Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 19057, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154070

ABSTRACT

The present work deals with developing a method for revalorizing steel residues to create sunlight-active photocatalysts based on iron oxides. Commercial-grade steel leftovers are oxidized under different combinations of pH and temperature (50-90 °C and 3 ≥ pH ≤ 5) in a low energy-intensive setup. The material with the highest production efficiency (yield > 12%) and magnetic susceptibility (χm = 387 × 10-6 m3/kg) was further explored and modified by diffusion of M2+ (Zn and Co) ions within the structure of the oxide using a hydrothermal method to create ZnFe2O4, CoFe2O4 and combined Co-Zn ferrite. (Co-Zn)Fe2O4 displayed a bandgap of 2.02 eV and can be activated under sunlight irradiation. Electron microscopy studies show that (Co-Zn)Fe2O4 consists of particles with diameters between 400 and 700 nm, homogeneous size, even distribution, and good dispersibility. Application of the developed materials in the sunlight catalysis of black liquors from cellulose extraction resulted in a reduction of the Chemical Oxygen Demand (- 15% on average) and an enhancement in biodegradability (> 0.57 BOD/COD) after 180 min of reaction. Since the presented process employs direct solar light, it opens the possibility to large-scale water treatment and chemical upgrading applications.

2.
Materials (Basel) ; 15(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234123

ABSTRACT

Nanostructured catalysts of platinum (Pt) supported on commercial TiO2, as well as TiO2-CeO2 (1, 5 and 10 wt% CeO2), were synthesized through the Sol-Gel and impregnation method doped to 1 wt% of Platinum, in order to obtain a viable photocatalytic material able to oxidate organic pollutants under the visible light spectrum. The materials were characterized by different spectroscopy and surface techniques such as Specific surface area (BET), X-ray photoelectron spectroscopy (XPS), XRD, and TEM. The results showed an increase in the diameter of the pore as well as the superficial area of the supports as a function of the CeO2 content. TEM images showed Pt nanoparticles ranking from 2-7 nm, a decrease in the particle size due to the increase of CeO2. The XPS showed oxidized Pt2+ and reduced Pt0 species; also, the relative abundance of the elements Ce3+/Ce4- and Ti4+ on the catalysts. Additionally, a shift in the Eg band gap energy (3.02-2.82 eV) was observed by UV-vis, proving the facticity of applying these materials in a photocatalytic reaction using visible light. Finally, all the synthesized materials were tested on their photocatalytic oxidation activity on a herbicide used worldwide; 2,4-Dichlorophenoxyacetic acid, frequently use in the agriculture in the state of Jalisco. The kinetics activity of each material was measured during 6 h of reaction at UV-Vis 190-400 nm, reaching a removal efficiency of 98% of the initial concentration of the pollutant in 6 h, compared to 32% using unmodified TiO2 in 6 h.

3.
Chemosphere ; 297: 134172, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35248594

ABSTRACT

The presence of endocrine-disrupting chemicals (EDCs) in water resources has significant negative implications for the environment. Traditional technologies implemented for water treatment are not completely efficient for removing EDCs from water. Therefore, research on sustainable remediation has been mainly directed to novel decontamination approaches including nano-remediation. This emerging technology employs engineered nanomaterials to clean up the environment quickly, efficiently, and sustainably. Thus, nanomaterials have contributed to a wide variety of remediation techniques like adsorption, filtration, coagulation/flocculation, and so on. Among the vast diversity of decontamination technologies catalytic advanced oxidation processes (AOPs) outstand as simple, clean, and efficient alternatives. A vast diversity of catalysts has been developed demonstrating high efficiencies; however, the search for novel catalysts with enhanced performances continues. In this regard, nanomaterials used as nanocatalysts are exhibiting enhanced performances on AOPs due to their special nanostructures and larger specific surface areas. Therefore, in this review we summarize, compare, and discuss the recent advances on nanocatalysts, catalysts doped with metal-based nanomaterials, and catalysts doped with carbon-based nanomaterials on the degradation of EDCs. Finally, further research opportunities are identified and discussed to achieve the real application of nanomaterials to efficiently degrade EDCs from water resources.


Subject(s)
Endocrine Disruptors , Environmental Pollutants , Nanostructures , Water Pollutants, Chemical , Water Purification , Carbon , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis
4.
Nanomaterials (Basel) ; 11(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069187

ABSTRACT

This study focuses on evaluating the volumetric hydrogen content in the gaseous mixture released from the steam catalytic gasification of n-C7 asphaltenes and resins II at low temperatures (<230 °C). For this purpose, four nanocatalysts were selected: CeO2, CeO2 functionalized with Ni-Pd, Fe-Pd, and Co-Pd. The catalytic capacity was measured by non-isothermal (from 100 to 600 °C) and isothermal (220 °C) thermogravimetric analyses. The samples show the main decomposition peak between 200 and 230 °C for bi-elemental nanocatalysts and 300 °C for the CeO2 support, leading to reductions up to 50% in comparison with the samples in the absence of nanoparticles. At 220 °C, the conversion of both fractions increases in the order CeO2 < Fe-Pd < Co-Pd < Ni-Pd. Hydrogen release was quantified for the isothermal tests. The hydrogen production agrees with each material's catalytic activity for decomposing both fractions at the evaluated conditions. CeNi1Pd1 showed the highest performance among the other three samples and led to the highest hydrogen production in the effluent gas with values of ~44 vol%. When the samples were heated at higher temperatures (i.e., 230 °C), H2 production increased up to 55 vol% during catalyzed n-C7 asphaltene and resin conversion, indicating an increase of up to 70% in comparison with the non-catalyzed systems at the same temperature conditions.

5.
Mikrochim Acta ; 187(7): 379, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518966

ABSTRACT

A highly sensitive sensor for quantification of uric acid (UA) directly in body fluids (saliva and sweat) is reported, working at a potential as low as 0.0 V vs Ag/AgCl. New mixed hydroxide materials exhibiting stable electrocatalytic responses from alkaline to acidic media were prepared, their structure was thoroughly characterized, and the electrochemical properties of the modified FTO (fluorine-doped tin oxide) electrodes were evaluated for UA determination by cyclic voltammetry, chronoamperometry, and batch injection analysis. A very low limit of detection (2.3 × 10-8 mol L-1) with good repeatability (RSD = 3.2% for 30 successive analyses) was achieved based on a fast and simple BIA procedure. Finally, α-Ni0.75Zn0.25(OH)2 screen-printed electrodes (SPE) were developed for the measurement of UA directly in real saliva and sweat samples, without interference of ascorbic acid, acetaminophen, lactate, and glucose at their typical concentrations present in those body fluids, revealing high potential for application as disposable sensors in biological systems. Graphical abstract.


Subject(s)
Electrochemical Techniques/methods , Hydroxides/chemistry , Saliva/chemistry , Sweat/chemistry , Uric Acid/analysis , Catalysis , Electrochemical Techniques/instrumentation , Electrodes , Humans , Limit of Detection , Nickel/chemistry , Oxidation-Reduction , Reproducibility of Results , Uric Acid/chemistry , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL