Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.316
Filter
1.
J Nanobiotechnology ; 22(1): 388, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956618

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice. In this study, four new fusion proteins named nanobody peptide conjugates (NPCs) were developed by combining PRRSV specific non-neutralizing nanobodies with CD163-derived peptides targeting the receptor binding domain (RBD) of PRRSV proteins. RESULTS: Four NPCs were successfully constructed using two nanobodies against PRRSV N and nsp9 individually, recombining with two antiviral peptides 4H7 or 8H2 from porcine CD163 respectively. All four NPCs demonstrated specific capability of binding to PRRSV and broad inhibitory effect against various lineages of PRRSV in a dose-dependent manner. NPCs interfere with the binding of the RBD of PRRSV proteins to CD163 in the PRRSV pre-attachment stage by CD163 epitope peptides in the assistance of Nb components. NPCs also suppress viral replication during the stage of post-attachment, and the inhibitory effects depend on the antiviral functions of Nb parts in NPCs, including the interference in long viral RNA synthesis, NF-κB and IFN-ß activation. Moreover, an interaction was predicted between aa K31 and T32 sites of neutralizing domain 4H7 of NPC-N/nsp9-4H7 and the motif 171NLRLTG176 of PRRSV GP2a. The motif 28SSS30 of neutralizing domain 8H2 of NPC-N/nsp9-8H2 could also form hydrogens to bind with the motif 152NAFLP156 of PRRSV GP3. The study provides valuable insights into the structural characteristics and potential functional implications of the RBD of PRRSV proteins. Finally, as indicated in a mouse model, NPC intranasally inoculated in vivo for 12-24 h sustains the significant neutralizing activity against PRRSV. These findings inspire the potential of NPC as a preventive measure to reduce the transmission risk in the host population against respiratory infectious agents like PRRSV. CONCLUSION: The aim of the current study was to develop a peptide based bioactive compound to neutralize various PRRSV strains. The new antiviral NPC (nanobody peptide conjugate) consists of a specific nanobody targeting the viral protein and a neutralizing CD163 epitope peptide for virus blocking and provides significant antiviral activity. The study will greatly promote the antiviral drug R&D against PRRSV and enlighten a new strategy against other viral diseases.


Subject(s)
Antibodies, Neutralizing , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Peptides , Porcine respiratory and reproductive syndrome virus , Receptors, Cell Surface , Single-Domain Antibodies , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/drug effects , Animals , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/chemistry , Swine , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Receptors, Cell Surface/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Antibodies, Neutralizing/immunology , Peptides/chemistry , Peptides/pharmacology , Peptides/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/prevention & control , Mice , Virus Replication/drug effects , Cell Line
2.
Nucl Med Biol ; 136-137: 108937, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38964257

ABSTRACT

Immunorecognition provides an excellent basis for targeted imaging techniques covering a wide range from basic research to diagnostics and from single cells to whole organisms. Fluorescence- or radioisotope-labeled antibodies, antibody fragments or nanobodies enable a direct signal readout upon binding and allow for versatile imaging from microscopy to whole-body imaging. However, as the signal intensity directly correlates with the number of labeled antibodies bound to their epitopes (1:1 binding), sensitivity for low-expressing epitopes can be limiting for visualization. For the first time, we developed poly-epitope tags with multiple copies (1 to 7) of a short peptide epitope, specifically the MoonTag, that are recognized by a labeled nanobody and aimed at signal amplification in microscopy and cell-specific PET imaging. In transiently transfected HeLa cells or stably transduced A4573 cells we characterized complex formation and in vitro signal amplification. Indeed, using fluorescently and radioactively labeled nanobodies we found an approximately linear signal amplification with increasing numbers of epitope copies in vitro. To test the poly-epitope approach in vivo, A4573 tumor cells were injected subcutaneously into the shoulder of NSG mice, with A4573 tumor cells expressing a poly-epitope of 7 MoonTags on one side and WT cells on the other side. Using a [68Ga]-labeled NODAGA-conjugated MoonTag nanobody, we performed PET/CT imaging at day 8-9 after tumor implantation. Specific binding of a [68Ga]-labeled NODAGA-conjugated MoonTag nanobody was observed in 7xMoonTag tumors (1.7 ± 0.5%ID/mL) by PET imaging, showing significantly higher radiotracer accumulation compared to the WT tumors (1.1 ± 0.3%ID/mL; p < 0.01). Ex vivo gamma counter measurements confirmed significantly higher uptake in 7xMoonTag tumors compared to WT tumors (p < 0.001). In addition, MoonTag nanobody binding was detected by autoradiography which was spatially matched with histological analysis of the tumor tissues. In conclusion, we expect nanobody-based poly-epitope tag strategies to be widely applicable for multimodal imaging techniques given the advantageous properties of nanobodies and their amenability to genetic and chemical engineering.

3.
Front Immunol ; 15: 1425938, 2024.
Article in English | MEDLINE | ID: mdl-38953020

ABSTRACT

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods: Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results: No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion: In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.


Subject(s)
Lung , Mice, Knockout , Mice, Transgenic , Receptors, Purinergic P2X4 , Receptors, Purinergic P2X7 , Animals , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Mice , Lung/metabolism , Lung/immunology , Mice, Inbred C57BL , Protein Binding
4.
J Agric Food Chem ; 72(26): 14967-14974, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957086

ABSTRACT

Nanobodies (Nbs) serve as powerful tools in immunoassays. However, their small size and monovalent properties pose challenges for practical application. Multimerization emerges as a significant strategy to address these limitations, enhancing the utilization of nanobodies in immunoassays. Herein, we report the construction of a Salmonella-specific fenobody (Fb) through the fusion of a nanobody to ferritin, resulting in a self-assembled 24-valent nanocage-like structure. The fenobody exhibits a 35-fold increase in avidity compared to the conventional nanobody while retaining good thermostability and specificity. Leveraging this advancement, three ELISA modes were designed using Fb as the capture antibody, along with unmodified Nb422 (FbNb-ELISA), biotinylated Nb422 (FbBio-ELISA), and phage-displayed Nb422 (FbP-ELISA) as the detection antibody, respectively. Notably, the FbNb-ELISA demonstrates a detection limit (LOD) of 3.56 × 104 CFU/mL, which is 16-fold lower than that of FbBio-ELISA and similar to FbP-ELISA. Moreover, a fenobody and nanobody sandwich chemiluminescent enzyme immunoassay (FbNb-CLISA) was developed by replacing the TMB chromogenic substrate with luminal, resulting in a 12-fold reduction in the LOD. Overall, the ferritin-displayed technology represents a promising methodology for enhancing the detection performance of nanobody-based sandwich ELISAs, thereby expanding the applicability of Nbs in food detection and other fields requiring multivalent modification.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Ferritins , Salmonella , Single-Domain Antibodies , Ferritins/immunology , Ferritins/chemistry , Ferritins/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Salmonella/immunology , Salmonella/genetics , Enzyme-Linked Immunosorbent Assay/methods , Limit of Detection , Antibody Affinity , Antibodies, Bacterial/immunology , Immunoassay/methods
5.
Angew Chem Int Ed Engl ; : e202404889, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977426

ABSTRACT

Immune checkpoint blockade targeting the CD47/SIRPα axis represents an alluring avenue for cancer immunotherapy. However, the compromised efficacy and safety concerns in vivo of conventional anti-CD47 antibodies impede their wide clinical applications. Here we introduced a single type of high-mannose glycans into the nanobodies against CD47 (HM-nCD47) and subsequently displayed HM-nCD47 on cellular vesicles (CVs) for enhanced cancer immunotherapy. In this platform, the CVs significantly improved the circulation time of HM-nCD47-CVs, the nCD47 enabled the blockade of the CD47/SIRPα axis, and the HM enhanced recognition of mannose-binding lectin, all synergistically activating the macrophage-mediated antitumor immunity. In both subcutaneous and metastatic murine tumor models, the HM-nCD47-CVs possessed significantly extended half-lives and increased accumulation at the tumor site, resulting in a remarkable macrophage-dependent inhibition of tumor growth, a transcriptomic remodeling of the immune response, and an increase in survival time. By integrating the chemical biology toolbox with cell membrane nanotechnology, the HM-nCD47-CVs represent a new immunotherapeutic platform for cancer and other diseases.

6.
Dev Cell ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38971155

ABSTRACT

CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.

7.
J Agric Food Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979948

ABSTRACT

In planta expression of recombinant antibodies has been proposed as a strategy for herbicide resistance but is not well advanced yet. Here, an atrazine nanobody gene fused with a green fluorescent protein tag was transformed to Arabidopsis thaliana, which was confirmed with PCR, ELISA, and immunoblotting. High levels of nanobody accumulation were observed in the nucleus, cytoderm, and cytosol. The nanobody expressed in the plant had similar affinity, sensitivity, and selectivity as that expressed in Escherichia coli. The T3 homozygous line showed resistance in a dose-dependent manner up to 380 g ai/ha of atrazine, which is approximately one-third of the recommended field application rate. This is the first report of utilizing a nanobody in plants against herbicides. The results suggest that utilizing a high-affinity herbicide nanobody gene rather than increasing the expression of nanobodies in plants may be a technically viable approach to acquire commercial herbicide-resistant crops and could be a useful tool to study plant physiology.

8.
Adv Sci (Weinh) ; : e2404886, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973161

ABSTRACT

Immune checkpoint blockade (ICB) immunotherapy remains hampered by insufficient immunogenicity and a high-lactate immunosuppressive tumor microenvironment (TME). Herein, a nanobody-engineered NIR-II nanoadjuvant with targeting metabolic reprogramming capability is constructed for potentiating NIR-II photothermal-ferroptosis immunotherapy. Specifically, the nanoadjuvant (2DG@FS-Nb) is prepared by metallic iron ion-mediated coordination self-assembly of D-A-D type NIR-II molecules and loading of glycolysis inhibitor, 2-deoxy-D-glucose (2DG), followed by modification with aPD-L1 nanobody (Nb), which can effectively target the immunosuppressive TME and trigger in situ immune checkpoint blockade. The nanoadjuvants responsively release therapeutic components in the acidic TME, enabling the precise tumor location by NIR-II fluorescence/photoacoustic imaging while initiating NIR-II photothermal-ferroptosis therapy. The remarkable NIR-II photothermal efficiency and elevated glutathione (GSH) depletion further sensitize ferroptosis to induce severe lipid peroxidation, provoking robust immunogenic cell death (ICD) to trigger anti-tumor immune response. Importantly, the released 2DG markedly inhibits lactate generation through glycolysis obstruction. Decreased lactate efflux remodels the immunosuppressive TME by suppressing M2 macrophage proliferation and downregulating regulatory T cell levels. This work provides a new paradigm for the integration of NIR-II phototheranostics and lactate metabolism regulation into a single nanoplatform for amplified anti-tumor immunotherapy combined with ICB therapy.

9.
Bio Protoc ; 14(12): e5019, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948262

ABSTRACT

The Auxin-inducible degron (AID) system is a genetic tool that induces rapid target protein depletion in an auxin-dependent manner. Recently, two advanced AID systems-the super-sensitive AID and AID 2-were developed using an improved pair of synthetic auxins and mutated TIR1 proteins. In these AID systems, a nanomolar concentration of synthetic auxins is sufficient as a degradation inducer for target proteins. However, despite these advancements, AID systems still require the fusion of an AID tag to the target protein for degradation, potentially affecting its function and stability. To address this limitation, we developed an affinity linker-based super-sensitive AID (AlissAID) system using a single peptide antibody known as a nanobody. In this system, the degradation of GFP- or mCherry-tagged target proteins is induced in a synthetic auxin (5-Ad-IAA)-dependent manner. Here, we introduce a simple method for generating AlissAID strains targeting GFP or mCherry fusion proteins in budding yeasts. Key features • AlissAID system enables efficient degradation of the GFP or mCherry fusion proteins in a 5-Ad-IAA-depending manner. • Transforming the pAlissAID plasmids into strains with GFP- or mCherry- tagged proteins.

10.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38960409

ABSTRACT

Deep learning has achieved impressive results in various fields such as computer vision and natural language processing, making it a powerful tool in biology. Its applications now encompass cellular image classification, genomic studies and drug discovery. While drug development traditionally focused deep learning applications on small molecules, recent innovations have incorporated it in the discovery and development of biological molecules, particularly antibodies. Researchers have devised novel techniques to streamline antibody development, combining in vitro and in silico methods. In particular, computational power expedites lead candidate generation, scaling and potential antibody development against complex antigens. This survey highlights significant advancements in protein design and optimization, specifically focusing on antibodies. This includes various aspects such as design, folding, antibody-antigen interactions docking and affinity maturation.


Subject(s)
Antibodies , Deep Learning , Antibodies/chemistry , Antibodies/immunology , Humans , Antibody Affinity , Computational Biology/methods , Drug Design
11.
Enzyme Microb Technol ; 180: 110474, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38944901

ABSTRACT

Prostate cancer is the most prevalent cancer in men. At present, the diagnosis and screening of prostate cancer rely on the essential biomarker known as prostate-specific antigen (PSA). The main purpose of this study was to develop a novel immunoassay for the detection of PSA based on a tri-part split-nanoluciferase system and a nanobody targeting PSA. In our approach, two small components of the split-nanoluciferase, referred to as ß9 and ß10, were individually fused to two anti-PSA nanobodies, N7 and N23. When these proteins bind to PSA and in the presence of the third nanoluciferase component, called Δ11S, the split-nanoluciferase components are brought into close proximity, facilitating the reassembly of the active nanoluciferase and activation of luminescence. These proteins were expressed in a bacterial expression system, purified, and employed for the intended immunoassay. The developed immunoassay demonstrated the capability to sensitively detect PSA within a linear range from 1.0 to 20.0 ng/mL with LOD of 0.4 ng/mL, and the results obtained through this immunoassay agreed with those derived from the ELISA. Our study indicates that the homogeneous immunoassay developed with nanobodies exhibits remarkable specificity for PSA and can serve as a reliable, fast, and user-friendly test for detecting PSA.

12.
Chembiochem ; : e202400437, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38945824

ABSTRACT

Antibody-enzyme conjugates have shown potential as tissue-specific prodrug activators by antibody-directed enzyme prodrug therapy (ADEPT), but the approach met challenges clinically due to systemic drug release. Here, we report a novel dual-targeting ADEPT system (DuADEPT) which is based on active cancer receptor targeting of both a trastuzumab-sialidase conjugate (Tz-Sia) and a highly potent sialidase-activated monomethyl auristatin E (MMAE) prodrug scaffold. The scaffold is based on a four-way junction of the artificial nucleic acid analog acyclic (L)-threoninol nucleic acid ((L)-aTNA) which at the ends of its four arms carries one nanobody targeting HER2 and three copies of the prodrug. Dual-targeting of the constructs to two proximal epitopes of HER2 was shown by flow cytometry, and a dual-targeted enzymatic drug release assay revealed cytotoxicity upon prodrug activation specifically for HER2-positive cancer cells. The specific delivery and activation of prodrugs in this way could potentially be used to decrease systemic side effects and increase drug efficacy, and utilization of Tz-Sia provides an opportunity to combine the local chemotherapeutic effect of the DuADEPT with an anticancer immune response.

13.
Hum Vaccin Immunother ; 20(1): 2366641, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38934499

ABSTRACT

Tetanus toxin (TeNT) is one of the most toxic proteins. Neutralizing antibodies against TeNT are effective in prevention and treatment. In this study, 14 anti-tetanus nanobodies were obtained from a phage display nanobody library by immunizing a camel with the C-terminal receptor-binding domain of TeNT (TeNT-Hc) as the antigen. After fusion with the human Fc fragment, 11 chimeric heavy-chain antibodies demonstrated nanomolar binding toward TeNT-Hc. The results of toxin neutralization experiments showed that T83-7, T83-8, and T83-13 completely protected mice against 20 × the median lethal dose (LD50) at a low concentration. The neutralizing potency of T83-7, T83-8, and T83-13 against TeNT is 0.4 IU/mg, 0.4 IU/mg and 0.2 IU/mg, respectively. In the prophylactic setting, we found that 5 mg/kg of T83-13 provided the mice with full protection from tetanus, even when they were injected 14 days before exposure to 20 × LD50 TeNT. T83-7 and T83-8 were less effective, being fully protective only when challenged 7 or 10 days before exposure, respectively. In the therapeutic setting, 12 h after exposure to TeNT, 1 ~ 5 mg/kg of T83-7, and T83-8 could provide complete protection for mice against 5 × LD50 TeNT, while 1 mg/kg T83-13 could provide complete protection 24 h after exposure to 5 × LD50 TeNT. Our results suggested that these antibodies represent prophylactic and therapeutic activities against TeNT in a mouse model. The T83-7, T83-8, and T83-13 could form the basis for the subsequent development of drugs to treat TeNT toxicity.


Subject(s)
Antibodies, Neutralizing , Immunoglobulin Heavy Chains , Single-Domain Antibodies , Tetanus Toxin , Tetanus , Animals , Tetanus Toxin/immunology , Tetanus/prevention & control , Tetanus/immunology , Antibodies, Neutralizing/immunology , Mice , Single-Domain Antibodies/immunology , Immunoglobulin Heavy Chains/immunology , Female , Camelus/immunology , Humans , Antibodies, Bacterial/immunology , Mice, Inbred BALB C
14.
Exploration (Beijing) ; 4(3): 20230086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939869

ABSTRACT

The ongoing mutations of the SARS-CoV-2 pose serious challenges to the efficacy of the available antiviral drugs, and new drugs with fantastic efficacy are always deserved investigation. Here, a nanobody called IBT-CoV144 is reported, which exhibits broad neutralizing activity against SARS-CoV-2 by inducing the conformation of spike trimer dimers. IBT-CoV144 was isolated from an immunized alpaca using the RBD of wild-type SARS-CoV-2, and it showed strong cross-reactive binding and neutralizing potency against diverse SARS-CoV-2 variants, including Omicron subvariants. Moreover, the prophylactically and therapeutically intranasal administration of IBT-CoV144 confers fantastic protective efficacy against the challenge of Omicron BA.1 variant in BALB/c mice model. The structure analysis of the complex between spike (S) protein, conducted using Cryo-EM, revealed a special conformation known as the trimer dimers. This conformation is formed by two trimers, with six RBDs in the "up" state and bound by six VHHs. IBT-CoV144 binds to the lateral region of the RBD on the S protein, facilitating the aggregation of S proteins. This aggregation results in steric hindrance, which disrupts the recognition of the virus by ACE2 on host cells. The discovery of IBT-CoV144 will provide valuable insights for the development of advanced therapeutics and the design of next-generation vaccines.

15.
Mol Pharm ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920116

ABSTRACT

The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evaded the efficacy of previously developed antibodies and vaccines, thus remaining a significant global public health threat. Therefore, it is imperative to develop additional antibodies that are capable of neutralizing emerging variants. Nanobodies, as the smallest functional single-domain antibodies, exhibit enhanced stability and penetration ability, enabling them to recognize numerous concealed epitopes that are inaccessible to conventional antibodies. Herein, we constructed an immune library based on the immunization of alpaca with the S1 subunit of the SARS-CoV-2 spike protein, from which two nanobodies, Nb1 and Nb2, were selected using phage display technology for further characterization. Both nanobodies, with the binding residues residing within the receptor-binding domain (RBD) region of the spike, exhibited high affinity toward the S1 subunit. Moreover, they displayed cross-neutralizing activity against both wild-type SARS-CoV-2 and 10 ο variants, including BA.1, BA.2, BA.3, BA.5, BA.2.75, BF.7, BQ.1, EG.5.1, XBB.1.5, and JN.1. Molecular modeling and dynamics simulations predicted that both nanobodies interacted with the viral RBD through their complementarity determining region 1 (CDR1) and CDR2. These two nanobodies are novel tools for the development of therapeutic and diagnostic countermeasures targeting SARS-CoV-2 variants and potentially emerging coronaviruses.

16.
Cells ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38920670

ABSTRACT

Proinflammatory T-lymphocytes recruited into the brain and spinal cord mediate multiple sclerosis (MS) and currently there is no cure for MS. IFN-γ-producing Th1 cells induce ascending paralysis in the spinal cord while IL-17-producing Th17 cells mediate cerebellar ataxia. STAT1 and STAT3 are required for Th1 and Th17 development, respectively, and the simultaneous targeting of STAT1 and STAT3 pathways is therefore a potential therapeutic strategy for suppressing disease in the spinal cord and brain. However, the pharmacological targeting of STAT1 and STAT3 presents significant challenges because of their intracellular localization. We have developed a STAT-specific single-domain nanobody (SBT-100) derived from camelids that targets conserved residues in Src homolog 2 (SH2) domains of STAT1 and STAT3. This study investigated whether SBT-100 could suppress experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We show that SBT-100 ameliorates encephalomyelitis through suppressing the expansion of Th17 and Th1 cells in the brain and spinal cord. Adoptive transfer experiments revealed that lymphocytes from SBT-100-treated EAE mice have reduced capacity to induce EAE, indicating that the immunosuppressive effects derived from the direct suppression of encephalitogenic T-cells. The small size of SBT-100 makes this STAT-specific nanobody a promising immunotherapy for CNS autoimmune diseases, including multiple sclerosis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Single-Domain Antibodies , Th17 Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/therapeutic use , Mice , Th17 Cells/immunology , Th17 Cells/drug effects , Female , Camelids, New World , STAT3 Transcription Factor/metabolism , Th1 Cells/immunology , Th1 Cells/drug effects , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/drug therapy , STAT1 Transcription Factor/metabolism , Spinal Cord/pathology , Spinal Cord/drug effects , Spinal Cord/immunology
17.
Elife ; 122024 Jun 26.
Article in English | MEDLINE | ID: mdl-38921957

ABSTRACT

Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSDCα between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody-antigen interactions. This structural prediction tool can be used to optimize antibody-antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.


Subject(s)
Complementarity Determining Regions , Deep Learning , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Models, Molecular , Protein Conformation , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Humans
18.
Food Chem ; 455: 139684, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38833869

ABSTRACT

To break through the bottleneck in preparation of nanobody (Nb) for chemical contaminants induced by the difficulties in the synthesis of immunogen, complexity and unexpectable efficiency of immunization, a novel strategy to generate Nbs based on the designed synthetic Nb libraries with final size up to 109 cfu/mL was adopted and succeeded in selection of anti-coumaphos Nb A4. Furthermore, an affinity-matured mutant Nb 3G was obtained from the secondary library. Finally, an ic-ELISA was established with the limit of detection for coumaphos low to 1.90 ng/mL, 6.4-fold improved than the parent Nb A4, and the detection range from 3.06 to 15.77 ng/mL. Meanwhile, the recovery rate of vegetable samples was from 89.9% to 98.5%. Finally, the accuracy was testified by the standard UPLC-MS/MS method with R2 up to 0.99. Overall, fully synthetic Nb libraries constructed in this work provided an alternative possibility to generate the specific Nbs for chemical contaminants.


Subject(s)
Coumaphos , Single-Domain Antibodies , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Coumaphos/chemistry , Coumaphos/immunology , Enzyme-Linked Immunosorbent Assay , Tandem Mass Spectrometry , Food Contamination/analysis , Peptide Library
19.
Mikrochim Acta ; 191(7): 387, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38869719

ABSTRACT

A novel construction strategy is introduced for an ultrasensitive dynamic light scattering (DLS) immunosensor targeting alpha fetoprotein (AFP). This approach relies on a self-assembled heptamer fusion protein (A1-C4bpα), incorporating the dual functions of multivalent recognition and crosslinking aggregation amplification due to the presence of seven AFP-specific A1 nanobodies on the A1-C4bpα heptamer. Leveraging antibody-functionalized magnetic nanoparticles for target AFP capture and DLS signal output, the proposed heptamer-assisted DLS immunosensor offers high sensitivity, strong specificity, and ease of operation. Under the optimized conditions, the designed DLS immunosensor demonstrates excellent linear detection of AFP in the concentration range 0.06 ng mL-1 to 512 ng mL-1, with a detection limit of 15 pg mL-1. The selectivity, accuracy, precision, practicability, and reliability of this newly developed method were further validated through an assay of AFP levels in spiked and actual human serum samples. This work introduces a novel approach for constructing ultrasensitive DLS immunosensors, easily extendable to the sensitive determination of other targets via simply replacing the nanobody sequence, holding great promise in various applications, particularly in disease diagnosis.


Subject(s)
Dynamic Light Scattering , Limit of Detection , alpha-Fetoproteins , alpha-Fetoproteins/analysis , alpha-Fetoproteins/immunology , Humans , Immunoassay/methods , Antibodies, Immobilized/immunology , Biosensing Techniques/methods , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Magnetite Nanoparticles/chemistry
20.
Foods ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928787

ABSTRACT

In the realm of analysis, the lateral flow immunoassay (LFIA) is frequently utilized due to its capability to be fast and immediate. However, the biggest challenge of the LFIA is its low detection sensitivity and tolerance to matrix interference, making it impossible to enable accurate, qualitative analyses. In this study, we developed a new LFIA with higher affinity and sensitivity, based on a nanobody (G8-DIG) and CuS nanoflowers-Au (CuS NFs-Au), for the detection of aflatoxin B1 (AFB1) in maize. We synthesized the immunoprobe G8-DIG@CuS NFs-Au, stimulated the in situ development of Au nanoparticles (Au NPs) on Cu NFs by electrical displacement, and obtained Cu NFs-Au for fixing the G8-DIG. G8-DIG@CuS NFs-Au probe-based LFIAs may, in ideal circumstances, use a strip chromatography reader to accomplish sensitive quantitative detection and qualitative visualization. AFB1 has a detection range of 2.82-89.56 µg/L and a detection limit of 0.87 µg/L. When compared with an LFIA based on CuS NFs, this sensitivity is increased by 2.76 times. The practical application of this method in corn flour demonstrated a recovery rate of 81.7% to 117%. Therefore, CuS NFs-Au show great potential for detecting analytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...