Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571706

ABSTRACT

Multitarget tracking based on multisensor fusion perception is one of the key technologies to realize the intelligent driving of automobiles and has become a research hotspot in the field of intelligent driving. However, most current autonomous-vehicle target-tracking methods based on the fusion of millimeter-wave radar and lidar information struggle to guarantee accuracy and reliability in the measured data, and cannot effectively solve the multitarget-tracking problem in complex scenes. In view of this, based on the distributed multisensor multitarget tracking (DMMT) system, this paper proposes a multitarget-tracking method for autonomous vehicles that comprehensively considers key technologies such as target tracking, sensor registration, track association, and data fusion based on millimeter-wave radar and lidar. First, a single-sensor multitarget-tracking method suitable for millimeter-wave radar and lidar is proposed to form the respective target tracks; second, the Kalman filter temporal registration method and the residual bias estimation spatial registration method are used to realize the temporal and spatial registration of millimeter-wave radar and lidar data; third, use the sequential m-best method based on the new target density to find the track the correlation of different sensors; and finally, the IF heterogeneous sensor fusion algorithm is used to optimally combine the track information provided by millimeter-wave radar and lidar, and finally form a stable and high-precision global track. In order to verify the proposed method, a multitarget-tracking simulation verification in a high-speed scene is carried out. The results show that the multitarget-tracking method proposed in this paper can realize the track tracking of multiple target vehicles in high-speed driving scenarios. Compared with a single-radar tracker, the position, velocity, size, and direction estimation errors of the track fusion tracker are reduced by 85.5%, 64.6%, 75.3%, and 9.5% respectively, and the average value of GOSPA indicators is reduced by 19.8%; more accurate target state information can be obtained than a single-radar tracker.

2.
Sensors (Basel) ; 22(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35270948

ABSTRACT

The problem of two-dimensional bearings-only multisensor-multitarget tracking is addressed in this work. For this type of target tracking problem, the multidimensional assignment (MDA) is crucial for identifying measurements originating from the same targets. However, the computation of the assignment cost of all possible associations is extremely high. To reduce the computational complexity of MDA, a new coarse gating strategy is proposed. This is realized by comparing the Mahalanobis distance between the current estimate and initial estimate in an iterative process for the maximum likelihood estimation of the target position with a certain threshold to eliminate potential infeasible associations. When the Mahalanobis distance is less than the threshold, the iteration will exit in advance so as to avoid the expensive computational costs caused by invalid iteration. Furthermore, the proposed strategy is combined with the two-stage multiple hypothesis tracking framework for bearings-only multisensor-multitarget tracking. Numerical experimental results verify its effectiveness.


Subject(s)
Algorithms
3.
Sensors (Basel) ; 21(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200379

ABSTRACT

In this study, an explicit track continuity algorithm is proposed for multitarget tracking (MTT) based on the Gaussian mixture (GM) implementation of the probability hypothesis density (PHD) filter. Trajectory maintenance and multitarget state extraction in the GM-PHD filter have not been effectively integrated to date. To address this problem, we propose an improved GM-PHD filter. In this approach, the Gaussian components are classified and labeled, and multitarget state extraction is converted into multiple single-state extractions. This provides the identity label of the individual target and can shield against the negative effects of clutter in the prior density region on the estimates, thus realizing the integration of trajectory maintenance with state extraction in the GM-PHD filter. As no additional associated procedures are required, the overall real-time performance of the proposed filter is similar to or slightly lower than that of the basic GM-PHD filter. The results of numerical experiments demonstrate that the proposed approach can achieve explicit track continuity.


Subject(s)
Algorithms , Normal Distribution
4.
Sensors (Basel) ; 19(22)2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31752151

ABSTRACT

In multitarget tracking, knowledge of the backgrounds plays a crucial role in the accuracy of the tracker. Clutter and detection probability are the two essential background parameters which are usually assumed to be known constants although they are, in fact, unknown and time varying. Incorrect values of these parameters lead to a degraded or biased performance of the tracking algorithms. This paper proposes a method for online tracking multiple targets using multiple sensors which jointly adapts to the unknown clutter rate and the probability of detection. An effective filter is developed from parallel estimation of these parameters and then feeding them into the state-of-the-art generalized labeled multi-Bernoulli filter. Provided that the fluctuation of these unknown backgrounds is slowly-varying in comparison to the rate of measurement-update data, the validity of the proposed method is demonstrated via numerical study using multistatic Doppler data.

5.
Sensors (Basel) ; 19(12)2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31238560

ABSTRACT

The finite-set statistics (FISST) foundational approach to multitarget tracking and information fusion has inspired work by dozens of research groups in at least 20 nations; and FISST publications have been cited tens of thousands of times. This review paper addresses a recent and cutting-edge aspect of this research: exact closed-form-and, therefore, provably Bayes-optimal-approximations of the multitarget Bayes filter. The five proposed such filters-generalized labeled multi-Bernoulli (GLMB), labeled multi-Bernoulli mixture (LMBM), and three Poisson multi-Bernoulli mixture (PMBM) filter variants-are assessed in depth. This assessment includes a theoretically rigorous, but intuitive, statistical theory of "undetected targets", and concrete formulas for the posterior undetected-target densities for the "standard" multitarget measurement model.

6.
Sensors (Basel) ; 19(7)2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30965623

ABSTRACT

The measurements from multistatic radar systems are typically subjected to complicated data association, noise corruption, missed detection, and false alarms. Moreover, most of the current multistatic Doppler radar-based approaches in multitarget tracking are based on the assumption of known detection probability. This assumption can lead to biased or even complete corruption of estimation results. This paper proposes a method for tracking multiple targets from multistatic Doppler radar with unknown detection probability. A closed form labeled multitarget Bayes filter was used to track unknown and time-varying targets with unknown probability of detection in the presence of clutter, misdetection, and association uncertainty. The efficiency of the proposed algorithm was illustrated via numerical simulation examples.

7.
Sensors (Basel) ; 19(6)2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30897805

ABSTRACT

In target tracking environments using over-the-horizon radar (OTHR), one target may generate multiple detections through different signal propagation paths. Trackers need to jointly handle the uncertainties stemming from both measurement origin and measurement path. Traditional multitarget tracking algorithms suffer from high computational loads in such environments since they need to enumerate all possible joint measurement-to-track assignments considering the measurements paths unless they employ some approximations regarding the measurements and their corresponding paths. In this paper, we propose a novel algorithm, named multi-path linear multitarget integrated probabilistic data association (MP-LM-IPDA), to efficiently track multitarget in multiple detection environments. Instead of generating all possible joint assignments, MP-LM-IPDA calculates the modulated clutter measurement density for each measurement cell of each track. The modulated clutter measurement density considers the possibility that the measurement cells originate from the clutter as well as from other potential targets. By incorporating the modulated clutter measurement density, the single target tracking structure can be applied for multitarget tracking, which significantly reduces the computational load. The simulation results demonstrate the effectiveness and efficiency of the proposed algorithm.

8.
Sensors (Basel) ; 19(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626012

ABSTRACT

The finite-set statistics (FISST) foundational approach to multitarget tracking and information fusion was introduced in the mid-1990s and extended in 2001. FISST was devised to be as "engineering-friendly" as possible by avoiding avoidable mathematical abstraction and complexity-and, especially, by avoiding measure theory and measure-theoretic point process (p.p.) theory. Recently, however, an allegedly more general theoretical foundation for multitarget tracking has been proposed. In it, the constituent components of FISST have been systematically replaced by mathematically more complicated concepts-and, especially, by the very measure theory and measure-theoretic p.p.'s that FISST eschews. It is shown that this proposed alternative is actually a mathematical paraphrase of part of FISST that does not correctly address the technical idiosyncrasies of the multitarget tracking application.

9.
Sensors (Basel) ; 18(11)2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30404155

ABSTRACT

To deal with the problem of multitarget tracking with measurement origin uncertainty, the paper presents a multitarget tracking algorithm based on Adaptive Network Graph Segmentation (ANGS). The multitarget tracking is firstly formulated as an Integer Programming problem for finding the maximum a posterior probability in a cost flow network. Then, a network structure is partitioned using an Adaptive Spectral Clustering algorithm based on the Nyström Method. In order to obtain the global optimal solution, the parallel A* search algorithm is used to process each sub-network. Moreover, the trajectory set is extracted by the Track Mosaic technique and Rauch⁻Tung⁻Striebel (RTS) smoother. Finally, the simulation results achieved for different clutter intensity indicate that the proposed algorithm has better tracking accuracy and robustness compared with the A* search algorithm, the successive shortest-path (SSP) algorithm and the shortest path faster (SPFA) algorithm.

10.
Sensors (Basel) ; 18(10)2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30248916

ABSTRACT

Multitarget tracking algorithms based on sonar usually run into detection uncertainty, complex channel and more clutters, which cause lower detection probability, single sonar sensors failing to measure when the target is in an acoustic shadow zone, and computational bottlenecks. This paper proposes a novel tracking algorithm based on multisensor data fusion to solve the above problems. Firstly, under more clutters and lower detection probability condition, a Gaussian Mixture Probability Hypothesis Density (GMPHD) filter with computational advantages was used to get local estimations. Secondly, this paper provided a maximum-detection capability multitarget track fusion algorithm to deal with the problems caused by low detection probability and the target being in acoustic shadow zones. Lastly, a novel feedback algorithm was proposed to improve the GMPHD filter tracking performance, which fed the global estimations as a random finite set (RFS). In the end, the statistical characteristics of OSPA were used as evaluation criteria in Monte Carlo simulations, which showed this algorithm's performance against those sonar tracking problems. When the detection probability is 0.7, compared with the GMPHD filter, the OSPA mean of two sensor and three sensor fusion was decrease almost by 40% and 55%, respectively. Moreover, this algorithm successfully tracks targets in acoustic shadow zones.

11.
Sensors (Basel) ; 18(6)2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29865152

ABSTRACT

Multitarget tracking in clutter using bearings-only measurements is a challenging problem. In this paper, a performance improved nonlinear filter is proposed on the basis of the Random Finite Set (RFS) theory and is named as Gaussian mixture measurements-based cardinality probability hypothesis density (GMMbCPHD) filter. The GMMbCPHD filter enables to address two main issues: measurement-origin-uncertainty and measurement nonlinearity, which constitutes the key problems in bearings-only multitarget tracking in clutter. For the measurement-origin-uncertainty issue, the proposed filter estimates the intensity of RFS of multiple targets as well as propagates the posterior cardinality distribution. For the measurement-origin-nonlinearity issue, the GMMbCPHD approximates the measurement likelihood function using a Gaussian mixture rather than a single Gaussian distribution as used in extended Kalman filter (EKF). The superiority of the proposed GMMbCPHD are validated by comparing with several state-of-the-art algorithms via intensive simulation studies.

12.
Sensors (Basel) ; 19(1)2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30598039

ABSTRACT

In multiple detection target tracking environments, PDA-based algorithms such as multiple detection joint integrated probabilistic data association (MD-JIPDA) utilize the measurement partition method to generate measurement cells. Thus, one-to-many track-to-measurements associations can be realized. However, in this structure, the number of joint data association events grows exponentially with the number of measurement cells and the number of tracks. MD-JIPDA is plagued by large increases in computational complexity when targets are closely spaced or move cross each other, especially in multiple detection scenarios. Here, the multiple detection Markov chain joint integrated probabilistic data association (MD-MC-JIPDA) is proposed, in which a Markov chain is used to generate random data association sequences. These sequences are substitutes for the association events. The Markov chain process significantly reduces the computational cost since only a few association sequences are generated while keeping preferable tracking performance. Finally, MD-MC-JIPDA is experimentally validated to demonstrate its effectiveness compared with some of the existing multiple detection data association algorithms.

13.
J Microsc ; 260(3): 312-25, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26259144

ABSTRACT

We propose a novel multitarget tracking framework for Myosin VI protein molecules in total internal reflection fluorescence microscopy sequences which integrates an extended Hungarian algorithm with an interacting multiple model filter. The extended Hungarian algorithm, which is a linear assignment problem based method, helps to solve measurement assignment and spot association problems commonly encountered when dealing with multiple targets, although a two-motion model interacting multiple model filter increases the tracking accuracy by modelling the nonlinear dynamics of Myosin VI protein molecules on actin filaments. The evaluation of our tracking framework is conducted on both real and synthetic total internal reflection fluorescence microscopy sequences. The results show that the framework achieves higher tracking accuracies compared to the state-of-the-art tracking methods, especially for sequences with high spot density.


Subject(s)
Actin Cytoskeleton/chemistry , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Myosin Heavy Chains/analysis , Optical Imaging/methods , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL