of MSD. Mature neuronal cells exhibited decreased SUMF1 gene expression, increased lysosomal stress, impaired neurite outgrowth and maturation, reduced sulfatase activities, and GAG accumulation. Interestingly, MSD iPSCs and NPCs did not exhibit as severe of phenotypes, suggesting that as neurons differentiate and mature, they become more vulnerable to loss of SUMF1. In summary, we demonstrate that this human iPSC-derived neuronal model recapitulates the cellular and biochemical features of MSD. These cell models can be used as tools to further elucidate the mechanisms of MSD pathology and for the development of therapeutics.


Subject(s)
Induced Pluripotent Stem Cells , Multiple Sulfatase Deficiency Disease , Humans , Leukocytes, Mononuclear/metabolism , Neurons/pathology , Sulfatases , Oxidoreductases Acting on Sulfur Group Donors
4.
Arch Med Sci ; 19(5): 1564-1568, 2023.
Article in English | MEDLINE | ID: mdl-37732042

ABSTRACT

Introduction: We describe the case of a female child with multiple sulfatase deficiency (MSD) who received intravenous (IV) trehalose (15 g/week) for 3 months. Methods: The efficacy of trehalose was evaluated by comparing serum biomarkers, a quality-of-life questionnaire (HRQoL), and imaging (brain MRI and ultrasonography of liver and spleen) at weeks 0 (W0) and 12 (W12). Results: The improvement in quality of life assessments along with a slight decrease in the spleen dimensions were observed after 3-month intervention. Conclusions: Future research with a larger MSD population and a longer-term follow-up is warranted to determine whether trehalose can improve MSD patient health and clinical outcomes.

5.
BMC Pediatr ; 23(1): 133, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36959582

ABSTRACT

BACKGROUND: Multiple sulfatase deficiency (MSD) is a rare lysosomal storage disorder caused due to pathogenic variants in the SUMF1 gene. The SUMF1 gene encodes for formylglycine generating enzyme (FGE) that is involved in the catalytic activation of the family of sulfatases. The affected patients present with a wide spectrum of clinical features including multi-organ involvement. To date, almost 140 cases of MSD have been reported worldwide, with only four cases reported from India. The present study describes two cases of late infantile form of MSD from India and the identification of a novel missense variant in the SUMF1 gene. CASE PRESENTATION: In case 1, a male child presented to us at the age of 6 years. The remarkable presenting features included ichthyosis, presence of irritability, poor social response, thinning of corpus callosum on MRI and, speech regression. Clinical suspicion of MSD was confirmed by enzyme analysis of two sulfatase enzymes followed by gene sequencing. We identified a novel missense variant c.860A > T (p.Asn287Ile) in exon 7 of the SUMF1 gene. In case 2, a two and a half years male child presented with ichthyosis, leukodystrophy and facial dysmorphism. We performed an enzyme assay for two sulfatases, which showed significantly reduced activities thereby confirming MSD diagnosis. CONCLUSION: Overall, present study has added to the existing data on MSD from India. Based on the computational analysis, the novel variant c.860A > T identified in this study is likely to be associated with a milder phenotype and prolonged survival.


Subject(s)
Ichthyosis , Multiple Sulfatase Deficiency Disease , Male , Humans , Multiple Sulfatase Deficiency Disease/diagnosis , Multiple Sulfatase Deficiency Disease/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Mutation, Missense , Sulfatases/genetics
6.
Children (Basel) ; 10(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36980153

ABSTRACT

Multiple sulfatase deficiency (MSD) is an extremely rare autosomal recessively inherited disease with a prevalence of 1:500.000 caused by mutations on the sulfatase-modifying-Factor 1 gene (SUMF1). MSD is most specifically characterised by a combination of developmentally retarded psychomotoric functions, neurodegeneration that entails the loss of many already acquired abilities, and by ichthyosis. Other symptoms include those associated with mucopolysaccharidosis, i.e., facial dysmorphy, dwarfism, and hepatosplenomegaly. In 50-75% of all MSD-affected patients, functional or structural ocular damage is likely. MSD seldom affects the anterior segment of the eye. The main pathology these patients present is a highly conspicuous tapetoretinal degeneration, similar to severe Retinitis pigmentosa, that leads to blindness at an early age. An initially five-year-old boy with MSD, genetically verified at his first examination in our opthalmology department (SUMF1 mutations c.776A>T, p.Asn259Ile; c.797A>T, p.Pro266Leu; c.836A>T, p.Ala279Val), and a 4, 5 year regular follow-up are described. The patient had some visual potential ("tunnel view"), which deteriorated dramatically after his fifth birthday. We observed no evidence of worsening retinal involvement in this patient in spite of his progressively worsening clinical symptoms, extending to total blindness/no light perception. OCT revealed that the outer retinal layers containing photoreceptors were diseased; the ellipsoid zone was only partially discernible and the outer nuclear layer appeared to be thinned out. The inner nuclear layer, ganglion cell layer, and retinal nerve fibre layer were indistinguishable. These anomalies are indicative of a severe pathology within the retina's inner layers. Characteristic anomalies in the fundus should stimulate clinicians to suspect a case of MSD in their differential diagnosis, and thus to order thorough genetic and paediatric diagnostics.

7.
Cerebellum ; 22(6): 1250-1256, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36482027

ABSTRACT

Multiple Sulfatase Deficiency (MSD) is a rare autosomal recessive disease with specific clinical findings such as psychomotor retardation and neurological deterioration. No therapy is available for this genetic disorder. Previous studies have shown that N-acetyl-L-leucine (NALL) can improve the neurological inflammation in the cerebellum.In the current study, the effects of NALL on ataxia symptoms and quality of life were explored in a patient with MSD.This study was a crossover case study. The subject, a girl aged 12 years old, received NALL at a dose of 3 g/day (1 g in the morning, 1 g in the afternoon, and 1 g in the evening). A fasting blood sample was taken from the subject to evaluate side effects before the intervention and 4 weeks after taking supplement/placebo in every study stage. The ataxia moving symptoms were evaluated using the Scale for the Assessment and Rating of Ataxia (SARA) score in every study stage. Dietary intake was measured using 24-h dietary recall before and after the intervention. The diet compositions were assessed by Nutritionist IV software. Serum IL-6 level was measured using an ELISA kit.There was no significant change in complete blood count (CBC) and serum biochemical factors in the patient with MSD after receiving NALL (3 g/day) over 4 weeks. The SARA score was reduced by 25%. The gait whose maximum score accounts for approximately one-fifth of the maximum total SARA score (8/40) was decreased. The heel-to-shin slide, the only SARA item performed without visual control, was also improved after therapy. Furthermore, there was a downward trend in the 8MWT (8.71 to 7.93 s). Regarding quality of life assessments, the parent and child reported improved quality of life index, physical health, and emotional function after taking NALL. Moreover, total energy intake was increased with NALL treatment through the study period.Supplementation with NALL at a dose of 3 g/day over 4 weeks was well tolerated and improved ataxia symptoms, quality of life measure, and serum IL-6 levels in the patient with MSD. Further proof-of-concept trials are warranted to confirm the present findings.


Subject(s)
Cerebellar Ataxia , Multiple Sulfatase Deficiency Disease , Child , Female , Humans , Quality of Life , Interleukin-6/therapeutic use , Cerebellar Ataxia/drug therapy , Ataxia
8.
J Inherit Metab Dis ; 46(2): 335-347, 2023 03.
Article in English | MEDLINE | ID: mdl-36433920

ABSTRACT

Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the post-translational modification and activation of all sulfatases. Most MSD patients carry hypomorph SUMF1 variants resulting in variable degrees of residual sulfatase activities. In contrast, Sumf1 null mice with complete deficiency in all sulfatase enzyme activities, have very short lifespan with significant pre-wean lethality, owing to a challenging preclinical model. To overcome this limitation, we genetically engineered and characterized in mice two commonly identified patient-based SUMF1 pathogenic variants, namely p.Ser153Pro and p.Ala277Val. These pathogenic missense variants correspond to variants detected in patients with attenuated MSD presenting with partial-enzyme deficiency and relatively less severe disease. These novel MSD mouse models have a longer lifespan and show biochemical and pathological abnormalities observed in humans. In conclusion, mice harboring the p.Ser153Pro or the p.Ala277Val variant mimic the attenuated MSD and are attractive preclinical models for investigation of pathogenesis and treatments for MSD.


Subject(s)
Lysosomal Storage Diseases , Multiple Sulfatase Deficiency Disease , Humans , Animals , Mice , Multiple Sulfatase Deficiency Disease/genetics , Mutation , Sulfatases , Mutation, Missense , Oxidoreductases Acting on Sulfur Group Donors/genetics
9.
J Clin Lab Anal ; 36(12): e24786, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36441600

ABSTRACT

BACKGROUND: Multiple sulfatase deficiency (MSD) (MIM#272200) is an ultra-rare autosomal recessive lysosomal storage disorder caused by mutation of the Sulfatase Modifying Factor 1 (SUMF1) gene. METHODS: Herein, we report an eight-year-old boy with a late infantile form of multiple sulfatase deficiency. A combination of copy-number variation sequencing (CNV-seq) and whole-exome sequencing (WES) were used to analyze the genetic cause for the MSD patient. RESULTS: Our results, previously not seen in China, show a novel compound heterozygous mutation with one allele containing a 240.55 kb microdeletion on 3p26.1 encompassing the SETMAR gene and exons 4-9 of the SUMF1 gene, and the other allele containing a novel missense mutation of c.671G>A (p.Arg224Gln) in the SUMF1 gene. Both were inherited from the proband's unaffected parents, one from each. Bioinformatics analyses show the novel variation to be "likely pathogenic." SWISS-MODEL analysis shows that the missense mutation may alter the three-dimensional (3D) structure. CONCLUSIONS: In summary, this study reported a novel compound heterozygous with microdeletion in SUMF1 gene, which has not been reported in China. The complex clinical manifestations of MSD may delay diagnosis; however, molecular genetic analysis of the SUMF1 gene can be performed to help obtain an early diagnosis.


Subject(s)
Multiple Sulfatase Deficiency Disease , Male , Humans , Child , Multiple Sulfatase Deficiency Disease/genetics , Multiple Sulfatase Deficiency Disease/diagnosis , Sulfatases/genetics , Mutation/genetics , Mutation, Missense , Computational Biology , Histone-Lysine N-Methyltransferase/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics
10.
Front Cell Dev Biol ; 10: 843079, 2022.
Article in English | MEDLINE | ID: mdl-35721514

ABSTRACT

Multiple sulfatase deficiency (MSD) is a rare recessively inherited Mendelian disorder that manifests with developmental delay, neurodegeneration, skeletal deformities, facial dysmorphism, congenital growth retardation, and other clinical signs. The disorder is caused by mutations in the SUMF1 gene, which encodes the formylglycine-generating enzyme (FGE), and responsible for the activation of sulfatases. Mutations in SUMF1 result in reduced or absent FGE function with consequent compromised activities of its client sulfatases. This leads to an accumulation of enzyme substrates, such as glycosaminoglycans and sulfolipids, within lysosomes and subsequently impaired lysosome function and cellular pathology. Currently, there are no disease modifying therapeutic options for MSD patients, hence the need for more suitable animal models to investigate the disorder. Here, we describe the characterisation of a sumf1 null zebrafish model, which has negligible sulfatase activity. Our sumf1 -/- zebrafish model successfully recapitulates the pathology of MSD such as cranial malformation, altered bone development, an enlarged population of microglia, and growth retardation during early development but lacks early lethality of mouse Sumf1 -/- models. Notably, we provide evidence of recovery in MSD pathology during later developmental stages, resulting in homozygous mutants that are viable. Hence, our data suggest the possibility of a unique compensatory mechanism that allows the sumf1 -/- null zebrafish to survive better than human MSD patients and mouse Sumf1 -/- models.

11.
JIMD Rep ; 58(1): 80-88, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33728250

ABSTRACT

Multiple sulfatase deficiency (MSD) is a lysosomal storage disease caused by a deficiency of formylglycine-generating enzyme due to SUMF1 defects. MSD may be misdiagnosed as metachromatic leukodystrophy (MLD), as neurological and neuroimaging findings are similar, and arylsulfatase A (ARSA) deficiency and enhanced urinary sulfatide excretion may also occur. While ARSA deficiency seems a cause for neurological symptoms and later neurodegenerative disease course, deficiency of other sulfatases results in clinical features such as dysmorphism, dysostosis, or ichthyosis. We report on a girl and a boy of the same origin presenting with severe ARSA deficiency and neurological and neuroimaging features compatible with MLD. However, exome sequencing revealed not yet described homozygosity of the missense variant c.529G > C, p.Ala177Pro in SUMF1. We asked whether dynamics of disease course differs between MSD and MLD. Comparison to a cohort of 59 MLD patients revealed different disease course concerning onset and disease progression in both MSD patients. The MSD patients showed first gross motor symptoms earlier than most patients with juvenile MLD (<10th percentile of Gross-Motor-Function in MLD [GMFC-MLD] 1). However, subsequent motor decline was more protracted (75th and 90th percentile of GMFC-MLD 2 (loss of independent walking) and 75th percentile of GMFC-MLD 5 (loss of any locomotion)). Language decline started clearly after 50th percentile of juvenile MLD and progressed rapidly. Thus, dynamics of disease course may be a further clue for the characterization of MSD. These data may contribute to knowledge of natural course of ultra-rare MSD and be relevant for counseling and therapy.

12.
Mol Genet Metab Rep ; 25: 100688, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33335837

ABSTRACT

Metachromatic leukodystrophy (MLD) is a glycosphingolipid storage disease caused by deficiency of the lysosomal enzyme arylsulfatase A (ASA) or its activator protein saposin B. MLD can affect all age groups in severity varying from a severe fatal form to milder adult onset forms. Diagnosis is usually made by measuring leukocyte ASA activity. However, this test can give false negative or false positive laboratory results due to pseudodeficiency of ASA and saposin B deficiency, respectively. Therefore, we aimed to evaluate patients with suspected MLD in a Turkish population by comprehensive clinical, biochemical, radiological, and genetic analyses for molecular and phenotypic characterization. We analyzed 28 suspected MLD patients and 41 relatives from 24 families. ASA activity was found to be decreased in 21 of 28 patients. Sixteen patients were diagnosed as MLD (11 late infantile, 2 juvenile and 3 adult types), 2 MSD, 2 pseudodeficiency (PD) and the remaining 8 patients were diagnosed as having other leukodystrophies. Enzyme analysis showed that the age of onset of MLD did not correlate with residual ASA activity. Sequence analysis showed 11 mutations in ARSA, of which 4 were novel (p.Trp195GlyfsTer5, p.Gly298Asp, p.Arg301Leu, and p.Gly311Asp), and 2 mutations in SUMF1 causing multiple sulfatase deficiency, and confirmed the diagnosis of MLD in 2 presymptomatic relatives. All individuals with confirmed mutations had low ASA activity and urinary sulfatide excretion. Intra- and inter-familial variability was high for the same ARSA missense genotypes, indicating the contribution of other factors to disease expression. Imaging findings were evaluated through a modified brain MRI scoring system which indicated patients with protein-truncating mutations had more severe MRI findings and late-infantile disease onset. MRI findings were not specific for the diagnosis. Anti-sulfatide IgM was similar to control subjects, and IgG, elevated in multiple sulfatase deficiency. In conclusion, the knowledge on the biochemical, clinical and genetic basis of MLD was expanded, a modified diagnostic laboratory algorithm for MLD based on integrated evaluation of ASA activity, urinary sulfatide excretion and genetic tests was devised.

13.
J Inherit Metab Dis ; 43(6): 1298-1309, 2020 11.
Article in English | MEDLINE | ID: mdl-32749716

ABSTRACT

Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder caused by pathogenic variants in SUMF1. This gene encodes formylglycine-generating enzyme (FGE), a protein required for sulfatase activation. The clinical course of MSD results from additive effect of each sulfatase deficiency, including metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IIIE, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. While it is known that affected individuals demonstrate a complex and severe phenotype, the genotype-phenotype relationship and detailed clinical course is unknown. We report on 35 cases enrolled in our retrospective natural history study, n = 32 with detailed histories. Neurologic function was longitudinally assessed with retrospective scales. Biochemical and computational modeling of novel SUMF1 variants was performed. Genotypes were classified based on predicted functional change, and each individual was assigned a genotype severity score. The median age at symptom onset was 0.25 years; median age at diagnosis was 2.7 years; and median age at death was 13 years. All individuals demonstrated developmental delay, and only a subset of individuals attained ambulation and verbal communication. All subjects experienced an accumulating systemic symptom burden. Earlier age at symptom onset and severe variant pathogenicity correlated with poor neurologic outcomes. Using retrospective deep phenotyping and detailed variant analysis, we defined the natural history of MSD. We found that attenuated cases can be distinguished from severe cases by age of onset, attainment of ambulation, and genotype. Results from this study can help inform prognosis and facilitate future study design.


Subject(s)
Leukodystrophy, Metachromatic/genetics , Mucopolysaccharidoses/genetics , Multiple Sulfatase Deficiency Disease/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Adolescent , Child , Child, Preschool , Female , Genotype , Glycine/analogs & derivatives , Glycine/genetics , Glycine/metabolism , Humans , Infant , Internationality , Leukodystrophy, Metachromatic/pathology , Male , Mucopolysaccharidoses/pathology , Multiple Sulfatase Deficiency Disease/pathology , Mutation , Phenotype , Rare Diseases , Retrospective Studies , Sulfatases/deficiency , Sulfatases/genetics
14.
Mol Genet Metab ; 130(4): 283-288, 2020 08.
Article in English | MEDLINE | ID: mdl-32620537

ABSTRACT

Multiple Sulfatase Deficiency (MSD) is an inborn error of metabolism caused by pathogenic variants in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE) that activates all known sulfatases. FGE deficiency results in widespread tissue accumulation of multiple sulphated substrates. Through a systematic analysis of published cases, we retrieved 80 MSD cases and reviewed the disease clinical, biochemical, and genetic findings. Leukodystrophy, neurosensorial hearing loss, and ichthyosis were the most frequent findings at diagnosis. Of 51 reported pathogenic variants, 20 were likely gene disruptive and the remaining were missense variants. No correlations between class of variants and clinical severity or degree of enzyme deficiency were detected. However, cases harboring variants located at N-terminal always had severe neonatal presentations. Moreover, cases with neonatal onset showed the lowest overall survival rate compared to late-infantile and juvenile onsets. Using GnomAD, carrier frequency for pathogenic SUMF1 variants was estimated to be ~1/700 and the disease prevalence was approximately 1/2,000,000. In summary, MSD is an ultra-rare multisystem disorder with mainly neurologic, hearing and skin involvements. Although the collected data were retrospective and heterogenous, the quantitative data inform the disease natural history and are important for both counseling and design of future interventional studies.


Subject(s)
Multiple Sulfatase Deficiency Disease/diagnosis , Mutation , Sulfatases/deficiency , Sulfatases/genetics , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Multiple Sulfatase Deficiency Disease/enzymology , Multiple Sulfatase Deficiency Disease/genetics , Prognosis , Survival Rate , Systematic Reviews as Topic
15.
J Inherit Metab Dis ; 43(6): 1288-1297, 2020 11.
Article in English | MEDLINE | ID: mdl-32621519

ABSTRACT

Multiple Sulfatase Deficiency (MSD, MIM#272200) is an ultra-rare lysosomal storage disorder arising from mutations in the SUMF1 gene, which encodes the formylglycine-generating enzyme (FGE). FGE is necessary for the activation of sulfatases, a family of enzymes that are involved in the degradation of sulfated substrates such as glycosaminoglycans and sulfolipids. SUMF1 mutations lead to functionally impaired FGE and individuals with MSD demonstrate clinical signs of single sulfatase deficiencies, including metachromatic leukodystrophy (MLD) and several mucopolysaccharidosis (MPS) subtypes. Comprehensive information related to the natural history of MSD is missing. We completed a systematic literature review and a meta-analysis on data from published cases reporting on MSD. As available from these reports, we extracted clinical, genetic, biochemical, and brain imaging information. We identified 75 publications with data on 143 MSD patients with a total of 53 unique SUMF1 mutations. The mean survival was 13 years (95% CI 9.8-16.2 years). Seventy-five clinical signs and 11 key clusters of signs were identified. The most frequently affected organs systems were the nervous, skeletal, and integumentary systems. The most frequent MRI features were abnormal myelination and cerebral atrophy. Individuals with later onset MSD signs and survived longer than those with signs at birth. Less severe mutations, low disease burden and achievement of independent walking positively correlated with longer survival. Despite the limitations of our approach, we were able to define clinical characteristics and disease outcomes in MSD. This work will provide the foundation of natural disease history data needed for future clinical trial design.


Subject(s)
Leukodystrophy, Metachromatic/genetics , Mucopolysaccharidoses/genetics , Multiple Sulfatase Deficiency Disease/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Glycine/analogs & derivatives , Glycine/genetics , Glycine/metabolism , Humans , Leukodystrophy, Metachromatic/pathology , Mucopolysaccharidoses/pathology , Multiple Sulfatase Deficiency Disease/pathology , Protein Processing, Post-Translational/genetics , Sulfatases/deficiency , Sulfatases/genetics
16.
Int J Mol Sci ; 21(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414121

ABSTRACT

Multiple sulfatase deficiency (MSD, MIM #272200) is an ultra-rare disease comprising pathophysiology and clinical features of mucopolysaccharidosis, sphingolipidosis and other sulfatase deficiencies. MSD is caused by impaired posttranslational activation of sulfatases through the formylglycine generating enzyme (FGE) encoded by the sulfatase modifying factor 1 (SUMF1) gene, which is mutated in MSD. FGE is a highly conserved, non-redundant ER protein that activates all cellular sulfatases by oxidizing a conserved cysteine in the active site of sulfatases that is necessary for full catalytic activity. SUMF1 mutations result in unstable, degradation-prone FGE that demonstrates reduced or absent catalytic activity, leading to decreased activity of all sulfatases. As the majority of sulfatases are localized to the lysosome, loss of sulfatase activity induces lysosomal storage of glycosaminoglycans and sulfatides and subsequent cellular pathology. MSD patients combine clinical features of all single sulfatase deficiencies in a systemic disease. Disease severity classifications distinguish cases based on age of onset and disease progression. A genotype- phenotype correlation has been proposed, biomarkers like excreted storage material and residual sulfatase activities do not correlate well with disease severity. The diagnosis of MSD is based on reduced sulfatase activities and detection of mutations in SUMF1. No therapy exists for MSD yet. This review summarizes the unique FGE/ sulfatase physiology, pathophysiology and clinical aspects in patients and their care and outlines future perspectives in MSD.


Subject(s)
Mucopolysaccharidoses/genetics , Multiple Sulfatase Deficiency Disease/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , Sphingolipidoses/genetics , Glycine/analogs & derivatives , Glycine/genetics , Glycine/metabolism , Humans , Mucopolysaccharidoses/pathology , Multiple Sulfatase Deficiency Disease/pathology , Mutation/genetics , Protein Processing, Post-Translational/genetics , Sphingolipidoses/pathology , Sulfatases/deficiency , Sulfatases/genetics
17.
Mol Genet Genomic Med ; 8(9): e1167, 2020 09.
Article in English | MEDLINE | ID: mdl-32048457

ABSTRACT

BACKGROUND: Multiple sulfatase deficiency (MSD, MIM #272200) is an ultrarare congenital disorder caused by SUMF1 mutation and often misdiagnosed due to its complex clinical presentation. Impeded by a lack of natural history, knowledge gained from individual case studies forms the source for a reliable diagnosis and consultation of patients and parents. METHODS: We collected clinical records as well as genetic and metabolic test results from two MSD patients. The functional properties of a novel SUMF1 variant were analyzed after expression in a cell culture model. RESULTS: We report on two MSD patients-the first neonatal type reported in Israel-both presenting with this most severe manifestation of MSD. Our patients showed uniform clinical symptoms with persistent pulmonary hypertension, hypotonia, and dysmorphism at birth. Both patients were homozygous for the same novel SUMF1 mutation (c.1043C>T, p.A348V). Functional analysis revealed that the SUMF1-encoded variant of formylglycine-generating enzyme is highly instable and lacks catalytic function. CONCLUSION: The obtained results confirm genotype-phenotype correlation in MSD, expand the spectrum of clinical presentation and are relevant for diagnosis including the extremely rare neonatal severe type of MSD.


Subject(s)
Multiple Sulfatase Deficiency Disease/genetics , Mutation, Missense , Oxidoreductases Acting on Sulfur Group Donors/genetics , Phenotype , Cell Line, Tumor , Child, Preschool , Enzyme Stability , Homozygote , Humans , Infant , Male , Multiple Sulfatase Deficiency Disease/pathology , Oxidoreductases Acting on Sulfur Group Donors/metabolism
18.
Mol Genet Metab ; 129(2): 106-110, 2020 02.
Article in English | MEDLINE | ID: mdl-31753749

ABSTRACT

PURPOSE: To describe an efficient and effective multiplex screening strategy for sulfatide degradation disorders and mucolipidosis type II/III (MLII/III) using 3 mL of urine. METHODS: Glycosaminoglycans were analyzed by liquid chromatography-tandem mass spectrometry. Matrix assisted laser desorption/ionization-time of flight tandem mass spectrometry was used to identify free oligosaccharides and identify 22 ceramide trihexosides and 23 sulfatides, which are integrated by 670 calculated ratios. Collaborative Laboratory Integrated Reports (CLIR; https://clir.mayo.edu) was used for post-analytical interpretation of the complex metabolite profile and to aid in the differential diagnosis of abnormal results. RESULTS: Multiplex analysis was performed on 25 sulfatiduria case samples and compiled with retrospective data from an additional 15 cases revealing unique patterns of biomarkers for each disorder of sulfatide degradation (MLD, MSD, and Saposin B deficiency) and for MLII/III, thus allowing the formulation of a novel algorithm for the biochemical diagnosis of these disorders. CONCLUSIONS: Comprehensive and integrated urine screening could be very effective in the initial workup of patients suspected of having a lysosomal disorder as it covers disorders of sulfatide degradation and narrows down the differential diagnosis in patients with elevated glycosaminoglycans.


Subject(s)
Glycosaminoglycans/urine , Lysosomal Storage Diseases/diagnosis , Lysosomal Storage Diseases/urine , Mucolipidoses/diagnosis , Sulfoglycosphingolipids/urine , Adolescent , Adult , Algorithms , Biomarkers/urine , Child , Child, Preschool , Chromatography, Liquid , Female , High-Throughput Screening Assays , Humans , Infant , Male , Middle Aged , Mucolipidoses/urine , Retrospective Studies , Tandem Mass Spectrometry , Young Adult
19.
JIMD Rep ; 49(1): 48-52, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31497481

ABSTRACT

Multiple sulfatase deficiency (MSD) is an ultra-rare lysosomal storage disorder (LSD). Mutations in the SUMF1 gene encoding the formylglycine generating enzyme (FGE) result in an unstable FGE protein with reduced enzymatic activity, thereby affecting the posttranslational activation of newly synthesized sulfatases. Complete absence of FGE function results in the most severe clinical form of MSD with neonatal onset and rapid deterioration. We report on a preterm infant presenting with hydrops fetalis, lung hypoplasia, and dysmorphism as major clinical signs. The patient died after 6 days from an intraventricular hemorrhage followed by multi-organ failure. MSD was caused by a homozygous SUMF1 stop mutation (c.191C>A, p.Ser64Ter). FGE protein and sulfatase activities were absent in patient fibroblasts. Hydrops fetalis is a rare symptom of LSDs and should be considered in the differential diagnosis in combination with dysmorphism. The diagnostic set up should include measurements of glycosaminoglycan excretion and lysosomal enzyme activities, among them at least two sulfatases, and molecular confirmation.

20.
Article in English | MEDLINE | ID: mdl-31195190

ABSTRACT

Metachromatic Leukodystrophy (MLD) and Multiple Sulfatase Deficiency (MSD) are rare and ultra-rare lysosomal storage diseases. Due to enzyme defects, patients are unable to split the sulfategroup from the respective substrates. In MSD all sulfatases are affected due to a defect of the Sulfatase Modifying Factor 1 (SUMF1) gene coding for the formylglycine generating enzyme (FGE) necessary for the modification of the active site of sulfatases. In MLD mutations in the arylsulfatase A (ARSA) gene cause ARSA deficiency with subsequent accumulation of 3-sulfogalactocerebroside especially in oligodendrocytes. The clinical consequence is demyelination and a devastating neurological disease. Enzyme replacement therapy (ERT) with recombinant human arylsulfatase A (rhARSA), gene therapy, and stem cell transplantation are suggested as new therapeutic options. The aim of our study was to characterize rhARSA concerning its substrate specificity using analytical isotachophoresis (ITP). Substrate specificity could be demonstrated by sulfate splitting from the natural substrates 3-sulfogalactocerebroside and ascorbyl-2-sulfate and the artificial substrate p-nitrocatecholsulfate, whereas galactose-6-sulfate, a substrate of galactose-6­sulfurylase, was totally resistant. In contrast, leukocyte extracts of healthy donors were able to split sulfate also from galactose-6-sulfate. The ITP method allows therefore a rapid and simple differentiation between samples of MLD and MSD patients and healthy donors. Therefore, the isotachophoretic diagnostic assay from leukocyte extracts described here provides a fast and efficient way for the diagnosis of MLD and MSD patients and an elegant system to differentiate between these diseases in one assay.


Subject(s)
Cerebroside-Sulfatase/chemistry , Enzyme Assays/methods , Isotachophoresis/methods , Leukocytes/enzymology , Leukodystrophy, Metachromatic/enzymology , Multiple Sulfatase Deficiency Disease/enzymology , Sulfatases/chemistry , Cerebroside-Sulfatase/genetics , Cerebroside-Sulfatase/metabolism , Humans , Kinetics , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Multiple Sulfatase Deficiency Disease/diagnosis , Multiple Sulfatase Deficiency Disease/genetics , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sulfatases/genetics , Sulfatases/metabolism , Sulfates/chemistry , Sulfates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL